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ABSTRACT.  A linear programming based methodology has been used to identify the unknown sources of groundwater pollution. A 
source identification model is demonstrated and evaluated using hypothetical groundwater systems for a steady state case and a tran-
sient case. The concept of linear super-position is employed to find waste disposal rates at disposal sites from concentrations at 
measurement wells. In the steady state case, the identification model finds the unknown location and magnitude of leaks in a pipe 
among the probable leak locations. Contamination data are obtained from sparsely located wells. Subsequently, the transient case 
source identification problem is tested for unsteady case of flow and transport with several disposal periods in the aquifer. The model 
results show that in the steady state case problem with perturbed data, the pipe leak is identified within 1% of the true flux value when 
the maximum error tolerance is set to 15%. In the transient case, a large number of measurements of concentration data spread over 
time and space are necessary to satisfactorily identify possible unknown sources of groundwater pollution. The injection rate values 
were found with a relative error of 13 to 32% and a normalized error of 17% when the disposal locations were known. The results re-
main unchanged after entering a dummy source to the unknown potential sources. Ignoring a measurement well location changes the 
identification results to a normalized error value of 21%. The linear programming model can be very useful in source identification 
with available measurement and aquifer parameters. 
 
Keywords: ground-water pollution, random error, pollution sources, source identification, steady state, transient state, measurement 
well

 
 

 

1. Introduction 

About 50% of the population of the United States depends 
on groundwater as the sole source of drinking water (Koniecz- 
ki and Heilman, 2004). Since contamination of groundwater is 
detrimental to human health, the ecosystem, and the environ- 
ment, the law requires EPA to identify contaminated sites and 
long-closed disposal sites. The sites that are deemed to repre- 
sent the greatest potential threat are placed on a national prio- 
rity list referred to as "Superfund" sites. After detection of the 
contamination in a groundwater system, the first step towards 
the effective remediation is the accurate identification of pol- 
lutant sources. Once source locations and release histories at a 
site are identified, the extent of the contaminant plumes in the 
subsurface can be analyzed, and the remediation system de- 
signed. A risk assessment study, which is directly related to this 
information, may then be completed. Therefore, the contami- 
nant source identification problem is an important element of 

groundwater contaminant isolation, cleanup, and health risk as- 
sessment studies. 
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Source identification of groundwater pollution is an ill-po- 
sed inverse problem because of the stochastic nature of ground- 
water fate and transport. A problem can be categorized as a 
well-posed problem if it satisfies the following criteria: the so- 
lution exists, the solution is unique, and the solution is stable. 
Problems that do not satisfy these criteria are called ill-posed. 
Groundwater contaminant transport is a dispersive and there- 
fore irreversible process thus modeling it with reverse time is 
an ill-posed problem (Atmadja and Bagtzoglou, 2001; Gaganis 
and Smith, 2006). 

Numerous researchers have conducted studies focusing 
the groundwater source identification using optimization tech- 
niques or other mathematical methods. In the study by Gore- 
lick et al. (1983) the problem of identifying the sources of 

groundwater contamination has been formulated as an optimi- 
zation model. The optimization model uses a simulation mo- 
del of groundwater solute transport incorporated with obser- 
vation data as a series of constraints. Datta and Peralta (1986) 
introduced an 'expert system' to identify the location and mag- 
nitude of finite number of groundwater pollutant sources.  

Similarly, Aral and Guan (1998) and Aral et al. (2001) for- 
mulated the source identification problem for groundwater con- 
tamination as a non-linear optimization model where location 
and release histories of contamination are unknown. The mo- 
del objective is to minimize the residuals between simulated 
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and measured contamination in observation sites similar to 
Gorelick et al. (1983). Aral and Guan (1998) proposed a gene- 
tic algorithm incorporated with simulation model as an appro- 
ach to solve this non-linear optimization model. Guan and Aral 
(1999) conduct a complete discussion of this approach which 
they named as the Progressive Genetic Algorithm. 

Additionally, Atmadja and Bagtzolgou (2001) conducted 
a state-of-art review of different mathematical methods that 
have been introduced during past years in recovering the time- 
release histories and identifying the contaminant source loca- 
tions. They classified and summarized different methods such 
as heat transport inversion methods and contaminant transport 
inversion methods. These authors also introduced the related 
references and the limitations of each inversion method. Fur- 
thermore, Mahar and Datta (1997) proposed a non-linear opti- 
mization model incorporating the monitoring network design 
model with the identification. Another study by Mahar and Da- 
tta (2001) incorporates the parameter estimation with source 
identification of groundwater; the algorithm is an optimization- 
based methodology with non-linear programming techniques.  

Likewise, Sun and Yeh (1990a and 1990b), Wilson and 
Liu (1996), Neupauer and Wilson (2001), Snodgrass and Kita- 
nidis (1997), and Skaggs and Kabala (1994) used mathematic- 
cal inverse methods to identify the contamination sources. Neu- 
pauer et al. (2000) compared the relative effectiveness of the 
methods from studies of Skaggs and Kabala (1994) and Wood- 
bury and Ulrych (1996). Sidauruk et al. (1998) presented an in- 
verse method based on analytical solutions of contaminant tran- 
sport problems. These authors use the logarithm of concentra- 
tion to yield a linear relation between concentration and a com- 
bination of groundwater parameters. Skaliar and Ramirez (1998) 
proposed single point wise source identification method for 
general convection-diffusion transport process, involving dis- 
tributed parameter systems with intricate geometry and uni- 
formly distributed model parameters.  

