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ABSTRACT.  Shifting hydrological phenomenon under changing climate would lead to decreased water availability, and thus would 
worse water supply-demand conflicts resulting in penalties on local economy. To tackle water shortage problems, water trading has 
been proved as an efficient and economical method. However, complexities and uncertainties in water trading system may result in its 
poor efficiency and improper management. To address these concerns, an inexact two-stage stochastic nonlinear programming (ITSNP) 
model is proposed for water resources management through water trading under uncertainty. The ITSNP model can reflect nonlinearity 
of the problems, incorporate uncertainties expressed as probability distributions and discrete intervals, and provide linkages between 
predefined policies and associated economic implications. The developed model is applied to a case study of water resources 
management of an agricultural system with and without water trading schemes. The obtained modeling solutions indicate that water 
resources management is more efficient with water trading than without water trading particularly during dry seasons. Moreover, it is 
found that water trading is a suitable method for adaptation to climate change impacts under water scarcity. 
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1. Introduction  

Impacts of climate change on water supply-demand bal-
ance have been concerned in many parts of the world, espe-
cially for those located in arid and semi-arid regions 
(Herrington et al., 1997; Frederick et al., 1999; Lettenmaier et 
al., 1999; Beuhler, 2003; Merritt et al., 2003; Ojo et al., 2003). 
Recent studies indicate that probability of low-flow occur-
rence would increase in most watersheds because of shifting 
hydrological regime under changing climate. This would re-
sult in decreased water availability. At the same time, due to 
socio-economic development, water consumption would con-
tinue to increase to satisfy the escalating demands. This would 
worse water supply-demand conflicts and result in penalties 
on local economy. Therefore, there is a need for studies to 
develop appropriate techniques to tackle future water shortage 
problems and minimize the associated penalties in response to 
the climate change impacts (Sefton et al., 1997; Eheart et al., 
1999; Mimikou et al., 2000; Chiew et al., 2002). 

Without big investment as constructing infrastructure to 
store enough water, water trading has been proved as an effi-
cient and economical method to handle water shortage prob-
lems (Dale, 1968; Anderson, 1983; Berker et al., 1996; 
Landry et al., 1998). Moreover, water trading has an advan-
tage of releasing water for ecosystem protection and water 
quality improvement during dry seasons in arid and semi-arid 
regions (Rosegrant et al., 1995; Tisdell, 2001). In several 
countries, markets for entitlements to extract water have even 
been introduced as a mechanism for water redistribution (Dra-
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gun et al., 1989; Topp et al., 1998; Brennan et al., 1999). 
However, before building up a water trading system, it is 
important to estimate the efficiency of the planned trading 
system and analyze its possible impacts. Previously, a number 
of studies have been undertaken to investigate the efficiency 
of water trading (Saliba et al., 1987; Michelsen, 1994; Streeter, 
1997). For example, Rosegrant et al. (1995) investigated how 
to design water rights and supporting institutions to attain the 
objectives of efficient crop diversification and water use by 
drawing lessons from case studies in Chile, Mexico, and 
California; Wollmuth et al. (2000) explored the efficiency of 
water trading by studying the surface water withdrawal 
allocation and trading systems for traditionally riparian areas; 
Tisdell (2001) developed a linear program to analyze the wa-
ter markets for agricultural water of the Border River in 
Australia. 

