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ABSTRACT.  This study models geospatial landscape features using spatio-temporal ontologies. A spatio-temporal ontology expli- 
citly specifies a dynamic conceptualization of real world objects. Spatio-temporal ontologies are applied to the Isle of Ameland, rela- 
ting beach nourishment to elevation, vegetation and wetness. The spatio-temporal ontology contains full membership functions for 
crisp objects, partial membership functions for fuzzy objects and temporal membership functions for dynamic fuzzy objects. The 
temporal membership functions include seasonal changes of vegetation and daily changes in wetness. Quality elements are discussed 
by means of a quality matrix, where ontological features (i.e. objects, attributes, relationships) are projected against their qualities. A 
sensitivity analysis showed that the calculated beach nourishment volumes are practically insensitive in relation to assumptions on the 
temporal membership functions. Spatio-temporal ontologies are shown to extend spatial ontologies to model dynamic processes in 
environmental studies in a more realistic way. 
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1. Introduction  

Landscape objects are often dynamic. Typical examples 
include the beaches and dunes under coastal morphodynamics 
(Eleveld, 1999), agricultural fields in a rural-urban environ-
ment changing under population pressure (Marceau et al., 
2001) and soil and geomorphological objects under shifting 
cultivation in Cameroon (Yemefack, 2005). The spatio-tem- 
poral datasets may be helpful for monitoring these dynamic 
landscape objects. Multi-source geo-information obtained by 
using satellite imagery is increasingly used to provide these 
sets. Satellite images supply basic measurements of biological 
and physical characteristics of the landscape objects, such as 
their positions, shapes, elevations, colors, temperature and 
moisture contents (Wilkie and Finn, 1996). A combination of 
images obtained at several instances may be useful for moni- 
toring purposes. In this respect, remote sensing can assist po- 
licy makers, resource users and resource managers. 

A typical aspect of landscape features is that they are fre-
quently vague, both in their definition and in their spatial ex-
tent (Fisher et al., 2005). The main reasons are that both con-
text and definitions are poor. Also, the objects are often deli- 
neated by conceptual ideas rather than by actual and quantifi-
able spatial extent. 

Combination of different data sources can be difficult, 
because of different resolutions, spectral decomposition and 
sensor characteristics. To achieve information exchange be-
tween different data sources, the study of ontologies may uni- 
fy different conceptualizations of geographical space into one 
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geographical ontology (Kokla and Kavouras, 2001). An onto- 
logy can be defined as an explicit specification of a concep-
tualization (Gruber, 1993). To do so, classes of objects are de- 
fined, including their relations and functions. Ontologies are 
hence characteristics for specific domains. 

In the past, ontologies have proven to be useful for han-
dling real world features within a geographical information 
system (Jeansoulin and Wilson, 2002; Van de Vlag et al., 
2005). For each specific domain, ontologies identify and de-
fine a set of relevant concepts that characterize a given appli- 
cation domain. In this sense, domain ontologies reduce con- 
cepttual and terminological confusion. They also support in- 
teroperability and knowledge sharing within various govern-
ment organizations (Jeansoulin and Wilson, 2002). Here, the 
decision makers demand certain data (Foody and Atkinson, 
2002), whereas the uncertainty is inherent in spatial informa-
tion. In recent scientific research on spatial information, un- 
certainty and spatial data quality in general are emphasized 
(Shi et al., 2003; Frank and Grum, 2004; Van Oort, 2006). 
Ontologies help to understand the role of the quality of the 
data sources as well as their fitness for use by decision makers 
(Hunter, 2001). So far, ontologies have been primarily applied 
in the spatial domain. For analyzing and understanding dyna- 
mic geographical problems, however, a spatio-temporal onto- 
logy, i.e. an ontology representing space and time, is essential 
(Frank, 2003a,b). 

The objective of this paper is to define and apply a spa-
tio-temporal ontology for modeling the dynamic landscape 
features. Such an ontology allows us to integrate the different 
multitemporal data sources. Its definition is based on an ex- 
tension of the spatial ontologies with temporal issues, such as 
processes and events. We apply this spatial-temporal ontology 
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to a beach management problem in the Netherlands, where 
because of erosion, beach nourishments have to be carried out. 
We will compare three methods. First, beach areas suitable for 
nourishment are represented and modeled by crisp objects. 
Second, they are represented and modeled by the fuzzy sets. 
Third, inclusion of a time series allows us to represent beach 
processes and events. A sensitivity analysis in the end vali-
dates choices in spatial and temporal fuzzification. 

2. Methodology 

To understand the characteristics of landscape features in 
time, an appropriate conceptualization of a spatio-temporal 
dataset is needed. To do so, we modeled landscape features by 
monitoring activities (Figure 1). Five operations are distin-
guished: 

1. An ontological approach, which serves as a guideline for 
an explicit conceptualization of the landscape features.  

2. Implementation of fuzzy rules, to describe the spatial and 
thematic vagueness. 

3. Time correction, to correct for temporal variation of the 
attributes. 

4. A quality matrix, to relate ontological features with se- 
veral quality elements (e.g. positional-, thematic-, and 
temporal accuracy, completeness, etc.). 