In this study, a linear optimization model is used to iden- 
tify the pollution sources. Illustrations of the model are pre- 
sented for the steady state and unsteady state cases of flow 
and transport. In the steady state case, the source identifica- 
tion model is used to identify the location of an instant leak of 
a conservative solute. The problem objective for the steady 
state case is to identify the true leak sources amongst the 
group of possible leak sources. The possible leak locations can 
be found by means of investigations such as maps, interviews 
and etc. The model is used to find the sources from simulation 
results. These results represent the closest match with the local 
groundwater concentration data. The concentration results at 
measurement well locations, due to a unit injection at each 
source, are arranged as the linear transform unit-concentration 
data. The linear transform unit-concentration data represents 
the reaction of the aquifer water quality at wells to the source 
activities. The steady state case identification model’s sensiti- 
vity to the measurement data errors and necessary improve- 
ments is revised during this study. In the transient case the dis- 
posal frequency must be used as the input for the model. An 
abundant number of data needs to be obtained for transient 
case to locate the true sources amongst the possible sources. 

The model result is evaluated to illustrate different situations 
such as: entering perturbed concentration data, missing obser- 
vations, and omitting one observation well. 

2. Methodology 

Two illustrative examples are used to demonstrate the use 
of the linear optimization and numerical simulation to a 
source identification problem. In the first example problem a 
steady state case of solute transport is demonstrated to evalu- 
ate the model performance in locating unknown sources of the 
pollution. In this case, concentration data is collected at a few 
spatially distributed locations. In the second example, identifi- 
cation of the source schedule is required for an unsteady state 
case of flow and transport in a two dimensional system in which 
several sources are responsible for the observed pollution. 

 

2.1. Steady State Case 

The steady state condition is when the solute concentra- 
tion at any point in an aquifer remains constant with change of 
time. The source identification problem is presented for a con- 
fined aquifer containing a pipe system which is located above 
the water table in the aquifer. Necessary information about the 
pipe location and the aquifer parameters are presented in Fig- 
ure 1.  
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Notes: Suspicious leak locations are numbered as 1, 2, 3, and 4. 
Actual leak is from location 2; OW1, OW2, and OW3 are the 
observation locations. Grid cells are 10 m by 10 m. 
 

Figure 1. The hypothetical system, tested for steady-state 
source identification problem. 
 

It is assumed that the groundwater flow pattern remains 
steady. The pipe has a leak with flux magnitude of 7.776 kg/ 
day which is left undetected to the point that reaches the stea- 
dy state conditions in the aquifer. Also the groundwater flows 
along the X axis and its velocity is 1.554 m/day. Three obser- 
vation wells located downstream of the pipe are measure the 
pollutant concentration. It is also assumed that the pipe conti- 
nues to leak until the concentration of the conservative solute 
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in the aquifer reached the steady state conditions and thus the 
observed concentration data at each site would not change with 
respect to time. 

 

2.1.1. Steady State Simulation Model 

The simulation model for the steady state problem is a two- 
dimensional steady-state diffusion dispersion analytical model 
in which pollutant M is injected at the origin instantaneously 
(Hunt, 1978): 
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where 

 
2 2 /x yR x y D D                      (2) 

 

cC  is steady state concentration at coordinates x and y from 
injection origin; xD , yD  is constant principal values of dis- 
persion tensors;   is porosity of the aquifer; V  is steady 
state velocity of water in aquifer along x; Dx is unit cell di- 
mension along x-axis; Dy is unit cell dimension along y-axis; 
M is Pollutant mass that is injected at the origin instantane- 
ously; K0 is zero-order, modified Bessel function of the second 
kind. 

 

2.1.2. Perturbation of Simulated Concentration 

The field observations often contain errors that need to be 
considered in examining the proposed model performance. A 
computer model is used to generate a new set of data with ran- 
dom errors that also yields to a sensible reproduction of the ob- 
served contamination plume.  

The observed concentrations are obtained from the simu- 
lation data perturbed with a random error. The perturbation of 
the simulation data is to represent the effect of measurement 
errors. In this study, the perturbed simulation concentrations 
{ pertC } is being used as a replacement for the concentration 
values at observation well locations. Computation of { pertC } 
is as follows: 

 
{ } { } { }pert sC C r                                    (3) 

 
where  sC  represents the simulation concentration column ma- 
trix including the simulation data resulted at measurement well 
location, and r  represents the random error column matrix 
where the number of rows is equal to the number of simula- 
tion concentrations. The random error term can be defined as: 

 

 ,  i s ir Randn a C                            (4) 

 
where the random variable ir  is assumed to follow a nor- 

mal distribution with mean value equal to   and standard de- 
viation equal to ,s ia C  where 0 1.0a  . 

The Randn function generates an array of random num- 
bers whose elements are normally distributed with mean 0, and 
standard deviation equal to 1.  

