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ABSTRACT.  Water quality monitoring programs in many river basins have recorded data during several decades, but dealing with 
such environmental datasets is not an easy task. Uneven sampling frequency, missing observations and changes in monitoring 
strategies challenge the most basic data quality requirements and statistical assumptions of most time-series analysis methods. Lack of 
data consistency forces scientists to lean towards site-by-site approaches, avoiding simultaneous analysis of multiple time-series 
containing missing data. By using the appropriate tools and methods, however, common water quality patterns in a river basin can be 
identified and characterized in time and space. We introduce a collection of methodological steps for the detection and characterization 
of the spatiotemporal variability of river water-quality patterns in the context of global environmental change. Dynamic factor analysis 
(DFA) is used to extract underlying common patterns from sets of time-series with data gaps. The extracted patterns are further 
characterized using complementary methods such as frequency and trend analyses for the temporal dimension, together with regression 
and clustering analyses for the spatial dimension. We show how the application of these methods tackles the challenges of identifying 
patterns that act at different temporal and spatial scales, and we illustrate three case studies in Mediterranean basins where riverine 
nutrient patterns are unraveled and related to environmental drivers of change. Our methodological framework seeks to serve as a 
hypothesis-generation tool for further analyses of drivers of environmental change at the river basin scale. 
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1. Introduction

Global environmental change has intensified in the recent 
decades as a direct consequence of human activities (Meybeck, 
2003). The detection of global change effects, defined as stat- 
ing specific causal factor(s) and whether its origin relates to 
changes in environmental conditions and/or other external dri- 
vers (Hegerl et al. 2010), thus becomes crucial. The main ob- 
jective in this context is to use available datasets and optimize 
tools and methods in order to identify change and its potential 
source or cause (Lyubchich et al., 2013). Furthermore, a key 
current challenge is to implement the use of complementary 
models and methods of different scales and complexity to pur- 
sue a full understanding of the interaction of global change 
phenomena (Huang and Chang, 2003) and their effect on the 
environment.  

Freshwater systems are directly threatened by anthropo- 
genic activities (Vörösmarty et al., 2010) in terms of both hu- 
man water security and biodiversity. Consequently, the vul- 
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nerability of global water resources to ongoing environmental 
change should be a priority topic to assess (Vörösmarty et al., 
2000), particularly at regional and global scales, taking ad- 
vantage of knowledge obtained at the local scale and through 
case studies (Vörösmarty, 2002). Nutrient pollution remains 
one of the major threats to water quality worldwide, particu- 
larly in rivers and streams (Seitzinger et al., 2010), and it is 
therefore important to understand the spatial patterns of nu- 
trient concentration and loading, their temporal variation, and 
the drivers behind their variability at the basin scale.  

Time-series generally provide valuable information about 
physical, biological, or socio-economic systems (Ghil et al., 
2002), and their interaction. Several methods can be used to 
extract key properties in time-series. Worldwide assessments 
of freshwater resources however rely to a great extent on frag- 
mented data (Vörösmarty et al., 2010). The analysis of time- 
series is thus not straightforward since available datasets us- 
ually contain missing data and differing temporal resolutions, 
requiring the use of statistical techniques that produce equi- 
distant observations and fill data gaps (e.g. interpolating miss- 
ing values; Kandasamy et al., 2013). Long-term observations 
are also usually required to detect changes and diagnose cau- 
ses. Furthermore, the assessment of trends and patterns in wa- 
ter quality is confounded by the interplay of many influencing 
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factors, acting at different temporal and spatial scales (Kund- 
zewicz and Krysanova, 2010). These above mentioned con- 
straints tend to narrow the choice of applicable methods and 

impose limitations.  

Classical time-series analysis generally requires complete 
datasets, and often long time-scales (Zuur and Pierce, 2004; 
Bers et al., 2013). Methods like spectral analysis are limited to 
characterizing the spectral density to detect any periodicities 
in the data and to give information on cyclic patterns, and thus 
do not necessarily allow the user to identify complex patterns 
(e.g., non-monotonic trends, irregular cycles) embedded in a 
set of multiple time-series (Zuur et al., 2003a). Techniques 
like spectral and wavelet analyses, based on stationarity, need 
relatively long time-series and cannot cope well with missing 
values (Zuur and Pierce, 2004). Furthermore, most river water 
quality time-series can be nonstationary. Additionally, detect- 
ing water quality patterns and identifying their causes usually 
cannot be achieved through observations on a site-by-site basis 
(Ito, 2012), though some authors believe that this approach 
can be more successful than a regional one when studying wa- 
ter quality responses to climatic change (Benítez-Gilabert et 
al., 2010).  

When observations of multiple time-series are considered, 
such as those recorded in different monitoring points in a river 
network, it is often reasonable to assume that there are com- 
mon driving forces behind them (Márkus et al., 1998). Dyna- 
mic factor analysis (DFA) is a dimension-reduction method 
that extracts underlying common patterns in a set of multiple 
time-series (Zuur et al., 2003a; Figure 1), where the observa- 
tions vary over time and cannot be dealt by conventional fac- 
tor analysis (Geweke, 1977). DFA is able to treat time-series 
that have been recorded irregularly over time, or have short 
duration, by combining the state-space model framework and 
the Kalman Filter, and Expectation-Maximization methods 
(Harvey, 1989; Zuur et al., 2003a, Holmes, 2013). The ex- 
tracted patterns (e.g., cycles and/or trends) are associated with 
factor loadings, which indicate the relevance that a given pat- 
tern has in a given time-series. These two end products, i.e., 
patterns and factor loadings, can then be analyzed in order to 
characterize the temporal and spatial variability of the ex- 
tracted common patterns, thus facilitating the interpretation 
and the identification of potential drivers of change in the sy- 
stem. DFA has been widely used in econometric and psycho- 
logical studies in the last decades, and has recently been appli- 
ed to fisheries datasets (Zuur et al., 2003b; Zuur and Pierce, 
2004; Vilizzi, 2012), and groundwater-quality data (Muñoz- 
Carpena et al., 2005, Kuo et al., 2013). 