However, complexities and uncertainties in water trading 
problems under changing climate may result in decreased 
efficiency of the trading systems. For example, it is hard to 
determine how much extra water should be delivered to sat-
isfy the increasing demands when stream flows are decreasing 
under climate change impacts. Higher water allocation targets 
means increased investments in water infrastructure and 
raised penalties on local economy, when water shortages exist 
during dry seasons. Conversely, reducing the allocation tar-
gets results in lower risk of penalties under water scarcity and 
a higher risk of water-resources wastage. Such problems can 
often be formulated as two-stage stochastic programming 
(TSP) models (Anderson, 1968; Kall, 1979; Louveaux, 1980; 
Birge, 1985; Birge & Louveaux, 1988; Gassmann, 1990; 
Eiger & Shamir, 1991; Lustig et al., 1991; Sen, 1993; Ediris-
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inghe & Ziemba, 1994; Ruszczynski & Swietanowski, 1997; 
Beraldi et al., 2000; Dai et al., 2000; Darby-Dowman et al., 
2000; Yoshitomi et al., 2000; Zhao, 2001). In TSP, a decision 
is made at the first stage before random variables are known 
and then, after the random events have happened and their 
values are known, a second decision should be made in order 
to minimize penalties that may appear due to any infeasibility 
(Loucks et al., 1981; Birge et al., 1988; Ruszczynski, 1993). 
In many real-world problems such as water trading in water-
sheds, most of available data is generally not of high quality 
to be presented as probability density distribution (PDF). Thus 
non-PDF information cannot be directly incorporated within 
conventional TSP problems. For example, PDF alone may not 
be capable of reflecting changes in water availability because 
of shifting hydrologic regime under climate change; rather 
water availability may be more conveniently represented as 
intervals. Moreover, it is extremely hard to solve a large-scale 
TSP model with all uncertain parameters being expressed as 
PDFs, even if these functions are available. Therefore, an 
efficient reflection of such uncertainties is critical in estimat-
ing the efficiency of a water trading system and analyzing its 
impacts. 

To address such uncertainties in a TSP problem, an inex-
act two-stage stochastic programming (ITSP) model was 
introduced by Huang and Loucks (2000). One advantage of 
the ITSP technique is that it can directly incorporate 
uncertainties expressed as discrete intervals and probabilities 
within a TSP framework. Recently, this technique has been 
successfully extended to deal with the problems of waste and 
water resources management (Maqsood and Huang 2003; 
Maqsood et al., 2003). However, relations among parameters 
in water trading problems can be more complex, which can be 
better expressed as nonlinearity instead of linearity alone. 
Thus, it is desired to integrate nonlinear programming into the 
ITSP framework. This will lead to an inexact two-stage 
stochastic nonlinear programming (ITSNP) approach. 

As an extension of the previous efforts, the objective of 
this study is to develop an ITSNP model for the management 
of water trading within an agricultural system under uncer-
tainty. The proposed model will tackle nonlinearities, 
complexities, and uncertainties in water trading problems. 
This study will help design efficient water trading system to 
address water supply-demand conflicts under climate change 
impacts. The obtained solutions will provide valuable deci-
sion support for the management of water resources through 
water trading. 

2. Modeling Formulation 

Consider a problem in which a water trading system 
needs to be constructed among multiple users due to de-
creased water availability and increased water demands under 
climate change. Currently, water is allocated to these users in 
proportion to their water permits during dry seasons. By trad-
ing, water can be reallocated to its most efficient user. It is 
needed to know how much water all the users can expect with 
and without water trading. If insufficient water is available, 
how water trading will impact the penalties which they will 

suffer. Thus, the problem can be formulated as maximizing 
the net benefit for all users in order to maximize benefit of 
local economy. Given a quantity of water is promised to each 
user. In addition, various uncertainties exist in the water trad-
ing system components such as water-allocation targets, eco-
nomic data, and water availability. Moreover, relations be-
tween reduction in net benefit and water shortage are nonlin-
ear. Since the total water availability is a random variable, the 
objective function of this problem can be formulated as a 
two-stage stochastic nonlinear programming (TSNP) model as 
follows: 

 

1 1

i

u u

i i i iQ
i i

Max  B X E D T 

 

 
    

 
              (1) 

 
where  is average net benefit for all users ($); iB is net 
benefit to user i per m3 water allocated ($/m3); iX is fixed 
water-allocation target to user i (m3) (first-stage decision vari-
able); E[x] is expected value of a random variable x; iD is 
reduction of net benefit to user i per m3 water not delivered 
($/m3); iQT  is amount by which water-allocation target iX  
is not met when seasonal flow is Q (m3); Q is random variable 
equal to total water availability (m3); i  is coefficient of wa-
ter shortage and reduction of net benefit ( 0 i ); u is total 
number of users. 