5. Model testing, by means of a sensitivity analysis. 
In the following sections, a more detailed description on 

each of these five operations is given. 
 

  
 
Figure 1. Modeling of geospatial dynamics, from features in 
the real world to objects in the model. 

2.1. Ontology 
A common reasoning framework clarifies the structure of 

knowledge, and leads to coherent knowledge base (Jeansoulin 
and Wilson, 2002). An ontology describes “the metaphysical 
study of the nature of being and existence” (Frank, 2003b). It 
describes a conceptualization of the real world and is closely 
related to software engineering activities like conceptual ana- 
lysis and domain modeling (Guarino, 1998). An ontology de- 
termines what is independent of an observer. This includes 
physical reality, as the position of an object in Cartesian space, 
but also human agreements, e.g. classification rules or social 
arrangements. At the heart of Aristotle’s ontology is a theory 
of ‘substances’ (things, or bodies) and ‘accidents’ (qualities, 
events, processes) (Smith, 2001).  

We address management of dynamic landscape features 
in an ontological approach as an integration of data with se- 
mantics. For modeling dynamic landscape features, we pro-
pose a general ontology for objects in the real world, derived 
from monitoring activities. Objects are characterized by their 
‘substances’ and ‘accidents’, whereby ‘substances’ are attri- 
butes (att), which are dependent in space (x,y), value (v) and 
time (t), and have relationships between other objects (rel). 
‘Accidents’ are related to the spatio-temporal behavior of the 
datasets, and include events (ev) and processes (proc). Hence, 
an ontology exists of objects, their attributes and relationships, 
events, processes and states (Chandrasekaran et al., 1999; 
Kuhn, 2001). For an application in landscape monitoring, we 
define 

 
),,( γβα evprocattSobject obj∈                                        (1) 

 
where Sobj is the landscape object conceptualized by an onto- 
logy and where α, β and γ point to an index set. 

Equation 1 shows that each particular object is character-
ized by a specific set of attributes, processes and events. For 
continuous attributes with index set α it follows that: 

 
),,,( tvyxfatt att=α                                                         (2) 

 
Equation 2 illustrates a field model, where each point in 

space and time for different properties can be observed. Onto- 
logical features (objects, attributes, relations, processes and 
events) specify the ontology for an application. Processes are 
time dependent and require a special set of attributes. The va- 
lue of the process is not only dependent on the attribute value, 
but also on situations in the past, trend, expectations and ran- 
dom noise. Events are special processes, i.e. they occur su- 
ddenly and may change attribute values and processes. 

 
2.2. Implementation of Fuzzy Rules 

Landscape units are by nature vague in their content and 
extent (Frank 2003b; Fisher et al., 2005). For vague objects 
three types of uncertainty exists (Molenaar, 1998): 
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1. Existential uncertainty expresses how sure we are that an 
object really exists. 

2. Extensional uncertainty reflects the spatial extent of an 
object. 

3. Geometric uncertainty refers to the precision with which 
the boundary of an object can be determined. 
In this study we focus on the existential and extensional 

uncertainty. To do so, we implement fuzzy rules using mem- 
bership functions to describe the spatial and thematic uncer- 
tainty of the variables that describe objects. These member-
ship functions are based on semantic import models for each 
attribute, with a value 0 as no membership, a value 1 as full 
membership, and a value in between as partial membership. 
We adapt the field model for attributes from equation 2 to: 

 
),,,( tvyxfmvatt att⋅= αα                                                    (3) 

 
For index set α, a membership function mvα is included to 

express the spatial (x, y), thematic (v) and temporal (t) uncer-
tainty of the attributes. 

 
2.3. Time Correction 

Landscapes can be observed in space, time and theme 
(Peuquet, 1994; Peuquet, 2002). Since dynamic landscape 
features can not be monitored in real time, but only in a re- 
presentation of reality, we need to abstract temporal effects to 
create snapshots of the world. This can be described by the 
following equation, which Goodchild called ‘geographical 
reality’ (Goodchild, 1992): 

 
),,( vyxfatt att=                                                                (4) 

 
To analyze and understand dynamic landscape features 

we extend spatial ontologies for representing space and time 
(Claramunt, 1997; Frank, 2003a,b). By doing so, temporal in- 
accuracies should be accounted for. The temporal inaccuracy 
can affect the accuracy of time measurement of the data, the 
temporal validity of the data or the temporal consistency of 
the data. 

This study manages temporal inaccuracies that occur due 
to temporal variability of the data. For any α at time t we 
implement correction factors (CFα,t) to correct for this tempo-
ral uncertainty, whereby CFα,t defines the ‘degree of certainty’ 
for time t of data capture, with values between 0.5 and 1. This 
correction factor is applied on the basis of the slope of the 
fuzzy membership function. If CFα,t = 1, the temporal certain- 
ty of the data capture is high, and the membership function 
will be identical as equation 3. If CFα,t < 1, the temporal cer- 
tainty of data capture is lower and the slope of the member- 
ship function will become less steep according to: 

 
),,(,,, vyxfmvCFatt attslopett ⋅⋅= ααα                                       (5) 

This correction factor only applies on the slopes of the 
membership functions, i.e. the location where there is no full 
membership or non-membership. Here, the transition zone de- 
scribed by partial memberships will therefore increase. 

