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ABSTRACT.  In this paper we present and compare two approaches in estimating impervious surfaces area for an urban watershed in 
northern New Jersey, United States using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. The 
first approach is to use the spectral mixture analysis (SMA) to separate image pixels into a linear combination of three typical urban 
land covers: vegetation, impervious surface and soil. The other is to use the normalized difference vegetation index (NDVI) to estimate 
imperviousness from the same imagery. The accuracies of the estimated imperviousness were assessed using a high-resolution 
color-infrared orthophoto. In total, 100 polygons with areas between 3 and 6 hectares were randomly selected from five distinct land 
use/cover categories and the percentage of impervious surface of each polygon was digitized and calculated. The results showed that 
nearly 90 percent of the variation in actual impervious surfaces in this watershed can be explained by the estimated impervious 
surfaces by a linear regression model (R2 = 0.898). The NDVI approach is recommended for urban environments with small proportion 
of barren soils for its simplicity, while the SMA is suitable for urban environments with approximately equally-distributed vegetation, 
impervious surfaces and barren soil. 
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1. Introduction  

Impervious surfaces area has been recognized as a key 
environmental indicator for sustainable urban development 
and natural resources planning (Arnold and Gibbons, 1996). 
Impervious surfaces are defined as impermeable anthropogen- 
ic surface materials such as asphalt, concrete and building ro- 
ofs that cover a given surface area and prevent infiltration of 
water into the soil. Impervious surfaces allow many pollutants 
types, from a variety of sources, to accumulate and be washed 
into water bodies by storm water runoff, severely degrading 
the water quality (Harrison et al., 2001). Increasing impervi- 
ousness due to urban growth in an urban watershed can lead 
to reduced stream habitat and loss of biodiversity (Dougherty 
et al., 2004). Quantification of impervious surfaces in urban 
environments is becoming increasingly important with grow- 
ing concerns over future water quality trends in the United 
States (Forster, 1985; Civco et al., 2002; Wu, 2004; Xian and 
Crane, 2005). Because impervious surfaces have higher ther- 
mal conductivities, they are also responsible for the phenomena 

of urban heat islands where air temperature over impervious 
surfaces is significantly higher compared to vegetated areas 
(Yuan and Bauer, 2007). 
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In practice, estimating impervious surfaces area using fi- 
eld survey methods on a parcel basis is a time consuming and 
labor intensive effort. Remote sensing offers many helpful ap- 
proaches for assessing and monitoring urban environments due 

to its rapid and repetitive monitoring capability (Slonecker et 
al., 2001; Yang et al., 2003; Xian and Crane, 2005). These ap- 
proaches produce a raster imperviousness map that represents 
local probability of impervious surfaces density ranging from 
high to low (Mesev, 1998). A widely used method in remote 
sensing for parameterizing the distribution of impervious sur- 
faces and vegetation in an urban landscape is the spectral mix- 
ture analysis (SMA) based on a vegetation-impervious surface- 

soil (V-I-S) model. The V-I-S model, first proposed by Ridd 
(1995), states that any urban environment can be conceptuali- 
zed in terms of three primary components: vegetation (V), im- 
pervious surfaces (I), and soil (S), in addition to water. It as- 
sumes that the land cover in an urban environment is a linear 
combination of these three components, which provides a gui- 
deline for decomposing the urban landscape and a link for those 

components to remote sensing spectral characteristics. This 

conceptual model was originally established and tested in a 
study in Salt Lake City, Utah and has been widely applied to 
parameterize biophysical composition of land cover, i.e., to 
quantify the distribution of green vegetation, impervious sur- 
faces and soil of land surface when mixed pixels are concern- 
ed in using moderate-resolution remote sensing. For example, 
Ji and Jensen (1999) estimated the impervious surface fraction 
for an urban and suburban portion of Charleston, South Caro- 
lina based on sub-pixel analysis and layered classification; 
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Ward et al. (2000) developed a classification approach for 
mapping vegetation and soil cover with moderate accuracy in 
Queensland, Australia; Small (2001) estimated urban vegeta- 
tion distribution using a three-endmember linear mixture mo- 
del; Phinn et al. (2002) estimated impervious surfaces in an 
urban environment in Australia using a constrained spectral 
mixture analysis method; Wu and Murray (2003) estimated 
the distribution of impervious surfaces, vegetation and soil in 
Ohio using spectral mixture analysis; and Wang and Zhang 
(2004) estimated the proportion of impervious surfaces using 
a SPLIT model in the Chicago metropolitan region. All of 
these studies were based on 30 m spatial resolution Landsat 
Thematic Mapper (TM) and /or Enhanced Thematic Mapper 
Plus (ETM+) data using 6 or 8 multispectral channels.  