Such a scheme of randomly perturbing the simulated con- 
centrations may be considered comparable to collecting and 
then testing multiple samples of contaminated groundwater at 
each observation well location and at each time period. A frac- 
tion value of 0.10 is used for (a) in the calculations. To carry 
out the computations, a MATLAB routine is used. Based on 
information regarding different measurement cases, other ap- 
propriate error terms can also be incorporated. 

 

2.1.3. Steady State Case Model I 

The source identification objective is to minimize the sum 
of absolute values of normalized residuals at all the observa- 
tion sites. The normalized residual is defined as the difference 
between the simulated and observed concentration divided by 
the observed concentration. The objective function will be as 
follows: 

 

Minimize 
1

m

ni
i

r

                              (5) 

 
where m is the number of collected observation data. 

Since the absolute value is unrestricted in sign and can 
take a positive or negative value, for linear programming the 
value of normalized residuals are replaced with two positive 
values u, and v. Variable nir  will be replaced with following 
expression in the constraint set: 

 
rni = ui − vi                                                      (6) 

 
where ui is positive value representing the positive normalized 
residuals at measurement location i; vi is positive value repre- 
senting the negative normalized residuals at measurement lo- 
cation i. 

By using the variables ui and vi in the objective function 
as ui + vi it will be enforced that if nir >0 then the value of ui 
has to be positive and vi equal to zero and vice versa. There- 
fore the formulation will be as follows:  

 

1
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m

i i
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Min z u v
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                                   (7) 

 

Subject to: 
 

1

1
n
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T q u v


      [1,  ]i m                         (8) 
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    [1,  ]i m                              (9) 
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0u
i
    [1,  ]i m                             

(10) 

 
0iv     [1,  ]i m                        (11) 

 
where ijT   is the linear transform unit-concentration data re- 
presenting the simulated concentration at measurement site i 
from possible leak location j due to a unit leak flux (for ex- 
ample 1 kg/day) and at the end each is divided by observed 
concentration value related to the same measurement site; m is 
the number of observation sites and n is the number of pos- 
sible sources (number of unknowns); iq  is the source flux 
magnitude which is entered to possible source location i. This 
is the product of the solute concentration of the source and vo- 
lumetric disposal rate.  

The simulated concentration minus the related observed 
concentration data is equal to the residual. This is defined by 
Equation 8 in the first constraint set. The equation is divided 
by the observed concentration to satisfy the normalized resi- 
dual definition. Constraints which are defined by Equation 9 
through Equation 11 enforce the non-negativity of the variables. 
To examine the capability of the optimization model in solv- 
ing the source identification problem, the measurement data is 
initially produced from simulation run assuming there is no 
observation error.  

 

2.1.4. Steady State Case Model II 

In the steady state case, a limited number of observation 
data is provided considering each well observes a constant va- 
lue of concentration data. In the real situation, the measure- 
ment data contains errors. The model introduced by Equations 
7 to 11 is sensitive to the data errors since the model is depen- 
ding on such small amounts of measurement data. Therefore, 
improvements need to be made to the identification model in 
order to overcome the vulnerability of the identification mo- 
del to such errors. By restricting the number of unknowns, the 
model can be less sensitive to the observation errors. The ap- 
proach that is suggested by Gorelick et al. (1983) is to insert 
additional constraints into the model that limit the tolerance of 
the identified source flux to specified bracketed values. Fur- 
thermore, the objective function has to be improved to detect 
the smallest number of sources which explicate the measured 
concentrations within the specified tolerance. The objective 

function after the modification is the sum of two functions 
called primary objective and secondary objective. The prima- 
ry objective is a binary decision variable which decides whe- 
ther the source enters the model or not. Minimizing the abso- 
lute normalized residuals enters as the secondary objective. To 
apply both the primary and secondary objective with the rela- 
ted degree of importance, a large weighting factor multiplier 
is used for the primary objective (value of 10) and a small wei- 
ghting factor (value of 1) is used for the secondary objective. 
The modified model becomes: 

 

1 1
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(18) 

 
0iu 

   
(1  2   )i , , ..., m 

                         
(19) 

 
0iv 

   
(1  2   )i , , ..., m 

                          

(20) 

 
where M is a large multiplier scalar coupled with the pri- 
mary objective, a value of 10.0 is used in the example pro- 
blem; S  is a small multiplier scalar coupled with the secon- 
dary objective, a value of 1.0 is used in the example problem; 

ip  is a binary decision variable, 1ip   if the potential source 
(i) enters to the solution, 0ip   otherwise, for n potential 
sources; 

*u  is error tolerance related to positive residuals; 

*v  is 
error tolerance related to negative residuals. 

The above improved optimization model is a mixed inte- 
ger program with the format of a fixed charge problem. The 
primary objective minimizes the number of sources and the 
secondary objective minimizes the sum of absolute normali- 
zed residuals. The first line in the constraint set defined by 
Equation 13 is the same as in Equation 8. The constraint in 
Equation 14 enforces that for each leak that enters to the basis, 
a large penalty will be charged to the objective function value. 
In Equation 15 and Equation 16 the residuals are enforced by 
the constraints to be bracketed within the specified tolerances. 