 
2.4. Quality Matrix  

Fitness for use models the relation between available data 
and data required to analyze landscape phenomena (Hunter, 
2001). Herein a quality matrix, where ISO quality elements 
(ISO, 2003) are portrayed against application features derived 
from the ontology, can be practical. Features and quality ele-
ments are defined first, followed by integration with ontologi-
cal concepts. Each column of the quality matrix indicates an 
ontological feature, each row the quality elements. The rele-
vant cells of the matrix link, when applicable, a quality value 
to a feature.  

A quality matrix may assist a decision maker, for exam-
ple, to find out the best available dataset for an application. It 
comprehensibly formalizes spatio-temporal problems, taking 
into account the objects, fuzzy rules and integration of tempo-
ral dimensions, and current standards of quality. 

 
2.5. Model Testing 

Establishing the usefulness of models as a means of im- 
proving our understanding of predicting geospatial dynamics 
requires use of objective measures of performance (Gardner 
and Urban, 2003). Testing occurs throughout stages of model 
development by means of measures on the model structure, 
parameter sensitivity, model adequacy and hypothesis testing. 
A quantitative model that exhibits large fluctuations in output 
for relatively small changes in the value of some input para- 
meters is sensitive to the parameter, whereas a model which 
exhibits small output variations for substantial perturbations is 
insensitive to the parameter. 

We test the beach nourishment model using a sensitivity 
analysis, which determines the model response to any realistic 
set of parameter perturbations (Rose and Swartzman, 1981). 
Therefore, we apply a probabilistic sensitivity analysis tech-
nique that reflects the likely value of an uncertain parameter, 
based on the probability distribution. We select bounds for a 
confidence interval for all possible values of the parameter. 

3. Beach Nourishment Application 

3.1. Study Area and Dataset 
The study area is located at the north-western part of 

Ameland, a coastal barrier island on the fringe between the 
Wadden Sea and the North Sea (Figure 2). Geomorphological 
processes such as erosion, transport and sedimentation of san- 
dy materials are causing major changes that have to be com- 
pensated by sand suppletion. 

The dataset for this area consists of multi-temporal digi-
tal elevation models (1980-2003) and satellite imagery. Each 
digital elevation model is derived from the DONAR database 
(Eleveld, 1999). The DONAR database contains annual beach 
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and foredune elevation transects. The transects are 200 to 250 
m apart and elevation is measured at 5 m intervals along a 
cross-shore line. The underwater part of the profile is meas-
ured with echosoundings from ships with automatic position- 
finding systems. The elevation measurements are executed by 
means of laser altimetry. From the point data, elevation data 
are interpolated towards a 30 m × 30 m grid, using the IDW 
interpolator of ARCGIS geostatistical analyst. This grid size 
corresponds to satellite image pixel size, derived from Land- 
sat5-TM and Landsat7-ETM+ satellites. The beach objects are 
thus structured into compartments within a higher conceptual 
level, based on perceivable regions on the beach. Compart- 
ments are the regions between two transects. For this study we 
take the dataset for 1995 as illustration for modeling beach 
nourishments. 

 

  
Notes: The study area is located in the northwestern part of Ameland. 
The study area is depicted by a DEM, NDVI and Wetness Index 
derived from Landsat TM (1995). 
 
Figure 2. The Isle of Ameland located in the north of the 
Netherlands.  

 
3.2. Beach Nourishment 

For beach management purposes, Rijkswaterstaat, the di-
rectorate-general of the Ministry of Public Works responsible 
for the maintenance of the coast, divides the beach area into 
compartments. Each compartment has two boundaries to its 
adjacent compartment (CL1 and CL2), a beach-sea boundary 
(BS) and a beach-dune boundary (BD). Here, beach nourish- 
ments are carried out to address changes in morphology with 
consequences for the public safety. Beach areas suitable for 
nourishment are identified by localizing them and assessing 

their sizes. A decision maker is then assisted to manage nouri- 
shments in time. 

Traditionally, beach nourishments are carried out by 
dump trucks restricted within these compartments. To localize 
and assess these beach areas, the required volume of sand 
need to be calculated, which requires determination of the ex- 
pected erosion, the recurrence interval and the sand reserve. 
The sand reserve, i.e. the beach volume at time (t) can be cal- 
culated from the digital elevation models. Reference is made 
to the basal coastline, being the coastline position on January 
1st 1990. Beach nourishments are carried out when the beach 
volume at actual coastline is below the volume at basal coast- 
line. The actual beach volume is calculated by multiplying the 
beach surface area with the elevation (e). Elevation (e) is the 
difference between the actual elevation measurement and the 
lower computing boundary, i.e. -4.2 m. at Dutch standard 
sea-level (= NAP) (Roelse, 2002). 