Since Q is a random variable in model (1), the distribu-
tion of Q must be converted to an equivalent set of discrete 
values in order to solve model (1). Let Q takes values jQ  
with probabilities jp , where j defines p levels of water 
availability. Model (1) can be reformulated as follows 
(Loucks, 1981): 

 

1 1 1

i

u u v

i i j i ij
i i j

Max  B X p D T 

  

                (2) 

 
where ijT  are decision variables representing amount by 
which water-allocation target is not met to user i when total 
water availability is Qj (m

3); Qj is total water availability with 
probability pj of occurrence (m3); pj is probability of occur-
rence under water availability j (%); j is flow level, j = 1, 
2, …, v. 

The above TSNP model can effectively deal with 
uncertainties presented in random water availability. It can set 
water-allocation target for each user through its first-stage 
decision variables (Xi). However, uncertainties may also exist 
in other parameters such as economic data (Bi and Di) and 
water-allocation targets (Xi), which generally exist as ambigu-
ous intervals instead of deterministic values. Decision makers 
may find it harder to specify PDFs than to define fluctuation 
ranges (Huang & Loucks, 2000). For instance, wa-
ter-allocation targets can hardly be expressed as a PDF while 
it can be easily defined as an interval. Water availability can 
be expressed as not only a PDF, but also interval value. To re-
flect such uncertainties, interval parameters (Huang et al., 
1993) can therefore be introduced into model (2), resulting in 
an inexact two-stage nonlinear programming (ITSNP) model: 
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1 1 1

( ) i

u u v

i i j i ij
i i j

Max  B X p D T     

  

             (3) 

 
where ‘–’ and ‘+’ superscripts represent the lower and upper 
bounds of the parameters, respectively. Traditionally, authori-
ties allocate water to users with respect to their permits if 
available water is insufficient during dry seasons. Thus, 
according to model (3), the average net benefit without water 
trading can be obtained though the objective function as fol-
lows: 

 

1
1 1 1

( ) i

u u v

i i j i ij
i i j

Max  B X p D T     

  

            (4a) 

 
Constraints: 

(1) Relaxed constraints for water permits: The constraints 
describe that total expected water demand for each user is less 
than or equal to user’s water permit. 

 

i iX W   , j                          (4b) 

 
(2) Relaxed constraints for water violation: The constraints 
ensure that the amount by which water-allocation target is not 
met is less than or equal to the allocation target. 

 

0 ij iT X   , ,i j                      (4c) 

 
(3) Relaxed constraints for water allocation in a dry seasons: 
The constraints reflect that water should be proportionally 
allocated to users according to their issued permits before 
water trading when water availability is inadequate for all 
users. 
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(4) Relaxed constraint when total water availability is suffi-
cient. 
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where 1
 is average net benefit without water trading ($); 

iW is water permit to user i (m3); jQ
 is total water availabil-

ity with probability pj of occurrence (m3). When water is trad-
able, all users are no longer constrained by their own water 
permits but theoretically by the aggregate supply of total wa-
ter availability. Thus, average net benefit for all users ( 2

 ) 
can be estimated by the objective function as follows: 

 

2
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i i j

Max  B X p D T     

  

              (5a) 

 
Constraints: 

(1) Relaxed constraints for water permits: These constraints 
ensure that the water-allocation targets for each user are not 
constrained by their own permits when water is tradable. 

 

1 1

u m

i i
i i

X W

 

   , j                      (5b) 

 
(2) Relaxed constraints for water violation 

 
0 ij iT X   , ,i j                            (5c) 

 
(3) Relaxed constraints for water reallocation: When water is 
tradable, water can be reallocated to its most efficient user 
instead of proportionally distributed to each user according to 
their permits. 

 

1

( )
u

i ij j
i

X T Q  



  , j                         (5d) 

 
Models (4) and (5) both form an inexact two-stage 

stochastic nonlinear programming model without water trad-
ing and with water trading, respectively. They can deal with 
nonlinearities and uncertainties. When iX  are known, each 
of them can be transformed into two deterministic nonlinear 
submodels, which correspond to the lower and upper bounds 
of the desired objective function (Huang, 1996). Since iX   is 
considered as inexact inputs in the ITSNP model, the existing 
methods for solving interval programming problems cannot 
be used directly. 