The present work describes the application of dynamic 
factor analysis and complementary methods in the identifica- 
tion of regional common patterns in river water-quality time- 
series, as well as the characterization of the spatiotemporal 
variability of such patterns in the context of global change, re- 
lated mainly to climate and land use changes. The next section 
presents the different steps and procedures of our suggested 
methodological framework. Based on specific objectives and 
basin characteristics, a particular collection of such steps is 

exemplified with particular case studies, using water quality 
monitoring data from three river basins in the Mediterranean 
region. We thus also provide examples of the versatility of the 
individual methods involved in this work, while discussing 
their main advantages and disadvantages and highlighting 
some future developments. 

 

 

Figure 1. Dynamic factor analysis decomposes a set of n 
time-series into m common patterns and noise; factor loadings 
indicate the relevance of patterns for each original time-series 
(ts). 

2. Methods 

2.1. Rationale of the Methodological Framework and 
Workflow 

The upcoming sections describe the full set of steps of 
our proposed methodological framework (illustrated in Figure 
2) to detect common patterns and potentially attribute the 
effects of global change phenomena on river water-quality ti- 
me-series. Key scripts in the R programming language (R 
Core Team, 2012), which is open to the scientific community, 
are included in the supplementary files in order to facilitate 
the implementation of our proposed methodology: 

1) Data exploration is carried out for river water-quality 
datasets available from public water agencies or any other 

source. The main aim is to check the quality of the informa- 
tion and to remove any unreasonable values. 

2) The Maximal Information Coefficient (MIC; Reshef et 
al., 2011 is used to find significant associations between va- 
riables and time in river monitoring large datasets. This op- 
tional step is intended to help in selecting relevant variables in 
large databases containing tens or hundreds of variables.  

3) Subsequently, time-series with a significant relation- 
ship with time (based on MIC scores) are further explored by 
means of dynamic factor analysis (DFA; Zuur et al., 2003a), 
in order to extract patterns and their relevance (i.e., factor 
loadings) in a set of monitoring points. 

4) Based on DFA results, the spatiotemporal variability of 
the identified river water-quality patterns is characterized us- 
ing recently published time-series analysis tools for trend de- 
tection and for the identification of significant oscillations and 
relationships with streamflow. 
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5) Using the factor loadings as an expression of the im- 
portance of the extracted common patterns across river moni- 
toring points, the drivers behind the observed behavior are 
identified using regression methods and cluster analysis.  

 
2.2. Data Exploratory Analysis 

The first step in our suggested methodological frame- 
work is an exploratory data analysis. We use the R v2.15 pro- 
gramming software (R Core Team, 2012) to standardize time- 
series, a step that allows comparison among time-series that 
might have different scales. Subsequently, a visual explora- 
tory analysis of the series is performed using the plotting ca- 
pabilities of R in order to determine the presence of outliers. 

Potential outliers are detected and dealt with on an individual 
basis taking into consideration expected ranges of values for 
specific variables. Only outliers clearly indicating recording 
errors (i.e. misplacement of decimal point) were removed 
from the datasets in our case studies. 

 
2.3. Exploring Significant Associations between Variable 
Pairs in a Large Dataset Using Mic 

Being able to identify significant associations between 
pairs of variables in large datasets has increasingly gained im- 
portance within scientific studies. The Maximal Information 
Coefficient (MIC) method (Reshef et al., 2011) captures a 
broad range of associations, including but not limited to linear 

 
Figure 2. Relationships between individual components of our proposed methodological framework for unraveling spatiotempo- 
ral patterns of river water-quality at the basin scale. 
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relationships, and provides a score for functional relationships 
(i.e., hypothetical relationship that describes the effect of one 

or more independent variables on a dependent variable), and 
indicates the strength of the relationship (a value of 1 being 
the strongest). The basic strategy behind MIC is to calculate a 
measure of dependence for each pair of variables, ranking the 
pairs by scores and examining the top-scoring pairs (Reshef et 
al., 2011). The analysis is performed simultaneously for all 
possible variable-pair combinations, making it suitable for ex- 
tracting information from large datasets. In our case, we used 
MIC to find significant relationships between river water- 
quality variables across time. 

Besides MIC, the Maximal Information-based Nonpara- 
metric Exploration (MINE) indicators (Reshef et al., 2011) in- 
clude several diagnostic statistics describing the shape of the 
relationship, such as a measure of monotonicity introduced as 
the Maximum Asymmetry Score (MAS), which can be used 
to characterize and select variables of interest to be further 
analyzed with more specialized or computationally intensive 
techniques (Reshef et al., 2011). We calculated the significant 
MIC scores at different levels of significance (0.05, 0.01, and 
0.001) for any sample size using suitable power functions ba- 
sed on the p-values for various MIC scores at different sample 
sizes (available at http://www.exploredata.net/Downloads/P- 
Value-Tables).  

Significant relationships between each river water-quality 
variable and time, tested simultaneously in all time-series in- 
cluded in the datasets, are identified based on resulting MIC 
scores and associated p-values. The focus is then set on the 
associations of variable-time pairs with the highest significant 
MIC scores that are present in the highest number of moni- 
toring stations in the river basin. Apart from being a powerful 
additional exploratory analysis, the MIC analysis may be used 
to select the most significant variables containing temporal 
patterns, which can then be subjected to DFA for a more 
detailed study, if the analysis is not a priori focused on speci- 
fic variables.  