Recently, high-resolution IKONOS data (1 m for panchro- 

matic band and 4 m for multispectral bands) was also used to 
estimate impervious surfaces (Cablk and Minor, 2003; Sawaya 

et al., 2003). They found that the normalized difference vege- 
tation index (NDVI) derived from IKONOS data provides the 
best estimate of impervious surfaces. However, limited efforts 
have been made to map impervious surfaces using relatively 
inexpensive Advanced Spaceborne Thermal Emission and Re- 
flection Radiometer (ASTER) imagery (Zhu and Blumbergerg, 
2002). Therefore, the objective of this study is to estimate the 
impervious surfaces area of an urban watershed using ASTER 
data by different approaches. 

2. Study Area and Data 

New Jersey Watershed Management Area 5 (WMA-5) in 
northeastern New Jersey is an urban watershed located to the 
west of New York City with 42,700 hectares in size (Figure 1). 
Approximately 30 percent of this site is residential area, 20 
percent is commercial and industrial areas and the remaining 
50 percent is undeveloped. Much of the lower Hackensack Ri- 
ver Watershed is tidal marsh known as the Hackensack Mea- 
dowlands, which is the home to more than 260 bird species 
including several rare and threatened New Jersey species. We 

chose this watershed as the study site because it is a typical 
urban watershed with many impervious surfaces, which have 
large environmental impact on the surrounding areas, espe- 
cially on water quality. 

ASTER is one of the NASA Terra instruments in a sun 
synchronous orbit 705 km from the Earth’s surface and acqui- 
res images in a 60 × 60 km “granule” (Abrams, 2000). The 
spatial resolution of ASTER data varies with wavelengths: 15 
× 15 m for bands 1 to 3 in the visible and near-infrared 
(VNIR), 30 × 30 m for bands 4 to 9 in the short wave infrared 
(SWIR) and 90 × 90 m for bands 10 to 14 in the thermal in- 
frared (TIR) region. In this study, one scene ASTER image 
acquired on October 20, 2003 was used to estimate the imper- 
vious surfaces area in pixel-based approaches. Sub-meter land 
use/cover data from the New Jersey Department of Environ- 
mental Protection (NJDEP) was used to select polygons in 
each land use/cover category to support the signature deriva- 
tion and accuracy assessment. New Jersey statewide high-re- 
solution color-infrared orthophoto acquired in 2002 were used 

to delineate and calculate the percentage of impervious surfaces 

of each sampled polygon in ArcGIS.  
 Since ASTER data have different spatial resolutions in 

different spectral bands, a resolution merge (fuse) was con- 
ducted to re-sample bands 4 through 9 to a resolution of 15 
meters, then band 1 through band 9 were layer stacked to a 
new 9-band image, which was used for further analysis. In 
geometric correction, 27 ground control points (GCPs) were 
collected on both ASTER image and orthophoto and 17 of 
them were used to register the ASTER image to the New 
Jersey State Plane coordinate system (NAD 83) with a root 
mean square error (RMSE) of less than one. All image proce- 
ssing was conducted using the ENVI 4.0 software package 
(RSI, 2004). 

 

New Jersey

Figure 1. ASTER image with band combination of RGB = 
231 for the New Jersey Watershed Management Area 5. 

3. Approaches 

For moderate-resolution remote sensing data such as 
Landsat TM and ETM+, the SMA is widely used to map 
impervious surfaces (Small, 2001; Phinn et al., 2002; Wu and 
Murray, 2003; Lu and Weng, 2004). For high-resolution re- 
mote sensing data like IKONON and Quickbird, the NDVI 
approach has better results (Cablk and Minor, 2003; Sawaya 
et al., 2003). In this study, both these two approaches are used 
to estimate the impervious surfaces area of an urban water- 
shed using ASTER data. 