So far, volumes of sand are calculated as crisp objects on 
the basis of these compartments. The interest of this applica-
tion is to take into account the ‘fuzzy’ nature and the ‘dyna- 
mics’ of these objects. Besides, with the assistance of naviga-
tional systems, dump trucks can precisely nourish beach areas 
and are not restricted to compartment limits. 

Identification of areas that require beach nourishment de-
pends upon terrain elevation (height around zero), vegetation 
index (non-vegetated zones) and wetness index (dry zones). 
Elevations between –1.1 and 2 m at Dutch standard sea-level 
(NAP) are considered as beach areas. Such areas are derived 
from digital elevation models (DEMs). Similarly, non-vege- 
tated and dry zones are derived from the Landsat TM imagery, 
using respectively Normalized Difference Vegetation Index 
(NDVI) (Rouse et al., 1974) and wetness index (Crist and 
Cicone, 1984). The NDVI is a spectral transformation that is 
applied to bands 3 and 4 of the Landsat image for the purpose 
of assessing the health and vigor of vegetated surfaces. NDVI 
has the advantage of simplicity and common use by remote 
sensing analysts (Dunham et al., 2005). The wetness index is 
a tasseled cap transformation that provides excellent informa-
tion for land use applications because it allows the separation 
of barren (bright) soils from vegetated and wet soils. Non-ve- 
getated zones are selected as areas with negative NDVI values; 
dry zones are selected as areas with a wetness index lower 
than zero. The delineation of the object beach should satisfy 
the constraints for elevation, non-vegetated and dry zones, e.g. 
the so-called beachplain (Van de Vlag et al., 2005). 

The structural erosion per compartment is determined, by 
plotting the beach volumes from before 1990 against the bea- 
ch volume with the basal coastline. A negative trendline indi- 
cates erosion, whereas a positive trendline indicates sedimen-
tation. 

Two constraints apply when deciding upon nourishment; 
C1: a coast compartment shows structural erosion, C2: the vol- 
ume for beach nourishment should exceed 200,000 m3. Con- 
straint C2 is a soft constraint, as nourishment may be carried 
out, depending on local and regional policies. 
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3.3. Modeling Beach Nourishment 
Beach nourishment is modeled in three different ways. 

Firstly, a crisp approach considers sharp boundaries between 
different beach objects corresponding to a traditional approa- 
ch. Secondly, a fuzzy approach describes compartments as the 
membership functions of three parameters. Thirdly, temporal 
membership functions are included for modeling temporal 
processes. 

 
3.3.1. Crisp compartmental method (CC) 

Identification of beach areas that require beach nourish-
ment requires compartments (C) to distinguish zones with se- 
dimentation from those with erosion. These compartments are 
perpendicular to the coast, 100 to 200 m wide, and fixed in 
time. Compartment width is a fixed limit (CL.geo). Compart-
ment length on the other hand, being the distance between the 
beach-sea boundary (BS.geo) and the beach-dune boundary 
(BD.geo), is fuzzy, as both boundaries are dynamic (BS.geo(t), 
BD.geo(t)), due to erosion and sedimentation. For the crisp 
compartmental (CC) approach, these boundaries are assumed 
to be sharp.  

On the basis of trendline calculation the decision-maker 
decides if sedimentation and erosion occur within a compart-
ment. On account of beach volumes, the amount of erosion 
and sedimentation is calculated for np pixels each of size ps. 
The beach volume within a compartment (C.vol(t)) is calcu-
lated as: 

 

∑
=

×=
np

i

tiepstvolC
1

2 ),()(.                                                     (6) 

where e(i,t) is the elevation of pixel i at time t. A compartment 

is indicated for nourishment, when the beach volume in a 
compartment shows structural erosion, e.g. obeying the two 
constraints (C1 and C2). 

 
3.3.2. Fuzzy compartmental method (FC) 

Spatial and thematic uncertainty of the attributes are mo- 
deled using fuzzy logic. The beach compartments suitable for 
nourishment are identified by their memberships to dry non- 
vegetated beaches. Hence, a compartment is bound by two 
static compartment boundaries (CL.geo) and by two fuzzy 
boundaries: the sea-beach boundary (BS.geo(t)) and the bea- 
chdune boundary (BD.geo(t)). These boundaries are illus-
trated in Figure 3. 

The sand volume within the fuzzy compartmental (FC) 
method can be calculated, using: 

 

 ∑
=

××=
np

i

tietimpstvolC
1

),(),()(.                                        (7) 

 
where m(i,t) equals the membership value of location (i) in 
compartment C at time t. It is calculated as: 
 

{ }),(),,(),,(min),( timvtimdtimbtim =                                   (8) 
 
where mb(i,t) is the membership function of the beach object, 
md(i,t) that of dry object and mv(i,t) that of a non-vegetated 
object in which pixel i occurs at time t. Membership functions 
are compiled as triangular functions. The mb(i,t) equals 1 if 
elevation ranges from 0 to 1 m amsl, it increases linearly from 
0 to 1 between -1.1 to 0 m amsl and decreases linearly from 1 

 
Notes: The lower image visualizes a compartment (C), with two adjacent crisp boundaries (CL) and two 
fuzzy boundaries (BS) and (BD). 