 

2.4. Extracting Common Patterns From a Set of Time- 
series Using DFA 

DFA is used to detect common patterns in a set of time- 
series (Zuur et al., 2003a). DFA is based on the state-space 
model (Harvey, 1989), which treats each observed time-series 
as a linear combination of multiple state processes (Holmes et 
al., 2012), i.e., the time-series are modeled in an analogous 
way to linear regression as the sum of two terms: pattern(s) 
and error (Figure 1). DFA is applied to the database by means 
of the Multivariate Autoregressive State-Space (MARSS) R- 
package (version 3.4, Holmes et al., 2013) in order to explore 
common patterns in river water-quality time-series. The basis 
of the DFA formulation in MARSS includes a process model 
(x) and an observation model (y):  

 

xt = xt-1 + wt  wt ~ MVN(0,Q)     (1a) 
 

yt = Zx + vt   vt ~ MVN(0,R)      (1b) 
 

The observations (yt) are modeled as a linear combination 
of hidden patterns (xt) and factor loadings (Z) (Holmes et al., 
2012). DFA is analogous to applying principal component 
analysis (PCA) to time-series: the DFA hidden patterns 
represent the principal components and the DFA factor load- 
ings can be related to the loadings in PCA. The terms wt and vt 
represent the error associated with observations and hidden 
patterns, where Q and R are the covariance matrices for these 
error terms. The MARSS algorithm uses the Kalman filter and 
smoother, which operates recursively on streams of noisy in- 
put data to produce a statistically optimal estimate of the un- 
derlying system state, to compute the best estimate for the 
hidden patterns given a set of predetermined assumed values 
for the unknown parameters Z, Q and R (Zuur et al., 2003a). 
The output of the Kalman filter is then used to compute the 
likelihood of the data given the better estimates for the set of 
parameters. MARSS estimates the maximum-likelihood via 

the Expectation-Maximization EM) method (Holmes, 2013). 

Unlike common classical statistical approaches, DFA is 
able to deal with missing values, which are frequently en- 
countered in time-series collected in river water-quality moni- 
toring programs, and is also able to handle lagged correlation 
structures (Márkus et al., 1998). Depending on the complexity 
of the model and the number of time-series involved, however, 
the DFA method can be computationally intensive. Analyses 
included in this study were performed in a Linux-based High- 
Performance Computing Cluster, which allowed the simulta- 
neous simulation of several DFA models. Nevertheless, com- 
putational times extended beyond weeks for analyses that in- 
cluded the longest records and the largest number of time- 
series.  

Computational load is exacerbated by the fact that se- 
veral algorithm settings can be adopted. Analyses may include 
several combinations of the number of common trends that 
can be potentially extracted (m) and different structures for 
the variance-covariance matrix for the observation errors. The 
number of common trends and the error structure affects the 
performance of the analysis and thus of the fitted model. For- 
tunately, the DFA implementation in the MARSS R-package 
already includes a best-model selection approach based on the 
Akaike Information Criterion (AIC).  

The resulting best-fits, which are the linear combination 
of the extracted common patterns based on the corresponding 
factor loadings in each monitoring point (i.e., time-series), can 
be plotted against the original time-series in order to deter- 
mine the extent of model performance. Best-fit plots, as well 
as variance values in the diagonal of the R matrix, can provide 
additional information about any monitoring point(s) that 
might not have been well represented by the best model, and 
thus identify any potential cause(s) behind such misrepresen- 
tation, whether it is based on data restrictions (e.g., low sam- 
pling frequency) or pattern behavior. The extracted common 
patterns and associated factor loadings can be studied in detail 
in order to characterize their spatiotemporal variability and 
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their relationship to global change phenomena as described in 
the following sections.  

 

2.5. Characterization of DFA Resulting Common Patterns 
in Multiple Time-Series  

2.5.1. Frequency Analysis 

A time-series describes values of a response variable over 
time (Ghil et al., 2002). The trajectory of the response va- 
riable can be converted to a series of frequencies, based on 
how often the observed values fall within ordered ranges of 
magnitude during a specified period of time. Both determi- 
nistic and stochastic processes can, in principle, be character- 
rized by a function of frequency (instead of time), called the 
spectral density (Ghil et al., 2002). The interpretation of the 
spectral density function as the variance of the time-series 
over a given frequency band provides an intuitive explanation 
for its physical meaning (Shumway and Stoffer, 2010). More- 
over, the concept of regularity of a series can be best ex- 
pressed in terms of periodic variations of the underlying phe- 
nomenon that produced the series, expressed as Fourier fre- 
quencies (Shumway and Stoffer, 2010). The objective of time- 
frequency analysis in our methodological framework is to ob- 
tain significant frequencies present in the extracted common 
patterns that could be potentially linked to climatic or phenol- 
logical signals (i.e., those related to climate influence on bio- 
logical cycles) in our study basins.  

The Multitaper Method (MTM) provides useful tools for 
the spectrum estimation and signal reconstruction of a time- 
series whose spectrum may contain both broadband (i.e., re- 
presenting an irregular but continuous process) and line (i.e., 
periodic or quasiperiodic process) components (Ghil et al., 
2002). MTM is non-parametric, since it does not use an apri- 
ori, parameter-dependent model of the process that generated 
the time-series. MTM reduces the variance of spectral estima- 
tes by using a small set of tapers (i.e., set of spectral windows), 
rather than the unique data taper or spectral window used in 
classical methods (Ghil et al., 2002).  

MTM is applied to the resulting DFA patterns by means 
of the multitaper R-Package (Rahim and Burr, 2013). The 
time-bandwidth parameter (nw), which is the product of the 
temporal duration and spectral width (in frequency space) of a 
wave, and the number of tapers (k) are chosen by the method 
itself based on the characteristics of the input data. The con- 
structed orthogonal tapers used in this method minimize the 
spectral leakage due to the finite length of the time-series (i.e., 
sharp discontinuities in the frequency domain caused by a limi- 
ted observation interval), thus enabling the computation of in- 
dependent estimates of the power spectrum (Ghil et al., 2002). 