 
3.1. The SMA Approach 

The SMA is a method to calculate land cover fraction wi- 
thin a pixel and involves modeling a mixed spectrum as a com- 

bination of spectra for pure land cover types, called endmem- 



J. S. Yang and F. J. Artigas / Journal of Environmental Informatics 12(1) 1-8 (2008) 

 

3 

bers (Roberts et al., 1998). The SMA can be sub-classified in- 
to linear spectral mixture analysis (van der Meer and de Jong, 
2000; Sabol et al., 2002) and non-linear spectral mixture ana- 
lysis (Zhang et al., 1998; Gilabert et al., 2000) according to 
the complexity of scattering. 

The linear spectral mixture model describes the land sur- 
face composition in each pixel of an image using two to six 
endmembers. Each endmember represents a pure land cover 
type. The general form of a linear SMA model is: 
 
R = fn1R1 + fn2R2 + ... + fnmRm + e                        (1) 
 
where m is the number of endmembers, n is the number of 
spectral bands, Ri = {R1, R2, …, Rm} is the reflectance of each 
endmember for the nth band in the image, f = {fn1, fn2, …, fnm} 
is the fraction of each endmember in a pixel, and e is the un- 
modeled residual. The solution to the linear mixture model is 

based upon two assumptions: 1) the summation of fi must be 
equal to 1, i.e.,

1
1

m

i
i

f
=

=∑ ; and 2) the values of fi will always lie 
between 0 and 1, if all spectrally unique endmembers are con- 
sidered. 

In this study, we assume that multiple scattering is negli- 
gible and only consider linear spectral mixtures of a V-I-S 
model. The V-I-S model for urban regions provides biophysi- 
cal composition by assigning values obtained from satellite im- 

ages for three components, namely vegetation, impervious sur- 

faces and soil (Figure 2). In this model, the typical residential 
sequence of an urbanized area is shown along the V-I axis, 
and traditional commercial and industrial areas are situated a- 
long the I-S axis. The S-V axis represents lands that have not 
been urbanized, or urban lands that are undergoing changes. 
Bare soil may represent recent landfills or cleared land for ur- 
banization at the edges or inside of a city. 

 

 
CBD: Central Business District 

 

Figure 2. Vegetation-Impervious surface-Soil (V-I-S) 
composition model (after Ridd, 1995). 

Because some land surfaces with low or high reflectance 
(e.g. open waters and wetlands vs. clouds and sands) adversely 
affect impervious surfaces estimation (Small, 2001), these sur- 

faces were identified and masked before applying the V-I-S 
model in this study. Open waters were masked using 2002 
land use/cover data for the reason that they have similar re- 
flectance as dark roofs, making the separation from roof tops 
difficult using unsupervised classification alone. Similarly, wet- 

lands were masked because they are regularly inundated by 
the tide and in some cases, depending on the tidal level, have 
similar reflectance with dark roofs. There is no sand category 
in this area, and the image was acquired on a clear day, there- 
fore, the effects of sands and clouds were ignored here. After 
mask, only urban and suburban areas were retained for deter- 
mination of percentage of impervious surfaces. 

Endmembers of each V-I-S model components were se- 
lected as follows: forest and grass were selected as endmem- 
bers for vegetation, pavement (asphalt and concrete) and buil- 
ding roofs (dark, medium, and bright) for impervious surfaces, 
and landfill and barren land for soil (Table 1). The spectra of 
each endmember were obtained directly from the ASTER im- 
age based on existing land use/cover maps and field inspec- 
tion. Finally, the SMA was applied to estimate the percentage 
of impervious surfaces in each pixel of the retained image. 

 
Table 1. Land Cover Types Used to Select Endmembers in the 
V-I-S Model 

VIS Components Land Cover Types Imperviousness (%)
Grasses Vegetation (V) 

 Forest/Trees 
0 
0 

Concrete 100 
Asphalt 100 

Bright roofs 100 
Medium roofs 100 

Impervious 
Surfaces (I) 

 
 
 
 Dark roofs 100 

Soil (S) Barren 
Land/Landfills 30-50 

 
3.2. The NDVI Approach 

The NDVI is derived from the reflectance values that are 
calculated separately in two wavebands of the spectrum accor- 
ding to the following equation (Carlson and Ripley, 1997): 
 

( )
( )

-nir vis

nir vis

NDVI
α α
α α

=
+

                               (2) 

 
where αvis and αnir represent surface reflectance averaged over 
the visible and near infrared regions of the spectrum, respecti- 
vely. In this study, band 2 (0.63 ~ 0.69 µm) and band 3 (0.78 
~ 0.86 µm) were selected as αvis and αnir to calculate NDVI va- 
lues using equation (2). 