 
Figure 3. Compartment, boundaries and their various fuzzy membership functions. 
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to 0 between 1 and 3 m amsl, and it equals 0 elsewhere. The 
soil is wet if the wetness index is positive, and dry if it is 
negative. A membership function md(i,t) for the fuzzification 
equals 1 if wetness index is less than -3, and decrease linearly 
from 1 to 0 for the wetness index moving from -3 to 3 m, and 
it equals 0 elsewhere. Land is covered with vegetation if the 
NDVI is positive and is bare if it is negative. A membership 
function mv(i,t) equals 1 if the NDVI value is less than -0.05, 
it equals 0 if the NDVI is larger than 0.05 and it decrease li- 
nearly from 1 to 0 in between. 

 
3.3.3. Temporal fuzzy compartmental method (TFC) 

To include temporal uncertainty into the beach nourish-
ment processes, the daily fluctuations for the wetness index, 
the monthly fluctuations for the vegetation index and yearly 
fluctuations for the elevation are considered. Three temporal 
membership functions are introduced to reflect the appropriate 
time scale for these attributes. In the Netherlands, the growing 
season for vegetation starts early March and reaches maximal 
values in June. Hence, in June the certainty to detect healthy 
fully-grown vegetation and thus large NDVI values is high. 
The temporal membership function nv(t) corresponds to the 
growing season and equals 1 between 1 June and 1 August, it 
equals 0.5 between 1 November until 1 March, and it is linear 
in between. Similarly for soil wetness, the temporal member-
ship function nd(t) corresponds to tide fluctuations and equals 
1 during flood time and equals 0.5 during low tide, and further 
follows a sine form, i.e. nd(t) = 0.75 + 0.25·cos(2π·t/12.5), 
with t expressed in hours in relation to high tide. Finally for 
elevation, the temporal membership function nb(t) is constant 
and describes the actual digital elevation model.  

The temporal fuzzy approach (TFC) first calculated 
correction factors (CFs) derived from introducing date and 
time of data capture into the temporal membership functions. 
Next, the spatial membership functions originate from fuzzy 
compartmental method mb(i,t), md(i,t) and mv(i,t) are correct- 
ed with this correction factor (Figure 4). Low CFs lead to 
membership functions that are less steep; CFs close to 1 result 
in membership functions similar to those in mb(i,t), md(i,t) 
and mv(i,t). 

FC and TFC differ from each other, as the slope of the 
membership function is corrected according to the temporal 
(un)certainty of the vegetation- and wetness-index. At high 
tide, the certainty that a beach is wet or dry is high, while at 
low tide this temporal certainty is low. Similarly, in summer 
the certainty about vegetation is high, while during growing 
season this certainty is lower. For 1995, the capturing date of 
the Landsat image is 7 November, at 9h-30, just after low tide 
corresponding with a low temporal certainty for vegetation 
and wetness. The image is radiometric corrected to correct for 
atmospheric conditions that may affect NDVI and wetness 
index values. 

 
3.4. Quality Elements and Quality Matrix 

Before constructing a quality matrix, spatial data quality 

elements need to be defined for the beach nourishment appli- 
cation. For spatial uncertainty, the following ISO quality ele- 
ments are considered important (ISO 2003): 

1. Positional accuracy, whereby sub-elements of interest are: 
1) relative or internal positional accuracy, i.e. closeness 
of the relative positions of objects in a dataset to their re-
spective relative positions accepted as or being true; 2) 
gridded data position, i.e. closeness of gridded data posi-
tion values to values accepted as or being true. 

2. Thematic accuracy, with sub-elements of interest: 1) the 
accuracy of quantitative attributes, i.e. the correctness of 
quantitative attributes and of the classifications of objects 
and their relationships; 2) classification correctness, i.e. 
comparison of the classes assigned to the objects or their 
attributes to a universe of discourse (e.g. ground truth or 
reference dataset). 

3. Temporal uncertainty of the compartments can be recog-
nized by temporal accuracy. In particular the sub-element 
for accuracy of a time measurement, i.e. correctness of 
the temporal references of an item (reporting of error in 
time measurement). 

4. Completeness; this is determined by sub-elemental data 
completeness, i.e. the commission and omission of data-
sets. 

 

 
 
Figure 4. The slope of the membership function for dry beach 
areas (corrected for tide influences; the vagueness of the 
boundary area will increase). 
 

By applying an ontological approach, a quality matrix is 
constructed, projecting ontological features such as objects, 
attributes, relationships, processes and events against the ISO 
quality elements. 