For each of these MTM analyses, the F test is also com- 
puted. The F distribution is a right-skewed distribution most 
commonly used in the analysis of variance. The F test is 
roughly based on the ratio of the variance captured by the 
filtered portion of the time series, and the resulting F statistic 
essentially represents a signal-to-noise ratio. Formally, the F 
test is a F variance-ratio test with 2 and 2k-2 degrees of free- 

dom (df; defined as “dofs” in the multitaper R package) for 
the significance of the estimated line component (Thomson, 
1982). The higher the value of the F statistic, the higher is the 
significance of a specific frequency.  

Based on the table of critical values for the F distribution 
at the p = 0.05 level of significance, critical values for fre- 
quencies in this atudy are obtained. This is done by looking at 
the F ratio and by identifying the critical value according to 
the rows and columns of the F table based on previously 
computed degrees of freedom for each frequency. If the MTM 
obtained value of F is equal or larger than this specific critical 
value, the result is significant at the level of p = 0.05.  

 

2.5.2. Trend Analysis 

The presence of positive serial dependence in the obser- 
vations increases the probability of rejecting the no-trend hy- 
pothesis and can thereby cause trends to be detected that 
would not be found significant if the observations in the series 
were independent. Prewhitening will prevent the false detec0 
tion of a non-existing trend, without a significant power loss 
in identifying a trend that exists (Bayazit and Önöz, 2007). 
The zyp R package (Bronaugh and Werner, 2013) contains an 
efficient implementation of Yue-Pilon’s (Yue et al., 2002) pre- 
whitening approach to determining trends in data.  

In the Trend Free Pre-Whitening (TFPW) method, the 
slope is estimated with the Theil-Sen approach (TSA). If the 
slope is almost equal to zero, then it is not necessary to con- 
duct the trend analysis. If it differs from zero, then it is as- 
sumed to be linear and the data is detrended by the slope and 
the auto-regressive AR(1) is computed for the detrended se- 
ries (Yue et al., 2002). The residuals should be an independent 
series. The trend and residuals are then blended together 
through the sum of both terms. Finally, the Mann-Kendall test 
is applied to the blended series to assess the significance of 
the trend. Among a number of output fields, the Kendall’s tau 
statistic and the Kendall’s p-value computed for the final de- 
trended time-series are reported after each Yue-Pilon analysis. 
The significant trends are thus identified and their increasing 
or decreasing behavior is set as a characteristic of individual 
patterns.  

 

2.6. Distribution of DFA Factor Loadings across Monitor- 
ing Points 

2.6.1. Drivers of the Spatiotemporal Variability of Water 
Quality  

Factor loadings indicate the importance of a given pattern 
at a given river monitoring point (i.e. time-series). For each 
variable, factor loading values of individual extracted patterns 
can be plotted spatially, based on geographical coordinates, in 
order to visually identify clusters of patterns in space. Identi- 
fying potential causes of the distribution of patterns across a 
basin; however, requires a more rigorous approach than a 
merely visual examination of maps.   

In our methodological framework, potential explanatory 
variables (e.g., characterizing climate or land-use) are related 
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to factor loadings by the generalized least squares (gls) regres- 
sion model. The use of this type of model is advisable where 
errors are expected to be spatially correlated, which is usually 
the case in geographically-linked datasets (Pinheiro and Bates, 
2000). The identification of an optimal set of explanatory va- 
riables for a regression model is however challenging and fur- 
ther complicated by the presence of collinearity in the expla- 
natory variables.  

To overcome these difficulties, we apply a combination 
of forward and backward selection in a stepwise multiple re- 
gression procedure. For each extracted pattern, we start by 
choosing the variables that gave the best predictions of the ob- 
served factor loadings at each monitoring point using gls mo- 
dels within the nlme R-Package (Pinheiro et al., 2012). Ini- 
tially, the variable that resulted in the lowest significant p-va- 
lue was chosen and kept in the regression; subsequent varia- 
bles were selected based on the same criterion. If the inclusion 
of an additional variable rendered the initial variable non-signi- 
ficant, the latter was discarded and forward selection of the 
next significant variable took place until the predictions no 
longer improved with the addition of new variables.  

The final gls models and their goodness-of-fit were asse- 
ssed based on the generalized R2 (Cox and Snell, 1989) by 
means of the r.squaredLR function included in the MuMIn R- 
Package (Barton, 2014). As a final product, we obtain the sig- 
nificant variables that act as potential drivers of the spatio- 
temporal variability of the DFA water-quality patterns extract- 
ed from our time-series.  

 

2.6.2. Grouping Analysis of Predominant Patterns 

In order to further assess any grouping or clustering of 
the extracted patterns in specific groups of monitoring points, 
we use the Grouping Analysis tool accessible in ArcGIS 10.1 
(ESRI Inc.). The tool looks for a solution by which all the fea- 
tures (in our case, the factor loadings associated with the ex- 
tracted patterns) within each group are as similar as possible, 
and all the groups themselves are as different as possible. 
Grouping analysis without any spatial constraints is perform- 
ed by the K means algorithm and the decision of the most op- 
timal number of clusters is based on the computed Calinski- 
Harabasz pseudo F statistic. The largest F statistic values in- 
dicate solutions that perform best at maximizing both within- 
group similarities and between-group differences.  