 

2.2. Unsteady State Case 

The source identification model is also applicable in the 
case of transient flow and transport in subsurface media. The 
optimization simulation model can be employed to identify the 
contaminant sources and release histories. The sources and re- 
lease history are identified from observed concentration data 
collected over time. In the transient case the contaminant in- 
put may occur in various space and time. The identification 
model has to identify the time period and location of input for 
each disposal event. In comparing the steady state case, the 
model for the unsteady state case would not be as sensitive to 
the measurement data errors because the measurements are co- 
llected over time in various locations. In the unsteady state 
case, the potential source locations and their time periods whi- 
ch allow pollutants to enter the groundwater must be recogni- 
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zed. Each disposal event may have numerous consequent mea- 
surement data. Therefore the number of constraints is much 
greater than number of unknowns. The optimization model for 
the unsteady state will be as follows: 

 

1

 ( )
m

i i
i

Min z u v


                                 (21) 

 
Subject to: 
 

,
1

n

ij i i i obs i
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T q u v C


      [1,  ]i m                  (22) 

 
0iq 
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(23) 

 
0iu 
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(24) 

 
0iv 

   
(1  2   )i , , ..., m 

                          

(25) 

 

where ,obs iC  is the observed concentration data at each time 
step and each measurement location which in the case study is 
obtained from perturbation of the simulation data; ijT  is the 
linear transform unit-concentration data representing the simu- 
lated concentration at measurement site i from possible leak 
location j due to a unit leak flux; m is total number of collect- 
ed measurements equal to the number of measurement loca- 
tions times total number of time steps in timeframe of the stu- 
dy. 

The model is similar to the steady state case source iden- 
tification model; however, the abundance of collected obser- 
vation data will allow reducing the computation burden by us- 
ing the ordinary residuals instead of normalized residuals. 

Therefore, in constraint set defined by Equation 22, the obser- 
vation data is brought to the right hand side of the constraint 
and the definition of the ijT  is modified to suit the use of or- 
dinary residuals in the model. The source identification objec- 
tive however is to minimize the sum of absolute value of ordi- 
nary residuals at all the observation sites. The model employs 
linear superposition to find the waste disposal rates at disposal 
sites from concentration data at measurement wells. The dis- 
posal rate values are obtained by superposing the linear in- 
fluences of injection rates into concentrations observed at mea- 
surement well locations. 

This study applies the model to the case of transient flow, 
incorporated with the transient transport in the aquifer. Also, it 
uses the ordinary residuals in the objective function and con- 
straints and perturbed concentration data is entered to the right 
side of the constraints. It is apparent that incorporating the abun- 
dant data (1000 measurement data) in this transient problem is 
effectively a replacement for the use of any integer constraints 
to overcome the data errors in the problem. 

The model is applied to a hypothetical aquifer system with 
transient flow and transient transport of a conservative pollu- 
tant in an aquifer, shown in Figure 2. The aquifer system con- 

tains two potential pollutant sources (sources S1 and S2, the 
source S3 enters as a dummy source for further analysis); there 
are also five measurement sites (OW1 ~ OW5) located in this 
aquifer. The hydraulic head varies linearly along both the con- 
stant head boundaries. The parameters of the example aquifer 
are represented in Table 1. The total study time of five years is 
divided into twenty equal time periods of three months each. 
Each injection period is three months, and for the first four 
time periods, the pollutant injection occurs in S1 and S2, the 
waste disposal rates at source wells are represented in Table 2. 

 

Notes: The potential sources are marked S1, S2, and S3 where S1 
and S2 are actual pollutant sources and S3 used as the dummy source. 
Five observation wells are placed at downstream of the potential 
sources; each grid cell has dimensions of 100 ft by 100 ft. 
 

Figure 2. Schematic view of an aquifer system for unsteady 
state case study (customized from Mahar and Datta, 2000).  
 
Table 1. Hydro-geometric Parameters of the Aquifer as 
Shown in Figure 2 

Parameter Value 

Kxx (ft/s) 0.002 

Kyy (ft/s) 0.002 

Porosity (Ɛ) 0.25 

L (ft/s) 131.2 

t / L 0.24 

DL(distribution coefficient) 0.005 

Bulk Density Pb 2.65 

X = Y (ft) 100 

S (storage coefficient) 0.002 

 

2.2.1. Two-dimensional Flow and Transport Equations 

In the transient case study, the equation has been used to 
represent the two-dimensional flow and advection-dispersion 
solute transport through a non-homogenous anisotropic aqui- 
fer can be written in Cartesian tensor notation as (Konikow 
and Bredhoef, 1978): 
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,i j
i j

h h
T S W

x x t

   
      

    ,  1,  2i j                 (26) 

 
where , i jT  is transmissivity tensor (

2 1L T 
); h  is the hydrau- 

lic head ( L ); W is volume flux per unit area (negative for in- 
flow and positive sign for outflow, 1LT  ); ,  i jx x  is Carte- 
sian coordinates ( L ). 