According to Huang and Loucks (2000), let 
( )i i i i iX X X X      , where ]1 ,0[i . When λi is equal 

to 1, iX   approach their upper bounds, and it is assumed 
that the average net benefit will be the highest as long as the 
water demands are well satisfied; however, this is associated 
with a higher risk of penalty when the promised amount of 
water is not delivered. Conversely, when λi is equal to 0, 

iX   
reach their lower bounds, this will lead to a lower average net 
benefit and a lower risk of violating the promised amounts. 

Thus, here λi is a set of decision variables. A set of target 
values can be optimized by having λi in models (4) and (5) as 
decision variable. Thus, by incorporating values of 

iX   into 

model (5), we have: 
 
 

1
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[ ( )]
u

i i i i i
i

Max  B X X X    
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subject to: 
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0ijT   , ,i j                                       (6f) 

0 1i  , i                                    (6g) 

 
Since the objective is to maximize average net benefit for 

all users, the objective function value corresponding to 1
 is 

desired. A combination of the upper bounds for benefit coeffi-
cients and decision variables and the lower bounds for cost 
terms would correspond to 1

. Thus, the submodel corres- 
ponding to 1

 can be expressed as: 
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subject to: 
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0ijT   , ,i j                                   (7f) 

0 1i  , i                                 (7g) 

 
where ijT  and λi are decision variables. Submodel (7) is a 
deterministic nonlinear programming problem. Let ij  (1)T   and 
λi(1) be the optimized solutions of submodel (7). Then, the 
optimized water-allocation target for each user can be per-
formed by calculating ( )i (1) i i (1) i iX X X X      , which corres- 
ponds to the extreme upper bound of system benefit under 
uncertain inputs of water allocation amounts. The submodel 
corresponding to 1

 can be formulated as follows: 
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subject to: 
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ij ij  (1)T T  , ,i j                                 (8e) 

 

where 
ijT   are decision variables. Submodel (8) is also a 

deterministic nonlinear problem and its solution is similar to 
submodel (7). Thus, solutions of model (4) under the opti-
mized water allocation targets are as follows: 
 

1 1 1[ , ]opt  opt  opt                                         (9a) 

[ , ]ij  (1) ij  (1) ij  (1)T T  T   , ,i j                                 (9b) 

 
where 

 opt1 and ij(1)T   are from solution of submodel (7), and 


 opt1  and ij(1)T   are from solution of submodel (8). Thus, the 
optimum water allocation scheme to each user under different 
probabilities of water availability is: 

 

ij  (1) ij  (1) ij  (1)A X  T    ,  i, j                       (10) 

 

Similarity, model (5) can be solved the same as model (4). 
Solutions of model (5) are as follows: 
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( )i  (2) i i  (2) i iX X X X                             (11a) 

2 2[ , ] opt  opt 2 opt                                (11b) 

[ , ]ij  (2) ij  (2) ij  (2)T T  T   , ,i j                        (11c) 

ij  (2) ij  (2) ij  (2)A X  T    ,  i, j                    (11d) 

 
When the water-allocation target and allocation scheme 

have been set, each user’s net benefit under probability of 
occurrence jp  can be obtained. For model (4), they can be 
calculated by: 

(1) ( ([ , ]ij ij 1) ij 1)       , ,i j                     (12a) 

(1) ( )ij i i  (1) i ij  (1)B X D T        , ,i j                (12b) 

(1) ( )ij i i  (1) i ij  (1)B X D T        , ,i j               (12c) 

For model (5), they are: 

(2) [ , ]ij ij(1) ij(1)       , ,i j                     (13a) 

(2) ( )ij i i  (2) i ij  (2)B X D T        , ,i j               (13b) 

(2) ( )ij i i  (2) i ij  (2)B X D T        , ,i j              (13c) 

 

Efficiency of water trading is evaluated based on the 
comparison of net system benefit gained per unit water con-
sumed under different probabilities of water availability as 
follows: 
 

( (1) (1)
1 1

/
u u

j 1) ij ij  
i i
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 
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where (1)iR  and (2)jR  are the unitary total net benefits when 
unit water is delivered prior and after trading under different 
probabilities of water availability jQ , respectively. 