3. Results 

3.1. Case Studies 

Data from river monitoring programs in three watersheds 
in Mediterranean Spain were used to illustrate our method- 
logical framework in characterizing the spatiotemporal varia- 
bility of water quality. These three basins were selected based 
on previous analysis carried out within the SCARCE Project 
Consortium (Navarro-Ortega et al., 2012): 1) The Llobregat 
River Basin (NE Spain) covers a drainage area of 4,948 km2 

and hosts a population of ca. 3 million inhabitants (Marcé et 
al., 2012). The Llobregat River is a typical Mediterranean 
watercourse heavily impaired by dams, mines and pollution 
from diffuse and point sources, particularly in the lower part 
of its basin. 2) The Ebro River Basin covers a highly hetero- 
geneous area of ca. 85,500 km2. The hydrological regime of 
the Ebro River is dictated in part by its contrasting tributaries, 
from snowfed Pyrenean rivers to more typical Mediterra- 
nean tributaries in the southern part of the basin (Romaní et 
al., 2011). Large reservoirs and agricultural pollution are the 
two main pressures that influence biogeochemical characteri- 
stics of the river water in the basin. 3) Finally, the Júcar River 
Basin District (RBD) (43,000 km2) is located in the eastern 
part of the Iberian Peninsula and is formed by the aggregation 
of river basins that flow into the Mediterranean Sea. The hy- 
drology of the Júcar RBD is typically Mediterranean, with ra- 
pid alternation between droughts and floods (Ferrer et al., 
2012). In the middle section of the basin, agriculture leads to 
high nitrate concentrations in groundwater and surface water, 
whereas in the lower part there is a combination of agriculture, 
urban, and industrial pollution. 

Data were collected from databases of public water agen- 
cies such as Confederación Hidrográfica del Júcar (CHJ), Agè- 
ncia Catalana de l’Aigua (ACA), and Confederación Hidro- 
gráfica del Ebro (CHE). We collected nitrate concentration 
data for the three basins, and for the Ebro River we addi- 
tionally assembled time-series for oxygen concentration, pH, 
ammonium concentration, and biochemical oxygen demand. 
The time period was selected based on the longest possible 
availability of time series at as many monitoring stations as 
possible within each river basin. The frequency of sampling 
was monthly and the series length varied among basins: 17 
years for the Júcar (starting in 1994), 11 (starting in 1995) for 
the Llobregat, and 31 for the Ebro (starting in 1980). Missing 
va- lues were common in all three datasets. 

The proposed methodology can be tailored to specific re- 
search objectives and characteristics of any given river basin, 
where the overall aim is to detect and characterize spatiotem- 
poral patterns of water quality variability. Figure 3 introduces 
three applications of our methodological steps, based on speci- 
fic objectives, and, to some extent, on the availability of water- 
quality data and the spatial density of monitoring locations. 
These case studies are presented in the following sections. 

 
3.2. Examining Functional Relationships with MINE and 
DFA: Riverine Nitrate Concentration Patterns in the 
Júcar River Basin District 

Water quality problems are common in the Júcar River 
Basin District (Júcar RBD). In the middle part, agriculture 
leads to high nitrate concentrations in ground and surface wa- 
ters, whereas nutrient pollution in the lower part is a combi- 
nation of agriculture, urban, and industrial sources (Ferrer et 
al., 2012). An initial exploratory analysis of nitrate time-series 
was carried out based on the Maximal Information Coefficient 
(MIC) to identify functional relationships between nitrate con- 



R. Aguilera et al. / Journal of Environmental Informatics 31(2) 97-110 (2016) 

 
 

103 

centration and time in 90 monitoring points in the Júcar RBD. 
The analysis revealed a combination of agriculture, urban, and 
industrial sources (Ferrer et al., 2012). An initial exploratory 
analysis of nitrate time-series was carried out based on the 
Maximal Information Coefficient (MIC) to identify functional 
relationships between nitrate concentration and time in 90 
mnitoring points available in the Júcar RBD. The analysis 
revealed that a strong relationship (according to MIC scores) 
of nitrate concentration with time was significant in 50 moni- 
toring points (Figure 4). Consequently, we aimed to detect 
common nitrate patterns in the set of 50 time-series using dy- 
namic factor analysis to further describe their shape and va- 
riability across time and space. 

 Among the four common extracted patterns by DFA, 
Pattern 1 had the largest importance in most monitoring points 
across the Júcar RBD (Figure 5), and it was mainly described 
by frequency analysis as a cycle with significant annual perio- 
dicity. MINE analysis and resulting statistics had initially id- 
entified a predominantly nonlinear, non-monotonic associa- 
tion between the nitrate and time variable-pair, which could be 

related to DFA Pattern 1. Conversely, the more linear and mo- 
notonic-like relationships previously found in the MINE ana- 
lysis could be linked to the significant trend (Kendall’s tau of 
-0.22, p < 0.001) found in DFA Pattern 4. 

The geographical representation of the Maximum Asym- 
metry Scores (MAS; highest values indicate a clear departure 
from monotonicity) in Figure 4 shows that non-monotonic fun- 
ctions best described the time-series found along the Júcar 
River and in the upper Júcar RBD, both being mainly agri- 
cultural areas. The displayed non-monotonicity coincided, for 
the most part, with stations where cyclic patterns (e.g. DFA 
Pattern 1) predominated. These cycles are associated to the 
hydrological variability in the basin, which has been observed 
to modulate nitrate concentrations in rivers and streams. In 
fact, nitrate pollution related to fertilizer application is one of 
the major problems affecting water quality in the region (Fer- 
rer et al., 2012), and is accentuated by the seasonal cycles of 

hydrological variability (i.e., during dry periods, nitrate levels 
tend to increase, and in wet periods, nitrate levels tend to de- 
crease). 

 

Figure 4. Maximum Asymmetry Scores (MAS) for the 50 
nitrate time-series in the Júcar basin. The highest scores 
(larger circles) display the departure of the functional 
associations from monotonicity. 

 

DFA results further explained the preliminary exploratory 
MINE results about the main characteristics of nitrate spatio- 
temporal variability (trend and cyclic behaviors and their geo- 
spatial importance). The initial MINE exploratory analysis 
was necessary to filter out those monitoring points with a sig- 

 
Figure 3. Methods tailored to specific objectives and basin characteristics of our case-study rivers. 
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nificant relationship between the nitrate and time variable-pair 
and thus avoid the cumbersome implementation of DFA in- 
volving a set of 90 time-series.  