 
Table 2. Waste Disposal Rates and Periods for the Transient 
Case Study 

1st period of 3months of duration Flow Concentration 

S1 0.166 cfs 10000 ppm 

S2 0.106 cfs 10000 ppm 

2nd period of 3 months   

S1 0.053 cfs 10000 ppm 

S2 0.208 cfs 10000 ppm 

3rd period of 3 month   

S1 0.166 cfs 10000 ppm 

4th period of 3 months   

S2 0.124 cfs 10000 ppm 

 

If we only consider fluxes of direct withdrawal or recharge 
and steady leakage through a confining layer, streambed or la- 
kebed, then W(x, y, t) can be expressed as: 

 

 ( , , ) ( , , ) z
s

Pumping
Leakage

K
W x y t Q x y t H h

m
   

                 

(27) 

 
where Q  represents the rate of withdrawal (+) or recharge (−), 
( 1LT  ); zK  represents the vertical hydraulic conductivity of 
the confining layer, streambed or lakebed, ( 1LT  ); and sH  
represents the hydraulic head in the source bed, stream or lake 
(L). 

The seepage velocity can be written in Cartesian tensor 
notation as: 

 

ij
i

j

K h
V

x


 


 ( ,  1,  2)i j                              (28) 

 
where iV   is the seepage velocity in the direction of ix  
(LT-1); ijK  is the hydraulic conductivity tensor (LT-1);   is 
the effective porosity of aquifer (dimensionless). 

The equation used for two-dimensional transport and dis- 
persion of a solute in groundwater flow may be written as:  

 

   ij i
i j i

Cb C C W
bD bCV

t x x x 

    
        

  ( ,  1,  2)i j     (29) 

 
where C is concentration of the dissolved chemical, ( 3ML ); 

ijD  is hydrodynamic dispersion coefficient, ( 2 1L T  ); b is sa- 
turated thickness of the aquifer, ( L ); and C  is concentra- 

tion of the dissolved chemical in a source or sink fluid, ( 3ML ). 

The transport simulation results are obtained based on the 
above equations, using USGS-MOC (USGS method of charac- 
teristics) computer code. Detailed derivations and discussions 

on the governing equations for flow and transport in groundwa- 
ter systems are available in Konikow and Bredehoeft (1978). 
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Notes: The continuous line shows the simulation results at 
measurement wells, the perturbation results are shown as dots. 
 
Figure 3. Pollutant concentration data for the transient 
problem in form of breakthrough curves (a), (b), (c), (d), and 
(e) for measurement wells 1, 2, 3, 4, and 5. 
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2.2.2. Measurement Simulation and Perturbation 

To apply the source identification model to the example 
aquifer, a history of the observed concentrations at measure- 
ment sites is necessary. The concentration history data at each 
location is obtained from simulation results at that location. 
Concentration simulations are obtained by the USGS-Method 
of Characteristics (USGS-MOC) computer code (Konikow and 
Bredhoeft, 1978). The simulated concentration results are ob- 
tained in 10 time-steps during each time period at all well lo- 
cations. The output data at each location is provided from the 
beginning of the first injection up to five years. The simula- 
tion results are provided in 10 time-steps for each of twenty 
time periods of three months. This means the total of 200 si- 
mulated concentration data for each observation site is provi- 
ded. The simulated data is then perturbed to imitate the effects 
of measurement errors. Each perturbed datum was assumed to 
be sampled from a normal distribution and having the exact 
datum with a standard deviation equal to one-tenth of the mag- 
nitude of datum. Perturbation method is explained previously 
in the steady state case section. 

A MATLAB subroutine has been employed to add the 
perturbation to the simulated data. The perturbed concentra- 
tion data will be used as the measurement data in the identifi- 
cation problem. The simulation breakthrough curves along with 
scattered diagram of the perturbation results are presented in 
Figures 3a to 3e. The reason for inserting such concentration 
data is to create a set of realistic data for the identification pro- 
blem inputs. Reviewing the breakthrough curves can give basic 
information about the sources' location but this information is 
not enough to gain complete knowledge about the release sche- 
dule. For instance in Figure 3a the pollutant reached the well 
No.1 almost immediately after entering the aquifer. The first 
plume peak reaches the well No.1 at 0.5 year and the last plume 
peak passes the measurement well at 1 year. Comparing to the 
well No.1, the well No.2 plume peak is extended longer with 
lower peak concentration value. This is because the well is not 
located immediately after sources. The perturbed data also con- 
tains random errors as high as 20% in peak points. 

 

2.2.3. Evaluation Criterion for the Model Performance 

In order to evaluate the performance of the model for the 
transient state a factor needs to be defined as the evaluation 
criterion. In this study, accuracy of the proposed source identi- 
fication model is measured in terms of "normalized error" (NE) 
(Mahar and Datta, 2000). This factor is defined as:  

 

1 1

1 1

100

in ns

ij ij
i j

in ns

ij
i j

EF AF

NE
AF

 

 


 



                        (30) 

 
where in is total number of potential time periods of source 
activity at potential source locations; ns is total number of po- 
tential source locations; EFij is estimated source flux at source 
location j, during time period i; AFij is actual source flux at 

potential source location j, during time period i. 