3. Application 

To demonstrate usefulness of the proposed ITSNP model-
ing approach, it is applied to a semi-hypothetical problem of 
water trading within an agricultural system in order to evalu-
ate whether water trading is a suitable method as an adapta-
tion option to climate change impacts. 

The agricultural system is located in a semi-arid region 
wherein three farmers plant wheat, bean, and sunflower; each 
farmer cultivates one type of crop. The farmers extract irriga-
tion water from a local reservoir. The crop types, crop water 
demand, and related economic data are shown in Table 1 
(ICDC, 2003). It is predicted that the probability of low-flow 
occurrence will increase under climate change, which will 
lead to decreased irrigation-water availability. It is also pre-
dicted that crop water demand will increase approximately 
40% by period 2070-2090 because of the changing climate 
(Neilsen et al., 2001). To mitigate the water supply-demand 
conflict especially during a dry seasons, a water trading sys-
tem is proposed to be constructed. Before developing such a 
trading system, it is needed to estimate efficiency of the pro-
posed trading system and analyze its possible impacts on the 
agricultural system under uncertainties. Table 2 lists the 
amounts of irrigation water and the associated distributions. 

Based on the data shown in Table 1, a nonlinear relation-
ship between reduction of net benefit and water shortage for 
each crop is developed. This nonlinear relationship is pre-
sented in Figure 1 as a monotone increasing curve. This curve 
indicates that relation between reduction of benefit and water 
shortage can be viewed as linear when the shortage is low. 
This implies that the relationship can be considered as linear 
within an interval. For example, when water shortage is 
within 0 to 500 × 103  m3, the relationship can be presented as  

 
 

 

Table 1. Agricultural and Economic Data 

Farmer Crop 
Current crop 
water demand 

(m3) 

Current gross 
benefit 

($/acre) 

Current crop 
price ($/ton) 

gross benefit 

($/acre) 

Cropping cost 
per unit land 

($/acre) 

 1 Wheat 1250 [2.18, 2.45] 132 [288, 324] 253 

 2 Bean 850 [1.15, 1.4] 505 [580.8, 707] 371 

 3 Sunflower 1450 [1.0, 1.4] 300 [300, 420] 280 
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   Table 2. Irrigation Water and Associated Probabilities 

Water availability 

level (J) 

Probability 

( jp ) 

Total irrigation water 

( 
jQ ×103 m3) 

1 0.15 [4000, 4500] 

2 0.2 [[6500, 7000] 

3 0.3 [9000, 10500] 

4 0.2 [12000, 15000] 

5 0.15 [16500, 19000] 

 
 

linear. In addition, since the fixed water-allocation target ( ix ) 
is within the boundary values [ ix , ix ], it is reasonable to 
construct a linear relation between net benefit ( ib ) and the 
fixed water-allocation target ( ix ). Based on the data provided 
in Table 1, the interval values of parameter ib  and id   are 
determined and listed in Table 3. Table 3 also shows water 
permit data, areas of cropped land, and extra crop water de-
mand of each farmer under climate change. 

Thus based on model (4), when water is not tradable, the 
problem under consideration can be formulated as follows: 
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Figure 1.  Relationship between net benefit reduction 
and water shortage. 
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According to model (5), when water is tradable, the prob-

lem can be formulated as follows: 
 

2
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where ix  is the fixed water-allocation target to farmer i (m3); 

iy  is the amount by which ix  is not met; ih is areas of 
cropped land to farmer i (acre); ib is net benefit to farmer i 

 

Table 3. Data About Cropped Land, Water Permits and Economic Factors 

Farmer 

Water permit for 
each farmer 
( 

iW
~ ×103 m3) 

Cropped area for 
each farmer ( hi ) 

Crop water 
demand in year 

2050 ( xi
 ) 

Net benefit when 
water demand is 
satisfied (hibi

) 

Reduction of net 
benefit when water is 
not delivered ( hi xi

 ) 
i 

 1 5000 2800 [1250, 1750] [98, 103.6] (3.892, 4.2] 1.6 

 2 1500 1200 [850, 1190] [334.8, 339.6] (230.9, 336.8] 1.0 

 3 4100 2000 [1450, 2030] [132, 138] (10.16, 11.14] 1.4 
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per unit of water allocated; id   is reduction in net benefit to 
farmer i per unit of water not delivered; all remaining parame-
ters are the same as mentioned in models (4) and (5). 