 

3.3. Characterizing the Spatiotemporal Variability of 
Nitrate Patterns: The Llobregat River Basin   

The Llobregat River Basin (NE Spain) is a well-studied 
basin with a relatively small number of monitoring points of 
short-term data for water quantity and quality. During the last 
century, the Llobregat basin has suffered of progressive im- 
pairment by industrial and urban sewage as well as by runoff 
from agricultural areas that cannot be diluted by its natural 
flow. A comprehensive detection and characterization of ni- 
trate concentration was carried out following all the steps 
shown in Figure 2. Since our objective was to specifically a- 
nalyze patterns of nitrate dynamics and their drivers across the 
entire monitoring network, we skipped the MINE exploratory 
analysis step and worked with nitrate time-series from all a- 
vailable monitoring points.  

 

 

Figure 5. Factor loadings (absolute values; size of circles 
indicates the magnitude of relevance) associated with nitrate 
extracted patterns (1-4) in the Júcar basin. 

 

The DFA model for nitrate time-series at 20 monitoring 
locations extracted four common patterns, quite dissimilar 
among one another (Figure 6). Frequency (multitaper) and 
trend (Yue-Pilon) analyses of these patterns characterized 
their temporal variability (Table 1). Detecting significant fre- 

quencies in the extracted patterns facilitates the identification 

of seasonal cycles and oscillations potentially related to cli- 
mate. In fact, the associations of El Niño Southern Oscil- 
lation (ENSO) with streamflow modifications (Marcé et al., 
2010) and nitrate concentration dynamics (Vegas-Vilarrúbia et 
al., 2012) in the Iberian Peninsula have been clearly identified. 
Furthermore, detecting long-term significant trends can assist 
in identifying any phenomenon influencing nitrate concentra- 
tion. Pattern 1, for instance, was described by a significant 
decreasing trend and significant periods of 2.1 and 1.7 yr. 
Such decreasing trend in nitrate concentration could be linked 
to improved agricultural practices in the region over time. No 
significant trend was observed for the remaining three pat- 
terns but Patterns 1 and 2 had significant cycles of 1 yr and of 
3.4 yr, as well as Pattern 3. Pattern 4 presented a significant 
cycle of 10 months.  

 

Figure 6. Common patterns extracted from 20 nitrate- 
concentration time series in the Llobregat basin (1995-2006). 

 

The magnitude and sign of factor loadings, along with 
their spatial distribution, assist in the identification of predo- 
minant patterns in specific areas of the study basin. The factor 
loadings associated with Pattern 1 in the nitrate model had the 
largest values and were specifically located on the lower sec- 
tion of the Llobregat River (Figure 7). According to the gls 
spatial regression results, this pattern had positive significant 
relationships with total discharge upstream, as well as with 
local urban areas present in the basin (Table 1), among the di- 
fferent environmental variables included in the gls models. 

Here, a significant association with Pattern 1 also confirmed 
that it followed discharge variability, mainly in the lower sec- 
tion of the Llobregat River (highest factor loadings associated 
with Pattern 1). Since discharge relies on both precipitation 
and evapotranspiration, extreme events such as droughts and 
heat waves promoted by global atmospheric teleconnections 
can have significant effects on river water quality in the basin. 
These events and their link to climatic modes should be fur- 
ther investigated, especially in the Mediterranean region, whe- 
re climate extreme events are predicted to increase (García- 
Ruiz et al., 2011). 

The remaining patterns were more or less equally sca- 
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ttered across the entire basin, particularly Pattern 3, which 
presented high values for factor loadings in most monitoring 
points. Conversely, Pattern 4 predominated in the upper Anoia 
tributary (SW of the basin), a highly polluted and clearly di- 
fferentiated area due to the presence of agricultural and indus- 
trial activities. The gls regression models for Patterns 2 and 3 
did not identify any significant explanatory variables. Pattern 
4, on the other hand, was negatively related to river discharge, 
suggesting higher nitrate concentration with lower values of 
discharge. 

Grouping Analysis of the factor loadings associated with 
all four patterns extracted in the Llobregat basin, based on a 
distribution of two groups identified by the F-test, revealed no 
clear differentiation for the predominant Pattern 1 in specific 
monitoring points, but those points related to this cyclic and 
hydrology-driven pattern did remain part of the same group. 
Group 1 enclosed mainly those stations where Patterns 2 and 
3 were predominant.  

 
3.4. Exploring Associations between Long-Term Patterns 
of Water Quality: The Ebro River Basin  

The biogeochemical characteristics of river water in the 
Ebro basin are highly influenced by anthropogenic activities. 
The main impacts are related to discharge regulation (i.e., the 
construction of the large reservoirs) and agricultural pollution 
(Romaní et al., 2011). Long-term patterns extracted from sets 
of water quality time-series provide information on significant 
trends in a river basin. The capabilities of the MINE algorithm 
were used in order to explore any significant functional rela- 
tion-ship among patterns of different variables in the Ebro 
basin, where a sufficiently long dataset was available (31 years 
of monthly data). Such patterns were previously extracted in 
individual models (data not shown) for each variable: ammo- 
nium, nitrate, and dissolved oxygen concentrations, pH, and 
biochemical oxygen demand. The strongest of the significant 
associations between patterns, based on MIC scores, involved 
nitrate and dissolved oxygen in the Ebro basin (Table 2). Ba- 
sed on MINE statistics, the association was highly monotonic. 
Moreover, Pattern 3 of the DFA nitrate model was indeed a 
highly significant trend according to previous Yue-Pilon trend 
analysis (Kendall’s tau of -0.53, p < 0.001). The trend compo- 
nent in Pattern 4 for dissolved oxygen was however only mar- 
ginally significant (Kendall’s tau of 0.08, p < 0.05). The de- 

creasing or increasing nature of these long-term trends can, 
however, vary across space based on the sign of the corres- 
ponding factor loading, thus creating several possible relation- 
ships between the two variables (e.g., between nitrate and ox- 
ygen concentrations). Frequency analysis of both extracted 
common patterns showed significant 4-yr cycles.  