3. Results and Discussion 

3.1. Steady State Case 

3.1.1. Results for Steady State Case Model I 

The optimization model for the steady state case, Model I, 
is examined for the aquifer which is described in the Figure 1. 
The model for the steady state case is tested with the simula- 
tion data to assess the performance of the model. The simula- 
tion data is obtained from analytical solution that was previ- 
ously discussed in Equations 1 and 2. After entering the aqui- 
fer parameters from Figure 1 into Equations 1 and 2, the si- 
mulation result at measurement wells OW1 to OW3 caused by 
a leak at location 2 on the pipe with magnitude of 90 mg/s 
(7.776 kg/day) is obtained and presented in Table 3. 

 

Table 3. Simulation Results due to a Leak Magnitude of 
7.776 kg/day at Location No. 2 (Used as Measurement Data) 

Measurement 
station 

X  
Coordinate 

Y  
Coordinate 

Cc   
kg/m3 

OW1 40 -10 0.177 
OW2 30 10 0.1114 
OW3 20 0 1.8981 

 

For purposes of evaluation of the source identification 
model, the simulation result is used in the constraint set. The 
results of such a test will show the accuracy of the linear pro- 
gramming model in identifying the magnitude and locations 
of the sources. The LINDO software, which is a linear pro- 
gramming model solver, has been employed for this example 
problem and the results are presented in Table 4. Results show 
that the model has clearly identified the source location and 
the leak magnitude. Total residuals are brought to 0.003 and 
the source flux level is 7.752 kg/day (99.7% accurate) in the 
linear programming model results. Also the LINDO results 
show another small source appearing in the output result whi- 
ch is because of round off errors. Introducing the simulation 
results as the concentration data to the identification authenti- 
cates the identification model’s good performance with the 
error free data. 

 

3.1.2. Effect of Measurement Error to the Results of Model I 

In the field situation the measurement data is subject to 
errors which should be considered in the source identification 
model. In this part of the study, the source identification Model 
I is applied to the steady state case with the perturbed mea- 
surement data. The perturbation method explained previously 
is applied to the simulation results from Table 3. The resulted 
values that are presented in Table 5 have been used as the 
measurement data for the source identification study. 

The result of identification model with perturbed concen- 
tration values is presented in Table 6. The result has identified 
the source location S2, and shows another leak from the po- 
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tential source location S3. The total leak magnitude from sour- 
ces S2 and S3 that is shown in the linear programming model 
results differ from the true leak magnitude. The difference be- 
tween two values can be explained by the objective function 
value which is defined as total normalized residuals. The result 
confirms that the model is greatly responsive to the concentra- 
tion data errors. Therefore, in order to have the model results re- 
sistive to the concentration data errors, the identification Model 
II is used for the perturbed concentration data in the steady 
state case. 

 
Table 4. Results of Model I for Error Free Concentrations 
Compared to True Values 

Potential source of 
leak 

True leak magnitude 
(kg/day) 

Linear Program 
results (kg/day) 

1 0 0 

2 7.776 7.752 

3 0 0.0026 

4 0 0 

 

Table 5. Measurement Data due to a Leak Magnitude of 
7.776 kg/day at Location No. 2 Obtained from Simulation 
Using Perturbation Method 

Measurement station Cs (kg/m3) Cpert (kg/m3) 

OW1 0.177 0.153349 

OW2 0.1114 0.119358 

OW3 1.8981 2.206276 

 

Table 6. Results of Model II in Identifying the Leak 
Magnitude with Observation Errors Compared to True Values 

Potential 
source of leak 

True leak magnitude 
(kg/day) 

Linear Program 
results (kg/day) 

1 0 0 

2 7.776 6.725215 

3 0 0.1158773 

4 0 0 

 

3.1.3. Results of Steady State Model II 

The example problem with perturbed data is used to test 
the improved model which is introduced in Equations 12 to 20. 
Two different runs were attempted using linear programming 
computer code LINGO. In the first one the bracketed tolerance 
is brought to 0.15 for both positive and negative residuals. The 
results are summarized in Table 7 (column a). For the second 
case, the positive and negative residuals were bracketed to 0.2 
(Table 7, column b). Using binary decision variables pi in ob- 
jective function and the constraint set will make it impossible 
for imaginary sources to come into the result. Also the value 
of the error tolerance in Equations 15 and 16 will affect the 
accuracy of the resulted source flux. As shown in Table 7 the 
value of source flux resulting from maximum error tolerance 
of 0.15, is brought within 1% of the real source flux. In the 

second case with maximum tolerance of 0.2, the result is over- 
estimated by approximately 4% of source flux magnitude (Ta- 
ble 7, column b). In the case that the tolerance was limited to 
0.05 or 0.1 the model became infeasible. The results of the 
modified model show that the model could be successful if the 
error bracket values are appropriately restricted. 

 

Table 7. Linear Programming Results (in kg/day) Using 
Model II; (a) Perturbed Data Residuals Bracketed to 0.15, and 
(b) Perturbed Data Residuals Bracketed to 0.20 

Potential 
source of 
leak 

True leak 
magnitude 
kg/day 

Linear 
Program 
results (a) 

Linear 
Program 
results (b) 

1 0 0 0 
2 7.776 7.7347 8.0710 
3 0 0 0 
4 0 0 0 

 

3.2. Unsteady State Case 

The proposed model for the transient case is tested in dif- 
ferent settings of the model parameters. The evaluation criter- 
ion of the model described previously was used to evaluate di- 
fferent scenarios of the model performance. In the first scena- 
rio, the source locations assumed to be known and the model 
is used to identify the rates and timing of the injection. The 
next scenario describes the situation that one dummy source 
location enters as an unknown. The third scenario studies the 
situation that one measurement well is omitted from the group 
of wells. The last scenario discusses the effect of missing mea- 
surement data on the source identification results.  