Models (15) and (16) can be transformed into submodels 
similar as models (7) and (8), respectively. Solutions of these 
nonlinear submodels were obtained through LINGO optimiza-
tion program (LINGO, 2003). 

4. Result Analysis and Discussion 

Table 4 presents the solutions obtained through model 
(15) when water is not tradable. It is indicated that the solu-
tions of water shortage, allocation water, and net benefits are 
all interval values. The total water allocation target for all 
farmers is 10.262 million m3, which is less than their total 
water permits. 

Table 5 shows the average net benefit ( 
 opt1 ), net benefit 

of each farmer (Ψ±
ij(1)), and total net benefit (Ψ±

ij(1)) for all 
farmers when total amount of irrigation water is jQ  under 
probability pi without water trading. It is indicated that the 
average net benefit ( 

 opt1 ) to the system would range from 
$623,286 to $733,735 under different water allocation 
schemes. Moreover, the allocation to each farmer during dry 
seasons would be less than its target, which means that water 
violation existed and thus penalties paid. For example, when 
the total water amount would be from 4 to 4.5 million m3, the 
total net benefits of all farmers would be from $76,864 to 
$292,687. However, when the total available water amount 
would increase, the total net benefit would correspondingly 
increase and reach its maximum values ranging from 
$847,784 to $875,224 eventually. 

Table 6 shows obtained solutions through model (16) for 
the water allocation-target and allocation scheme with water 
trading. It is indicated that most of the solutions are presented 
as intervals. The total water-allocation target for all farmers is 
10.041 million m3, which is also less than farmers’ total water 
permits. 

Table 7 shows the average net benefit ( 
 opt2 ), net benefit 

of each farmer (Ψ±
ij(2)), and total net benefits for all farmers 

(Ψ±
ij(2)) when total irrigable water is jQ  under probability 

pi with water trading. It is shown that the average net benefit 
( 
 opt2 ) would range from $675,978 to $749,692 under differ-

ent water allocation schemes. For dry seasons, penalties 
would occur because of water shortage. For example, when 
the total available water amount would be 6.5 to 7 million m3, 
the total net benefits for all farmers would range between 
$556,541 and $658,816. However, the benefits would increase 
with increase in total irrigable water and reach their utmost 
values between $839,394 and $866,393. 

A comparison of Tables 4 and 6 indicates that water 
would be transferred from farmers 1 and 3 to farmer 2 after 
trading since farmer 2 is more efficient user. Accordingly, the 
net benefit of farmer 2 would increase and farmers 1 and 3 
decrease after trade. For example, water allocated to farmer 2 
would be between 566.038 × 103 and 636.792 × 103 m3 with 
corresponding net benefit of $156,459 to $251,896 without 
trading when water availability would be 4 to 4.5 million m3; 

however, allocation water would increase to 1428 × 103 m3 
with associated increased net benefit of $398,412, $404,124 
after trade. In comparison, water allocation to farmer 3 would 
be 1547.170 × 103 m3 to 1740.566 × 103 m3 with a net benefit 
of $24,923, $81,993 before trade, while this allocation amount 
would decrease between 797.680 × 103 and 1060 × 103 m3 
corresponding to decreased net benefit (i.e. loss) of $-28.292, 
- $3.927. This implies that farmers who contribute water after 
trading would get compensation from farmers who get water 
before trading. 

Table 8 shows the comparison of the total allocation wa-
ter and the associated net benefits for all farmers with and 
without water trading. It is indicated that the water allocation 
target with trading would be less than the value without trad-
ing. However, the average net benefit with trading would be 
larger than the relevant value without trading. This means that 
trading would be efficient if reallocations are considered. 