 
3.5. Sensitivity Analysis 

By means of a sensitivity analysis we can determine the 
effects of the spatial and temporal influences of attributes to 
the amount of beach nourishment. The sensitivity of calcu- 
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lated beach nourishment volumes is based on statistical pro- 
perties, i.e. the variance of the attribute elevation, NDVI and 
wetness. We also investigate the sensitivity of the output on 
statistical properties of the tide cycle and vegetation growth.  

For NDVI and wetness, sensitivity analysis has been exe-
cuted with 1 standard deviation range from the dividing value 
0. A positive NDVI value corresponds, as at least theoretically, 
with presence of vegetation and a negative value with absence 
of vegetation, whereas positive and negative wetness values 
correspond to wet and dry, respectively. 

For elevation, we observed the cross-validated RMSE by 
interpolating the elevation profiles to grid maps. Here, 5% of 
the data points are used for cross validation, to obtain an accu-
racy value of Z value. For 1995, the cross-validated RMSE is 
0.28 m for half width of 95% confidence interval. The sen- 
sitivity analysis for elevation is carried out within the upper 
and lower limit of the cross-validated RMSE for the inter- 
polated Z values, i.e. from Z – 0.28 m as the lower limit to Z + 
0.28 m as the upper limit. 

For the TFC method choices in the correction factor (CF) 
of the temporal membership functions were evaluated. These 
choices represent correction factors values that are in the 
vicinity of our choices, with minimum of 0.5 and maximum 
of 1. A value equal to 0 would be highly unlikely. Therefore, 
the correction factor (CF) in the membership function for the 
tidal cycles is varied between 0.3 and 0.7, whereas its highest 
value is kept equal to 1 when we observe perfect timing of 

data capture. Also, the correction factor in the membership 
function for the vegetation growth cycle varies between 0.3 
and 0.7, with the highest value equal to 1. 

4. Results 

4.1. Comparison of the Approaches 
The methodology used in this study construct in three 

phases a spatio-temporal ontology for the beach nourishment 
application. The CC defines beach areas suitable for nouri- 
shment by crisp boundaries of the compartment. The object of 
interest is the compartment (C.id), whereby the sand volume 
calculation (C.vol) is grounded on the minimum intersection 
of the attributes elevation, vegetation and wetness. The FC 
defines the beach areas suitable for nourishments by fuzzy 
boundaries of the compartment. The sand volume calculation 
is then based on the minimum intersection of the membership 
functions of the attributes elevation, vegetation and wetness. 
For the TFC, the sand volume calculation is corrected for 
temporal uncertainty and is the minimum intersection of the 
corrected membership functions of the attributes. 

Results are presented in Figure 5, showing the beachplain 
as the beach area that is dry and non-vegetated. The slope of 
the membership functions for vegetation and wetness is co- 
rrected for temporal uncertainty, and is less steep, resulting in 
a fuzzy beach plain (Figure 5b,c). 

After trendline calculation, two regions are indicated as 

 
 
Figure 5. Beachplain classification, using a crisp (top left), fuzzy (top right) and 
temporal fuzzy (bottom) method.  
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areas with structural erosion (Figure 6). The southwest region 
is of interest, as most actual beach nourishments are actively 
carried out in that area. Moreover, the threat for safety for the 
public is higher, as there is only a single row of dunes to pro-
tect the hinterland. The calculation for beach volumes, using 
the compartmental methods, is represented in Table 1. The 
fuzzy approach indicates lower volumes, as thematic uncer-
tainty, as well as temporal uncertainty is accounted for. The 
volumes in Table 1 are below the criteria for nourishment 
(200,000 m3), and beach nourishment in 1995 will not be 
carried out.  

 
Table 1. Beach Nourishment Volumes Using CC, FC and TFC 

 CC FC TFC 

Volume (m3) 78,600 58,700 51,600 

  

4.2. Quality Elements 
Table 2 describes the quality of objects and attributes that 

applies to the case study. The objects consist of compartment 
(C.id) and its boundaries (CL.id, BD.id, BS.id). The attributes 
consider elevation (BD.z, BS.z), wetness index (BS.wi), vege- 
tation index (BD.ndvi) and structural erosion (C.se, C.vol90). 
The prominent feature of interest is the amount of beach 
volume, represented by C.vol in Table 2. Row wise, the qua- 
lity elements are described. Positional accuracy is represented 

by relative and gridded data position. Different membership 
functions related to corresponding attributes occur for classi- 
fication correctness and temporal accuracy. The quantitative 
attribute accuracy is only valid for the attributes considering 
elevation for 1995 (BD.z, BS.z, C.vol). The data completeness 
is illustrated in the last column and equals 86.7% for the 1995 
data set.  

We note that the three different procedures lead to di- 
fferent quality assessments. The CC results in statements on 
objects that have a positional accuracy. The FC describes both 
the positional and the thematic accuracy. Thematic accuracy is 
described by membership functions that were included from 
the semantic import model. Finally, the TFC includes state- 
ments on positional, thematic and temporal aspects. Note that 
the temporal membership functions were also based on a se- 
mantic import model (see section 3.3.3.). 