 Calculated NDVI values usually range from −1 to +1, 
which were then normalized to a scaled NDVI (N*) ranging 
from 0 to +1 using the following equation: 
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* s

v s

NDVI NDVIN
NDVI NDVI

−
=

−
                              (3) 

 
where NDVIs represents values on barren soil with minimum 
vegetation and NDVIv represents values on dense forest or grass 

with maximum vegetation. The minimum and maximum values 

from the estimated NDVI image were used as NDVIs and 
NDVIv for this purpose. 

Gillies et al. (1997) found a consistent relationship between 

fractional vegetation cover (Fr) and scaled NDVI for both co- 
arser and finer spatial resolution images as follows: 
 
Fr = N*2                                         (4) 
 

Ridd (1995) showed that the fraction of impervious sur- 
faces (IS) and the fractional vegetation cover (Fr ) vary inver- 
sely in an urban environment: 
 
IS = (1- Fr)                                       (5) 
 

For easy interpretation, the final fraction of impervious 
surfaces was transformed to percentage by multiplying 100. 

3.3. Accuracy Assessment  
In accuracy assessment, two important factors needed to 

consider in obtaining unbiased ground reference information 
are sampling strategy and sample size. In this study, a stratifi- 
ed random sampling strategy was used to select samples from 
the NJDEP 2002 land use/cover data, which ensures that a mi- 
nimum number of samples were selected to represent varying 
degrees of imperviousness in this area. The same number of 
samples was selected from each of the land use/cover catego- 
ries, including industrial, commercial, high-density, medium- 
density and low-density residential. It is often difficult to de- 
termine the actual number of samples to be referenced on the 
ground and used to assess the accuracy of each individual ca- 
tegory. However, there is a consensus among researchers that 
a minimum of 50 samples for each category is reasonable, 
both statistically and in practical terms (Jensen, 2005). Consi- 
dering the compromise between statistical rigor and practical 
limitations, we selected 100 polygons randomly: 20 polygons 
for each of the five urban land categories. The sizes of sam- 
pled polygons are between 3 and 6 hectares with an average 
of 5 hectares, which include approximately 200 ASTER 15 × 
15 m pixels to avoid the effects of geometric registration error. 
For each sampled polygon, a high-resolution color-infrared or- 

 
 

ISA from ASTER: 41% 

15 m pixel ASTER 1 ft pixel Orthophoto 

ISA from Orthophoto: 48%
 

Figure 3. Impervious surfaces delineated from a high-resolution color-infrared orthophoto and 
estimated from the ASTER image. 



J. S. Yang and F. J. Artigas / Journal of Environmental Informatics 12(1) 1-8 (2008) 

 

5 

thophoto was used to digitize the boundary around individual 
impervious features and then calculate the total impervious sur- 

face area within each polygon (Figure 3). 
 

 
Figure 4. Spectra of endmembers selected from the ASTER 
image based on the land use/cover map and field observation. 

4. Results 

Figure 4 illustrates the reflectance spectra of endmembers 
derived from the ASTER image. The spectra of forest and 
grass show typical spectral reflectance characteristics of heal- 
thy green vegetation, i.e., chlorophyll absorption in red region 
and high scattering in near-infrared region (Figure 4a), which 
makes them very easy to separate from other surfaces. In the 
five impervious surfaces in Figure 4b, the bright building roof 
has the highest reflectance while the dark roof has the lowest 
reflectance. The surfaces of concrete and asphalt have very si- 
milar reflectance spectra, which are also similar with the re- 
flectance of landfills and barren soil (Figure 4c). This makes 
the separation among them very difficult. Figure 5 is a scatter 
plot between the actual impervious surface calculated from or- 
thophoto and the estimated imperviousness from ASTER data 
using the SMA and NDVI approaches. The estimated imper- 
vious surface explained 80 to 90 percent of the variation in ac- 
tual impervious surface by a linear regression model. The rea- 
son for the small R-square value of the SMA approach is be- 
cause the SMA is based on the spectral unmixing of similar 
proportions of vegetation, impervious surfaces and soil in an 
area, but the proportion of barren soil in this urban watershed 
is very small. In this situation, the NDVI approach can be used 

to get a better result. 
 