   Figure 2 presents the relationships between average net 
benefits and water allocation target with and without trading 
under different probabilities of water availability. It is shown 
that the efficiency of water trading would be higher during 
dry seasons. However, efficiency of trading would not be 
significant when total water supply would be adequate to all 
farmers. For example, during low flows, the unitary total net 
benefits would range from 0.0192 to 0.0650 $/m3 without 
trading; however, they would range from 0.0549 to 0.0811 
$/m3 after trade when the probability water availability would 
be 0.15. In comparison, during high flows, the unitary total 
net benefits would range from 0.0818 to 0.0844 $/m3 without 
trading and from 0.0836 to 0.0863 $/m3 with trading under 
0.15 to 0.2 probabilities. This implies that water trading 
would only have particular implications when there would be 
shortage of available water. Models (4) and (5) can also be 
solved by conventional two-stage stochastic nonlinear 
programming by letting all interval parameters be equal to 
their mid-values.  
    The obtained solution is a set of deterministic values. It 
represents a decision under an input scenario (mid-values for 
all parameters), and is actually one of many alternatives from 
the ITSNP. Although further sensitivity analysis can be under-
taken for the TSP solution, numerous possibilities exist when 
many inputs are uncertain. For each possibility, the sensitivity 
analysis can only provide an individual response to variations 
of the uncertain inputs. It can hardly reflect interactions 
among these uncertainties (Huang & Loucks, 2000). 

From the case study, the decreased water allocation target 
with trading indicates that the cost of water available for other 
uses such as ecosystem protection can be measured. It should 
be noticed that releasing water from the agricultural system 
through water trading would create non-market benefits, such 
as improved water quality, more water for fish and other 
aquatic species (Tisdell, 2001). 
    The case study assumes that relations between crop 
production and irrigation water are exponent for all three 
crops. This may not be true in most of real case studies since 
crop production is determined by not only the availability of 
irrigation water, but also factors such as weather conditions, 
fertilizers, and soil types.  Since irrigation is the most critical
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     Table 4. Water Allocation Targets Without Trading (unit: 103 m3) 

Farmer 1 2 3 Total 

(1)i  0.91 1 1  

Target ( 
)1(ii xh ) 4774 1428 4060 10262 

Shortage ( 
)1(iji yh ) 

J = 1 [2651.358, 2887.208] [791.208, 861.962] [2319.434, 2512.830] [5762, 6262] 

J = 2 [1472.113, 1707.962] [437.434, 508.189] [1352.453, 1545.849] [3262, 3762] 

J = 3 [0, 528.717] [0, 154.415] [0, 578.868] [0, 1262] 

J = 4 0 0 0 0 

J = 5 0 0 0 0 

Allocation ( )( )1()1()1(
  ijiiij yxhA ) 

J = 1 [1886.793, 2122.642] [566.038, 636.792] [1547.170, 1740.566] [4000, 4500] 

J = 2 [3066.038, 3301.887] [919.811, 990.566] [2514.151, 2707.547] [65000, 7000] 

J = 3 [4245.283, 4774] [1273.585, 1428] [3481.132, 4060] [9000, 10262] 

J = 4 4774 1428 4060 10262 

J = 5 4774 1428 4060 10262 

 

 

    Table 5. Net Benefit for Each Farmer Without Trading Under Different Flow (unit: $103) 

Probability Farmer 1 Farmer 2 Farmer 3 



u

i
ij

1
)1(

 

1p  = 0.15 [-104.518, -41.202] [156.459, 251.896] [24.923, 81.993] [76.864, 292.687] 

2p  = 0.2 [54.687, 97.694] [255.763, 319.962] [144.855, 187.024] [455.305, 604.680]

3p  = 0.3 [160.829, 190.960] [355.068, 404.124] [236.839, 280.140] [746.569, 875.224]

4p = 0.2 [181.412, 190.960] [398.412, 404.124] [267.960, 280.140] [847.784, 875.224]