 

3.2.1. Evaluation of Source Flux Identification Model at Known 
Locations 

In the transient case study the duration of each injection 
period and potential source locations are assumed to be known. 
Therefore the model is employed to identify the magnitude of 
the injection rate at each time period and source location. 

The optimization model for the transient problem is sol- 
ved using LINGO software. The result of the linear program- 
ming for the proposed example problem is presented in Table 
8 (column a). The linear programming results in Table 8 (co- 
lumn a) properly identify the disposal events. The model re- 
sults also determine the time and location of the injection iden- 
tical to the true sources. For the sources with no pollutant in- 
jection the LP result gave a zero value of injection rate at the 
related time period. The results also indicate that using the ad- 
ditional integer constraints similar to that of steady state mo- 
del II will not be necessary. Incorporation of numerous con- 
centration data in the transient case is a good replacement for 
the integer constraints that were necessary for the perturbed 
data conditions in the steady state case. The injection rate va- 
lues for each injection event from sources S1 and S2 are loca- 
ted within the range of 6 to 32% of the true injection rates. 
The normalized error value is 17.25% when the true sources 
S1 and S2 are entered as the only potential sources for the sour- 
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ce identification problem. 

 
3.2.2. Performance Evaluation of Model for Multiple Poten- 
tial Source Locations 

The number of potential sources can be reduced if certain 
knowledge about location of sources is available. Information 
about the potential source locations is available through maps, 
interviews, previous records and other resources. In this case 
study, it is assumed that the numbers of potential source loca- 
tion are not well-known therefore one potential dummy source 
is added to the problem. Such a problem may be encountered 
when there are more locations that suspicious to the pollutant 
injections. Two sources of S1 and S2 are actual source loca- 
tions with time varying magnitudes. Therefore it is assumed 
that a third potential source S3 at location (200 ft, 500 ft) is 

entered to the case study. A new simulation model result is 
obtained for the unit injection rate at the dummy source loca- 
tion. The result of identification model for this case was ob- 
tained using LINGO software. The resulted values for the case 
without additional potential source and the case using addi- 
tional potential source are presented in Table 8 (column b) for 
comparison. 

Results show that adding an additional potential source 
will not seriously affect the final identification results. The re- 
sult shows zero value of injection rate for the additional source 
location and the injection rate at actual source locations remains 
the same. Normalized error of the resulted injection rates for 
the case of entering one additional potential source location is 
17.25%; this is exactly the same value as the case of using 
two actual sources.  

Table 8. LP Results of Source Fluxes Using Concentration Data with Random Error for (a) only Known Potential Sources S1 & 
S2 (b) Potential Sources S1, S2, and S3 

Injection 
duration 

source 
location 

Actual 
injection rates 

LP results w/only 
potential sources S1 

& S2 (a) 

Relative error (a) 
(%) 

LP results  
including S3 (b) 

Relative error (b) 
(%) 

S1 0.166 0.176 6 0.176 6 
S2 0.106 0.129 21 0.129 21 

0 to 0.25 yr 

S3 0 - 0 0 0 
S1 0.053 0.070 32 0.070 32 
S2 0.208 0.181 12.9 0.181 12.9 

0.25 to 0.5 
yr 

S3 0 - 0 0 0 
S1 0.166 0.132 20 0.132 20 
S2 0 0 0 0 0 

0.5 to 0.75 
yr 

S3 0 - 0 0 0 
S1 0 0 0 0 0 
S2 0.124 0.093 25 0.093 25 

0.75 to 1 yr 

S3 0 - 0 0 0 

Normalized 
error 

   
NE = 17.25%  NE = 17.25% 

 

Table 9. LP Results of source Fluxes at Known Locations Using Concentration Measurements with Random Error for (a) 
Assuming Measurement Well No.1 is not existent, (b) Assuming Lost Data 

Injection 
duration 

source location Actual injection 
rates 

LP results 
case (a) 

Relative error: 
case (a) (%) 

LP results 
case (b) 

Relative error: 
case (b) (%) 

S1 0.166 0.168 1.2 0.004 97.6 
S2 0.106 0.143 34.9 0.207 95.2 

0 to 0.25 yr 

S3 0 0 0 0 0 
S1 0.053 0.077 45.3 0.205 287 
S2 0.208 0.170 18.3 0.129 38 

0.25 to 0.5 yr 

S3 0 0 0 0 0 
S1 0.166 0.128 22.9 0.109 34.3 
S2 0 0 0 0 0 

0.5 to 0.75 yr 

S3 0 0 0 0 0 
S1 0 0 0 0 0 
S2 0.124 0.103 16.9 0.096 22.6 

0.75 to 1 yr 

S3 0 0 0 0 0 

Normalized 
error 

   
NE = 21%  NE = 70.4% 
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3.2.3. Effect of Number Measurement Well Locations to the 
Source Identification Results 

Identification of the pollutant timing and location depends 
on the collected measurement data through various time and 
places. Omitting one observation well location can impact the 
source identification accuracy. In order to investigate this mat- 
ter, the observation well location No. 1 is disregarded. The 
model is used to identify the potential sources S1, S2, S3 us- 
ing the measurement results obtained from observation well 
location OW2 through OW5. The results are presented in Ta- 
ble 9 (column a). 