 
4.3. Sensitivity Analysis 

Beach nourishment volumes are affected by choices for 
elevation (Figure 7a). Generally, an increase is observed with 
an increasing elevation, which is most prominent for CC, and 
less prominent for FC and TFC, with values ranging from 
30,000 to 100,000 m3. Hence, interpolation uncertainties may 
have a large influence on the calculated beach volumes. Simi- 
larly, the volumes are sensitive for the choice of the dividing 
NDVI value, with a sharp jump around the NDVI value of 0 
(Figure 7b). We notice that FC and TFC give almost similar

 
 
Figure 6. The final result of CC (top left), FC (top right) and TFC (bottom). 
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Figure 7. The results of sensitivity analysis using CC, FC and TFC for (a) elevation, (b) NDVI and (c) wetness index; for 
temporal variables (d) only the TFC is applied. 
 

 
Table 2. Quality Elements for the Ontological Features for 1995 

Positional Accuracy Thematic Accuracy Temporal Accuracy Completeness  
Objects Rel.        Grid. ClasCor          QAA ATM Data 

C.id 48.6 m 30.3 m   < 1 year 86.7% 
CL.id NR 30.3 m   < 1 year 86.7% 
BD.id 48.6 m 30.3 m   < 1 year 86.7% 
BS.id 48.6 m 30.3 m   < 1 year 86.7% 
Attributes       
C.vol 48.6 m 30.3 m m(i,t) ± 0.28 m CF•m(i,t) 86.7% 
C.vol90 48.6 m 30.3 m m(i,t) NR CF•m(i,t) NR 
BD.ndvi 48.6 m 30.3 m mv(i,t) NR nv(t) 86.7% 
BD.z NR 30.3 m mb(i,t) ± 0.28 m nb(t) 86.7% 
BS.wi 48.6 m 30.3 m md(i,t) NR nd(t) 86.7% 
BS.z NR 30.3 m mb(i,t) ± 0.28 m nb(t) 86.7% 
C.se 48.6 m 30.3 m m(i,t) NR CF•m(i,t) 86.7% 
… … … … … … … 

*Abbreviations: ClasCor = classification correctness, QAA = quantitative attribute accuracy, ATM = accuracy of time 
measurement, NR = not relevant 
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results, whereas the jump around the NDVI value of 0 for CC 
is even more prominent. An explanation is that a small change 
in positive NDVI values signifies pioneering vegetation as ve- 
getation, decreasing the sand volumes for beach nourishments. 
Also, the standard deviation is relatively large, as NDVI va- 
lues equal to 0 for beach and sea, and have positive values for 
dunes. For wetness we notice a dependence on the choice of 
equilibrium (i.e. wetness index equals 0), with a decrease of 
the volume of beach nourishment with increasing wetness va- 
lue (Figure 7c). 

 Interestingly, the large sensitivity of the results obtained 
for the spatial variables does not lead to modifying assump-
tions made in the space-time membership function. The vol- 
ume of beach nourishment shows changes in the range of 
51,400 to 51,700 m3 for modifying assumptions on the tidal 
membership function, and values from 47,200 to 55,100 m3 
for the assumptions in the vegetation growth cycle (Figure 7d). 
It demonstrates that the model is rather insensitive to these 
assumptions. 

5. Discussions 

In this study we used an ontological approach to describe 
beach objects for nourishment. This approach concerns space, 
theme and time issues for a dynamic geographic application. 
The use of identical ontologies over time can help to detect 
and determine objects that change between ‘snapshots’. On 
the one hand it gives a good understanding of the underlying 
spatio-temporal problem, i.e. the nourishment of beach areas 
in space and time; on the other hand it does not deal with 
different conceptual levels. With higher resolutions different 
attributes, processes and events to describe beach objects 
might be involved, leading to different spatio-temporal onto- 
logies. Also, the selection of quality elements depends upon 
the spatial scale of the dataset. 

The selection of quality elements essential for the study 
area is done by using previous studies (Cheng et al., 2001; 
Van de Vlag et al., 2005). The accuracy to describe objects 
requiring beach nourishment is important. Positional elements 
concern elevation, and a choice for boundaries between adja-
cent objects. The elevation measurements from the DONAR 
database are accurate and precise and therefore affect posi-
tional accuracy to a lesser extent. Positional accuracy is in 
particular determined by the grid resolution of the DEM and 
the geometric correction of the satellite imagery. 

Thematic accuracy concerns determination of a classifi- 
cation using quantitative figures. We have chosen to apply se- 
mantic import models for implementation of fuzzy rules and 
these are based on expert knowledge, therefore this may be 
subjective and influenced by spatial variation. 