5p  = 0.15 [181.412, 190.960] [398.412, 404.124] [267.960, 280.140] [847.784, 875.224]

Average [105.153, 137.483] [320.586, 364.457] [197.547, 231.795]  

Average net benefit  opt 1
 = [623.286, 733.735] 
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      Table 6. Water Allocation Targets With Trading (unit: 103 m3) 

Farmer 1 2 3 Total 

(2)i  0.7523 1 1  

Target ( 
)2(ii xh ) 4553 1428 4060 10041 

Water shortage ( 
)2(iji yh ) 

J=1 [2539.600, 2778.916] 0 [3000, 3262.320] [5539.600, 6041.236]

J=2 [1537.200, 1777.048] 0 [1502, 1764] [3039.200, 3541.048]

J=3 [0, 623.392] 0 [0, 417.820] [0, 1041.212] 

J=4 0 0 0 0 

J=5 0 0 0 0 

Allocation ( )( )2()1()2(
  ijiiij YxhA ) 

J=1 [1774.304, 2013.620] 1428 [797.680, 1060] [4000, 4500] 

J=2 [2776.172, 3016.020] 1428 [2296.000, 2558] [6500, 7000] 

J=3 [3929.828, 4553.220] 1428 [3642.180, 4060] [9000, 10041] 

J=4 4553 1428 4060 10041 

J=5 4553 1428 4060 10041 

 

 

     Table 7. Net benefit for each farmer with trading under different flow level (unit: $103) 

Probability Farmer 1 Farmer 2 Farmer 3 



u

i
ij

1
)2(

 

 1p  = 0.15 [-96.458, -35.042] [398.412, 404.124] [-28.292, -3.927] [219.663, 365.155]

 2p  = 0.2 [38.265, 82.394] [398.412, 404.124] [119.865, 172.298] [556.541, 658.816]

 3p  = 0.3 [146.452, 182.129] [398.412, 404.124] [248.244, 280.140] [793.107, 866.393]

 4p = 0.2 [173.022, 182.129] [398.412, 404.124] [267.960, 280.140] [839.394, 866.393]

 5p  = 0.15 [173.022, 182.129] [398.412, 404.124] [267.960, 280.140] [839.394, 866.393]

   Average [97.678, 129.606] [398.412, 404.124] [179.889, 215.961]  

Average net benefit  opt 2
 = [675.978, 749.692] 
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Figure 2.  Variation of unitary net benefits under differ-
ent probabilities of water availability.. 

 

factor for crop production in arid and semi-arid regions, the 
made assumption is reasonable. 

Although the developed model is tested with a semi- 
hypothetical case, obtained results have demonstrated that the 
proposed approach is applicable to real-world problems. The 
ITSNP modeling approach can effectively tackle problems 
with nonlinear relationships and uncertainties in the form of 
intervals and probabilities. Moreover, it provides linkage 
between predefined policies and their economic implications. 

5. Conclusions 

(1) In this study, an inexact two-stage stochastic nonlin-
ear programming (ITSNP) model is presented for analyzing 
the efficiency of water trading and its impacts on water 
management within an agricultural system under uncertainty. 

(2) The ITSNP is derived by incorporating nonlinear pro-
gramming within an ITSP optimization framework. The 
ITSNP improves upon conventional nonlinear programming, 
two-stage stochastic programming, and interval-parameter 
programming approaches. It can reflect not only nonlinearity 
of problems, but also allows uncertainties expressed as 

probability distributions and discrete intervals. Moreover, 
ITSNP provides a linkage between the predefined policies and 
the associated economic implications due to violation of these 
policies. 

(3) The developed model is applied to a case study of wa-
ter resources management with and without water trading 
schemes. The obtained results indicate that water trading is 
efficient for water reallocation during dry seasons when there 
is a shortage of available water. Moreover, it is found that 
water trading is a suitable method for adaptation to climate 
change impacts under scarcity of available water. 

(4) Although ITSNP modeling study is the first attempt 
for adaptation to climate change through water trading, the 
results suggest that this nonlinear-hybrid technique is applica-
ble to other problems that involve nonlinearities, uncertainties, 
and policies. 
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