The value of normalized error of 21% states that the mo- 
del identifies the sources with less accuracy than previous con- 
ditions. Well No. 1 is located immediately down-stream of po- 
tential sources; therefore, this change can have more impact 
on the accuracy of the identification results than disregarding 
any of the other four wells. Model results give a zero value for 
the sources with no injection rate and locate the injection events 
comparable to the true injections. The results also declare that 
disregarding well No. 1 does not have a serious impact on the 
identification results. This is probably because the other four 
measurement wells are located spatially in the face of ground- 
water flow direction in such an arrangement that they can col- 
lect concentration data effectively even when they are not im- 
mediately located downstream of potential sources. This will 
confirm that formation of the measurement wells in an aquifer 
can affect the source identification results. A general rule is to 
arrange the measurement well locations relative to the expect- 
ed location of the sources such that the observed concentra- 
tion data differs from one another and contain more informa- 
tion about source characteristics. More discussion about ar- 
rangement of measurement well locations can be found in a 
study conducted by Mahar and Datta (1996) which incorpo- 
rates optimal monitoring network design methodology, with 
detection of groundwater contamination at the waste disposal 
facilities. 

 

3.2.4. Effect of Missing Measurement Data to the Source 
Identification Results 

In a real case, observed data may not be available from 
the beginning of the pollutant release to the aquifer. More fre- 
quent reading of concentration data may start after the conta- 
mination is detected. It is assumed that the measurement data 
does not exist for the first two time periods of the study. The 
result of the linear programming model for the case of miss- 
ing data is presented in Table 9 (column b). Results indicate 
that the linear programming solution correctly located all the 
true source locations. The identification model calculates a 
small value for the source 1 during time period 1. Such results 
indicate that the interval of missing data includes those mon- 
ths when the effects of disposal at source 1 during period 1 
are most prominent. The results also show a higher relative er- 
ror in identifying the injection rate of the remaining sources. 
The value of the normalized error (NE = 70.4%) confirms that 
the accuracy of the identification model has been affected se- 
riously under the missing data conditions. 

4. Conclusions 

The performance of a linear programming (LP) model for 
the groundwater source identification problem is evaluated for 
two illustrative examples of steady state and transient case. 
The LP model for the steady state example is used to identify 
the source locations along a pipe that leaks high concentra- 
tions of a conservative pollutant to an aquifer. Steady state 
Model I identified the source locations and gave correct flux 
level with 99.7 % accuracy when simulated concentration data 
were used. However, the same model fails to identify the cor- 
rect sources and flux levels when perturbed concentration data 
is used. The steady state Model II is used when perturbed con- 
centration data are used in the identification model. The re- 
sults of steady state Model II with perturbed data identified 
the source location and recovered the flux level with 99% ac- 
curacy when the residuals were bracketed to 15%.  

The LP model for the second illustrative example is used 
for condition of transient flow and transport. In this case, the 
pollutant was observed from different locations in an aquifer 
which is believed to be from waste disposal at several facili- 
ties. The purpose of identification model is to locate those dis- 
posal sites and the time period when the pollutant is released 
to the aquifer. The model results were analyzed for the various 
scenarios. For the first scenario that only the real sources are 
used as possible sources, the model results identify the dispo- 
sal events and recover the disposal rates with a normalized er- 
ror of 17.3%. Furthermore, adding another possible source lo- 
cation as a dummy source for the second scenario had results 
similar to the first scenario. Additionally, disregarding con- 
centration data associated with measurement well No. 1 for 
the third scenario gave a normalized error of 21% of recov- 
ered disposal rates while the disposal events were well iden- 
tified. Finally, the fourth scenario that the concentration data 
of the first two time periods are disregarded, the results were 
found with a normalized error of 70%. Incorporating abundant 
concentration data in the transient case is a replacement for 
the use of integer constraints that were necessary for the per- 
turbed data conditions in the steady state case. The model can 
be used if the pollutants are continuously disposed to the aqui- 
fer in identified time frequencies. 

The LP model presented in this paper can be useful in iden- 
tifying pollutant sources for cleanup or remediation of conta- 
minated aquifers. The perturbed data errors incorporated with 
the transient case in this study do not have a serious effect on 
identifying the source locations. However, these concentration 
data errors reduce the accuracy of the recovered release histo- 
ry. These perturbed data can have an impact on the linear ef- 
fect unit-concentration response. For that reason the unit con- 
centration response in conditions of the transient flow may not 
exactly describe the influence of the pollutant sources upon 
concentrations at observation wells. Generally, the obser- 
vation site locations and their distance from source locations 
may affect the release histories recovered by the model as a 
result of dispersion phenomenon. In this study the aquifer hy- 
drogeometric parameters are assumed to have no uncertainties 
but in a field situation aquifer parameters cannot be so well
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defined without uncertainties. 
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