 

 

Figure 7. Factor loadings for nitrate patterns in the Llobregat 
basin (the size of circles indicates the magnitude; the 
light-colored circles represent negative factor loadings). 
 

Figure 8 displays the different associations between the 
two patterns (Pattern 3 for nitrate and Pattern 4 for dissolved 
oxygen) and their geographical location in the basin. Asso- 

Table 1. Main Characteristics Found in the Resulting Nitrate Patterns and Associated Factor Loadings that Help in Describing the 
Spatiotemporal Variability in the Basin 

DFA MODEL  COMMON PATTERN  FACTOR LOADING  

Nitrate Model Significant 
Cycle 

Significant 
Trend 

Hydrology- 
driven 

Generalized least squares (gls) 
explanatory variable(s) 

gls (p-value) 

Pattern 1  2.1, 1.7 yr  Yes  Yes  Local Urban Area  0.0185  

          Discharge  0.0013  

Pattern 2  1 yr        

Pattern 3  3.9, 1 yr   Yes        

Pattern 4  10 mo      Discharge  0.0347  
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ciation type C, which shows the nitrate and oxygen patterns 
(standardized data) as they were extracted from the corres- 
ponding DFA models, is the predominant type of significant 
association (present in 22 out of 50 stations). Nitrate de- 
creased over the 31 years included in the analysis, and the op- 
posite happened with DO. Nitrate trends were possibly shaped 
by the application of agricultural practices that, in the last 
three decades, can be associated with a more rational fertilizer 
application (Lassaletta et al., 2012) in some areas of the basin. 
In addition, it is expected that nitrate and dissolved oxygen 

long-term trends behave in opposite directions at a particular 
point, since increasing nitrate concentration in rivers tends to 
promote eutrophication and the subsequent depletion of dis- 
solved oxygen levels in freshwater systems. If nitrate concen- 
tration decreases across time, dissolved oxygen concentration 
levels should recover with time.  

The most significant spatial agglomeration appeared to 
be the increasing nitrate and dissolved oxygen concentrations 

along the Segre tributary (a highly agriculturally active region 
located in the eastern part of the Ebro basin) within the 31- 

Table 2. MIC Scores and Associated MINE Statistics for the Significant Relationships between Water Quality Patterns in the Ebro 
Basin 

Variable 1 Variable 2 MIC (strength) MIC-p2 
(nonlinearity) 

MAS 
(non-monotonicity) 

MEV 
(functionality) 

MCN (complexity) 

NO3 Pattern 3  DO Pattern 4  0.99 0.33 0.03 0.99 5.08 
NO3 Pattern 3  PO4 Pattern 3  0.90 0.40 0.11 0.90 5.08 
NO3 Pattern 3  NH4 Pattern 1  0.83 0.45 0.05 0.82 5.08 
NO3 Pattern 3  BOD5 Pattern 3  0.75 0.25 0.09 0.75 4.81 
NO3 Pattern 3  pH Pattern 2  0.74 0.17 0.07 0.73 5.09 

 

 
Figure 8. Association types (i.e., A, B, C, D) for NO3- Pattern-3 and DO Pattern-4 based on the sign of factor loadings and 
geographical location in the Ebro River Basin. 
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year period included in the analysis. The different regional as- 
sociation types can be studied in detail in order to explain the 
varying relationships between nitrate and dissolved oxygen 
trends across the Ebro basin. Regression models involving en- 
vironmental variables, for instance, could take part in iden- 
tifying the main potential drivers of change.  

4. Discussion  

There is growing evidence that long-term climatic trends 
and changes in land cover have produced marked alterations 
in hydrological responses at the basin scale. These include the 
impact of climate change on rainfall and river flows, as well 
as the effect of changes in land use in recent decades (Milly et 
al., 2005; Gallart et al., 2011). Regardless of their size, river 
basins commonly encompass a variety of land use and climate 
characteristics. Even though anthropogenic activities in parti- 
cular areas are usually determined by climatic and terrain con- 
ditions, the interaction of sources and drivers of change at di- 
fferent temporal and spatial scales challenges any analysis of 
variability and potential causality at the basin scale. The asse- 
ssment of global change impacts on freshwater resources, 
which frequently relies on scantily available data, is further 
complicated by the complex interaction of processes within a 
system at multiple temporal and spatial scales (Qian et al., 20 
10). In order to address these issues, the proposed metho- 
dology tackles the different scales in time and space at which 
changes occur, making it possible to delineate areas where cer- 
tain patterns predominate, or instances in time where specific 
trends were more relevant, which can all in turn be compared 
and contrasted with past and current global change phenome- 
na in the study area. The case studies above illustrate the 
capabilities and the flexibility of our proposed methodological 

framework, which detects and characterizes river water-quality 
patterns at basin and regional scales. Even in absence of a 
clear a priori hypothesis, the MIC score is a very convenient 
tool to identify variables of interest and relevant monitoring 
points that could be subsequently studied in more detail.  