In our study, we model temporal accuracy by seasonal 
factors for vegetation, by tidal fluctuations for the wetness in- 
dex, and by both erosion/sedimentation processes and by inci- 
dental changes for elevation. Seasonal factors may be difficult 
to relate to vegetation, as other factors, such as moisture con- 
tent and vegetation stress, contribute as well. Also relations 

between tidal effects and wetness are subject to factors like 
vegetation and weather. Currently, we did not consider wea- 
ther influences as these are complicated to observe and diffi- 
cult to model due to several time dimensions, e.g. influences 
like large storm events or wind erosion are measured on di- 
fferent temporal scales. Finally, processes on sedimentation 
and erosion are applicable to larger areas of land and events 
like severe drought and large storms may interfere.  

Causes of uncertainty in objects to determine suitability 
for beach nourishment lie in natural variation of the object de- 
scribing variables. Together with a poor definition of context 
and definition rules for nourishment, this requires objects to 
be treated as vague objects. Membership functions represent 
their thematic and temporal uncertainty. In this study, tem- 
poral uncertainty is treated as a part of thematic uncertainty 
and their interrelationship is joined inextricable. This is ex- 
pressed by using temporal (un)certainty by correction of the 
transition zones of the membership functions for thematic un- 
certainty. 

A realistic geospatial model to fully describe beach fea-
tures may be complicated. Relationships between ontological 
features occur at multiple conceptual levels. Quality elements 
for each of these features contribute to the overall quality of 
such a model. Therefore, a hierarchical structure may lead to 
an improved description of ontological features, as well as its 
quality elements. Scale issues, in time and space, leads to a 
different conceptualization of a spatio-temporal problem and 
therefore a different ontology and quality elements. A hierar- 
chical representation of a model, from a knowledge based or 
Bayesian perspective, can assist a decision maker in selecting 
the best dataset for the ontology and quality elements in mind. 

The sensitivity analysis as carried out in this study high-
lights the effects of choices for spatial variables, and much 
less so for choices in the temporal membership functions. It 
appears, that at least for this study, temporal effects can rela-
tively simply be modeled, and that any subjective choice has 
much less influence than choices in spatial values.  

The approach used in this article can be applied to other 
spatio-temporal datasets, like monitoring areas sensitivity for 
bushfires. Here, the ontology considers several datasets for 
conceptualization, whereby these areas are described by wea- 
ther conditions, flame characteristics, fuel characteristics, ele- 
vation, etc. All these attributes concerns their own space, 
theme and time issues, and have their influence on the quality 
of the dataset. 

In a recent study about the history of coastal protection, 
Charlier et al. (2005) state that beach nourishments is still fa- 
vored with many instances. The decision makers prefer com-
monly profile feeding by simple deposition of material on the 
beach. Beach nourishments may act as both protection and 
restoration projects and has been implemented in all conti-
nents. Accordingly, many lessons have been learned that en- 
compass decision choices of feeding material, preservation of 
source material sites, wave climate, etc. Several researchers in 
the Netherlands examined these decision choices. Van Rijn 
(1997) studied the sediment transport and budget along the 
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central coastal zone of the Netherlands. He developed a ma- 
thematical model to calculate sand volume changes, based on 
hydrodynamic (waves and currents) and sand transport pro- 
cesses. Van der Wal (2000) examined the side-effect of beach 
nourishments on the rate of aeolian sand transport in the fore- 
dune area of central Ameland and concluded that grain size 
and adaptation length, which is a measure of the distance over 
which the sediment transport will adapt to a new equilibrium 
condition, both affected the topography of the beach-foredune 
area. Van Noortwijk and Peerbolte (2000) and Van Vuren et al. 
(2004) have studied extensively the optimal economical as-
pects with respect to the recurrence interval of beach nourish-
ments in the Netherlands. In our approach, the ontologies are 
grounded on geographical choices to identify beach objects 
suitable for nourishment. The categorization of these objects, 
as well as the implementation of fuzzy set techniques and 
landscape dynamics, precedes the beach nourishment process. 

6. Conclusions 

This study exploits the use of spatio-temporal ontologies 
for describing beach objects suitable for beach nourishments. 
The spatio-temporal ontology includes fuzziness to describe 
vagueness of landscape features. The fuzzy approach is more 
realistic, as the described objects are more similar to those 
occurring in decision procedures and to the use in ontologies. 
The spatio-temporal ontology also includes important tempo-
ral aspects by means of temporal membership functions. Hen- 
ce, the spatio-temporal ontology is therefore more generally 
applicable to space-time studies. 

The case study focuses on beach nourishment at the Isle 
of Ameland. It is shown that the three methods can be imple-
mented and applied to determine the required amount. Three 
approaches resulted in different amounts of beach nourish-
ment volumes, ranging from 51,600 to 78,600 m3. By means 
of a quality matrix, the ontological features (i.e. objects, attri- 
butes, relationships) are projected against their quality ele- 
ments. Further steps are identified to quantitatively evaluate 
different quality elements, such as positional, temporal and 
thematic accuracy. A sensitivity analysis showed that inter- 
polation uncertainty for elevation and choices in dividing val- 
ues between absence and presence of vegetation and between 
wet and dry soils may have a large influence on the calculated 
beach volumes. The influence of choices for the temporal 
membership function however is weaker. 
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