 
Figure 5. Scatter plot between the actual imperviousness 
calculated from an orthophoto and the impervious surface 
areas estimated from ASTER image using the SMA and 
NDVI approaches. 

 
Figure 6 shows the land use/cover in 2002, calculated 

NDVI and the estimated impervious surfaces using the SMA 
and NDVI for a 70 km2 subset. The subset, located in the mid- 
dle of WMA-5, is a transition between the rural area in the nor- 

thern part and the urban area in the southern part of the water- 
shed. Figure 6a shows that this area has diverse land use/co- 
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vers, from low-density residential and vegetation in the upper 
left corner, to high-density residential, industrial and water in 
the lower right corner. The high NDVI value in an area in the 
upper right corner, labeled as “other urban” in the land use/co- 
ver map, indicates that this is a city park (Figure 6b). Impervi- 
ous surfaces derived from the SMA approach in Figure 6c 
show a much clearer pattern in surface imperviousness: pix- 
els with high imperviousness distributed in high-density resi- 
dential and industrial areas while pixels with low impervious- 
ness in low-density residential and vegetated areas. The imper- 

vious surfaces derived from the NDVI approach is presented 
in Figure 6d, which matches pretty well with the existing land 
use/cover map. The impervious gradients range from low im- 
perviousness in water, vegetated and low-density residential 

areas to high imperviousness in high-density residential and 
industrial areas. This result is also consistent with the results 
obtained using high-resolution color-infrared orthophoto as 
described above. 

5. Discussions and Conclusions 

This study demonstrates the utility of using ASTER data 
to estimate impervious surface areas in an urban watershed 
using different approaches. While the SMA is useful for map- 
ping impervious surfaces in urban environments with equally 
distributed components of vegetation, impervious surfaces and 

soil, the NDVI approach is recommended for estimating im- 
pervious surfaces in urban watersheds with small proportion 

Industrial

H residents 

L residents 

Vegetation 

Water 

Other urban

NDVI 

100%

0%

100%

0%

1

0

IS IS 

Figure 6. (a) Land use/cover map of the subset, (b) calculated NDVI from the ASTER image of the subset, (c) 
impervious surfaces estimated using the SMA approach, and (d) impervious surfaces estimated using the 
NDVI approach. 



J. S. Yang and F. J. Artigas / Journal of Environmental Informatics 12(1) 1-8 (2008) 

 

7 

of barren soil. The methods described here are less labor in- 
tensive compared to digitization of aerial photographs, but re- 
sulted in the same level of accuracy. Pixel-based approaches 
are more accurate and better represent the gradation of imper- 
vious values across ground features than traditional methods 
of assigning an assumed impervious value to a land cover type. 
These methods can be adopted by land use planners, especial- 
ly city planning managers who need to evaluate storm water 
runoff, heat island effects and the protection of green corri- 
dors in an urban watershed. 

Although the methods presented in this study are straight- 
forward and simple so that people can adopt them to get a 
quick estimation of impervious surfaces for an urban water- 
shed, there is still some space to improve. First, the bright 
roofs with high albedos have higher reflectance than pave- 
ments such as concrete and asphalt, indicating that impervious 
surfaces can not be a single endmember due to its complexity. 
By combining the high albedo endmember (e.g. the bright 
roof) and the low albedo endmember (e.g. the parking lot), 
one may achieve more accurate impervious surfaces fraction 
in an urban environment. Second, we did not consider the 
shades from buildings and tree crowns in the SMA. Although 
this remains the principal source of error in using high-resolu- 
tion remotely sensed data, the assumption that all areas under 
tree crowns are permeable will underestimate the impervious 
surfaces area. Finally, since no in situ data was available at the 
time of the ASTER image acquisition, we used the New Jersey 
statewide orthophoto acquired in 2002 as the reference data in 
accuracy assessment. Although not much change on land use/ 
cover is assumed within a one-year period, the subtle changes 
may still result in errors in the final product. In the future, 
obtaining in situ ground truth data at the same day the satellite 
passes over could potentially improve the accuracy of the re- 
sults. 
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