One of the main limitations in the detection and assess- 
ment of changes in environmental time-series is the presence 
of observation gaps and the absence of sufficiently long re- 
cords (Kundzewicz and Robson, 2004; Hegerl et al., 2010). 
Few available time-series techniques are able to readily over- 
come those two problems (Zuur et al., 2003b). In environ- 
mental datasets, shortcomings of these techniques include the 
irregular or uneven sampling frequency and the lack of a mul- 
tivariate approach (Cazelles et al., 2008). Dynamic factor ana- 
lysis can easily deal with short-term time-series that contain 
missing observations while providing a framework for detect- 
ing common patterns simultaneously in a set of multiple time- 
series within a basin or a region. Moreover, this method can 
incorporate time-series with differing sampling resolutions 
into the analysis. The DFA algorithm applied in this work is 
however currently computationally intensive and, subsequent- 
ly, time-expensive. Working with the R-matrix structure of 
equal variance and covariance improved the speed of the algo- 
rithm. Reported inefficiencies of the MARSS algorithm are 

being addressed by the R-package developers and some im- 
provements have already been implemented in newer ver- 
sions of the R-package (version 3.9 used in this study; Holmes 
et al., 2014). 

The patterns detected by DFA describe mainly the tem- 
poral variability of the time-series and the magnitude and sign 
of factor loadings determine how the common trends are re- 
lated to the original time series (Zuur et al., 2003b). By com- 
bining these two DFA outputs, we obtain a full description of 
the spatiotemporal variability of basin-wide water-quality pa- 
tterns. Another advantage of the extracted patterns is that they 
are expressed as continuous time-series that can be easily ana- 
lyzed with techniques that require complete observational re- 
cords (e.g., spectral analysis). In this sense, dynamic factor 
analysis provides data to be further tested and studied in order 
to attribute changes to drivers acting at local and regional 
scales. On the other hand, the overall methodology is ulti- 
mately unable to give information about the physical foun- 
dation of the detected patterns of change.  

Dynamic factor analysis allows the inclusion of cova- 
riates (i.e., potential explanatory variables) in the model. Pre- 
vious applications of this particularity have been mainly fo- 
cused on fisheries data in European seawaters and the in- 
fluence of climate variables such as the North Atlantic Oscil- 
lation and Sea Surface Temperature (Zuur et al., 2003a; Zuur 

and Pierce, 2004), as well as groundwater nutrient concen- 
tration in south Florida (USA) affected by explanatory varia- 
bles such as water table depth, enriched topsoil, and occur- 
rence of a leaching rainfall event (Muñoz-Carpena et al., 20 
05). The covariate data are assumed to have no error and can 
not contain missing values, though there are ways to circum- 
vent these problems (Holmes et al., 2013). Furthermore, other 
alternatives could be used instead of the specific tools and 
complementary methods for temporal and spatial analyses 
proposed in this paper. For instance, spectral and trend analy- 
ses include a myriad of possibilities (other than the multitaper 
and Yue-Pilon methods), and the user might choose a different 
method according to specific case requirements or preferences. 
This also applies to spatial clustering and regression methods. 
For our purposes, the K-means cluster seemed to suffice in or- 
der to pinpoint the main (few) groups of dominant patterns in 
our study basins, whereas the generalized least square ap- 
proach for our regression models were adequate for our spa- 
tially correlated dataset. In terms of displaying the relevance 
and distribution of common patterns in the study area, we ma- 
pped the magnitude of the resulting factor loadings in the 
three basins (Figures 5, 7 and 8). Additionally, and depending 
on the area of study, isohyets can be included to indicate com- 
mon areas where certain patterns are most relevant, such as in 
the analysis of lake water-quality by Magyar et al. (2013). 

 In general, the impact of global change on the dynamics 
of nutrient concentration in river basins usually combines re- 
gional and global factors, such as climatic events and agricul- 
tural practices, as well as local impacts, such as urban and 
industrial activities. The set of methods presented above deals 
mainly with the detection of changes in water quality and 
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the characterization of their variability across time and space 
within a region. In addition, a hint to subsequent steps of cau- 
se attribution has been provided in the comprehensive Llobre- 
gat River Basin case study.  

Overall, the implemented methodology allows the identi- 
fication and description of changes in water quality using da- 
tasets that would have been otherwise disregarded if conven- 
tional time-series techniques were to be used. We have illu- 
strated the capabilities of the individual and of the collection 
of methods presented earlier in three Mediterranean basins, 
though our approach is not limited to this region since data 
availability restrictions and environmental change detection 

challenges are found worldwide. The same methodological 
framework is also applicable in other limnological and envi- 
ronmental contexts, as it allows the study of patterns in sets of 
time-series within a region or ecosystem. Finally, the uncer- 
tainties regarding field data collection and chemical analyses 
of solutes, which were undertaken by public/governmental en- 
vironmental agencies, have been discussed elsewhere (e.g., 
Ibáñez et al., 2008). The uncertainty in our data analyses was 
not formally addressed but the extracted patterns and potential 
drivers of water quality in the three case studies were consis- 
tent with previous studies of riverine nutrient behavior in the 
three Mediterranean basins. The importance of uncertainty 
analysis and assessment in this context however warrants 
attention in future studies.   

5. Conclusions 

Some of the driving forces for global change, such as 
greenhouse gas emissions and the reach of global financial 
systems, operate at a global scale. Conversely, it also seems 
clear that several of the individual phenomena underlying en- 
vironmental change processes, such as economic activities, re- 
source use, and population dynamics, arise at a local scale 
(Wilbanks and Kates, 1999). With the improvement of com- 
putational resources and the knowledge gained through re- 
search on global change and river basins in the last few deca- 
des, present and near-future efforts should be focused on opti- 
mizing the tools and formalizing the methodology for change 
and impact assessment, from local to regional and global sca- 
les, in order to produce reliable forecasts that can assist policy 
makers and managers to ultimately secure freshwater resour- 
ces. The proposed methodological framework addresses the 
spatiotemporal complexity of water-quality patterns in river 
basins. All in all, these methods offer the possibility of simu- 
ltaneously extracting common patterns from a set of noisy and 
gap-containing time-series, providing not only a temporal in- 
terprettation of variability but also allowing researchers to 
characterize the spatial variability across basin and regional 
scales. Our methodological framework thus serves as a hypo- 
thesis-generation tool for further analyses of drivers of change 
in limnological and environmental patterns.  
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