
95 

  

ISEIS 
Journal of 

Environmental 

Informatics 

  

 

Journal of Environmental Informatics 30(2) 95-106 (2017) 

 

www.iseis.org/jei          

 

A Pseudospectral Collocation Approach for Flood Inundation Modelling 

with Random Input Fields 
 

Y. Huang1 and X. S. Qin1,2* 
 

1School of Civil & Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore 
2Environmental Process Modeling Centre (EPMC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological 

University, Singapore 637141, Singapore 

 

Received August 31, 2015; revised December 13, 2015; accepted December 28, 2015; published online August 15, 2016 

 
ABSTRACT. In this study, an efficient framework of pseudospectral collocation approach combined with the generalized polynomial 

chaos (gPC) and Karhunen-Loevè expansion (gPC/KLE) was introduced to examine the flood flow fields within a two-dimensional flood 

modelling system. In the proposed framework, the heterogeneous random input field (logarithmic Manning’s roughness) was appro-

ximated by the normalized KLE and the output field of flood flow depth was represented by the gPC expansion, whose coefficients were 

obtained with a nodal set construction via Smolyak sparse grid quadrature. In total, 3 scenarios (with different levels of input spatial 

variability) were designed for gPC/KLE application and the results from Monte Carlo simulations were provided as the benchmark for 

comparison. This study demonstrated that the gPC/KLE approach could predict the statistics of flood flow depth (i.e., means and standard 

deviations) with significantly less computational requirement than MC; it also outperformed the probabilistic collocation method (PCM) 

with KLE (PCM/KLE) in terms of fitting accuracy. This study made the first attempt to apply gPC/KLE to flood inundation field and 

evaluated the effects of key parameters (like the number of eigenpairs and the order of gPC expansion) on model performances. 
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1. Introduction 

Due to scale issues and experimental constraints, it is ge- 

nerally difficult to accurately predetermine model parameters 

that are spatially distributed, such as data over a two-dimen- 

sional computational domain (Wang and Du, 2003; Zhang el 

al., 2004; Assumaning and Chang, 2014; Yang and Yang, 2014; 

Liu and Wang, 2015). In flood modelling field, some model pa- 

rameters may be heterogeneous (i.e., opposed to identical pro- 

perties in all directions) in space due to complexity of geolo- 

gical formation, such as Manning’s roughness. This has led to 

a wide range of uncertainties (Beven, 2006; Hunter et al., 2007; 

He et al., 2012; Ahmadi et al., 2015; Li et al., 2015; Chen et al., 

2018; Shen et al., 2018). It is desirable that such parameters be 

treated as random input field(s) and then the related governing 

equations would be correspondingly turned into stochastic 

(Aronica et al., 2002; Qin et al., 2008; Huang and Qin, 2014). 

Over the past years, many stochastic approaches were de-

velopped to deal with uncertainties originated from spatial 

variability in flood inundation modelling (Aronica et al., 2002; 

Van Vuren et al., 2005; Li et al., 2009; Fan and Huang, 2012; 

Yu et al., 2013; Wang et al., 2018; Wu et al., 2018).  

The Monte Carlo (MC) approach, as the most commonly 

used approach based on sampling, can provide solutions to sto- 

chastic differential equations (e.g., 2D shallow water equations) 

in a straightforward and easy-to-implement manner (Ballio and 

Guadagnini, 2004). However, in order to obtain convergent sto- 

chastic results for flood inundation modelling under uncertainty, 

a relatively large amount of numerical simulations is required, 

especially for real-world applications; this could bring a fairly 

high computational cost (Pender and Faulkner, 2011). An alter- 

native is to approximate the random input by Karhunen-Loevè 

expansion (KLE). In the past few decades, KLE-based stochas- 

tic approaches have been widely used in mechanical, ground- 

water, flood modelling and other non-linear complex systems 

and processes to deal with heterogeneity of model parameters 

(Roy and Grilli, 1997; Phoon et al., 2002; Zhang and Lu, 2004; 

Huang and Qin, 2014a). To represent the corresponding random 

output field, a stochastic surface response model (SRSM) based 

on the polynomial chaos expansion (PCE) has been popularly 

used in various fields (Wiener, 1938; Ghanem and Spanos, 

1991; Isukapalli et al., 1998; Li and Zhang, 2007; Li et al., 

2011). To obtain polynomial chaos coefficients, the traditional 

PCE-based scheme uses Galerkin technique to solve a set of 

coupled equations involving the random normal variables 

(RNVs) from KLE (Shi et al., 2009). The probabilistic collo- 

cation method (PCM) is another type of PCE-based method and 
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relatively easier to implement. It is advantageous in the sense 

that it can obtain PCE coefficients via an inverse matrix scheme 

and the related methodology would not be influenced by the 

complexity (non-linearity) of the original numerical modelling 

systems (Li and Zhang, 2007; Cai et al., 2009; Zhao et al., 2009; 

Li et al., 2009; Huang et al., 2010; Xiu, 2010).  

In recent years, coupled implementation of PCM and KLE 

(PCM/KLE) has been widely used to deal with problems of un- 

certainty propagation for numerical models with random input 

fields (Li and Zhang, 2007; Shi et al., 2009; Huang and Qin, 

2014b). The general framework of PCM/KLE involves decom- 

position of the random input field by KLE and representation 

of the output field by PCE, by which the complicated stochastic 

differential equations are transformed into easier-to-solve de- 

terministic equations. The previous applications of PCM/KLE 

were mainly reported in the fields of ground water modeling 

and structural modelling systems (Zhang and Lu, 2004; Li and 

Zhang, 2007; Li et al., 2009; Shi et al., 2010). For example, Li 

and Zhang (2007) firstly proposed to use KLE to represent the 

log transformed hydraulic conductivity field in a porous media, 

and apply PCM to determine the coefficients of the PCE by 

solving the hydraulic head fields for different sets of colloca- 

tion points. The coupled application of PCM/KLE accurately 

reproduced the statistics of flow field from the corresponding 

MC simulations using a limited number of numerical simula- 

tions. Later on, Shi et al. (2010) used PCM/KLE to study nonli- 

near flow in heterogeneous unconfined aquifers, with conside- 

ration of two types of random inputs that were either correlated 

or uncorrelated. More recently, Huang and Qin (2014b) made 

a preliminary test to apply PCM/KLE to quantify uncertainty 

propagation from a single 2D random field of floodplain hyd- 

raulic conductivity.  

To ensure the coefficient matrix of PCE healthy, the PCM-

related methods mostly rely on the regression-based modified 

collocation approach or the matrix inversion approach (Huang 

et al., 2007; Xiu, 2010; Fan et al., 2015). The former one aims 

to have a greater number of collocation points (e.g. 2 or 3 times 

of the numbers of PCE terms) which would bring additional 

amount of numerical simulations (Isukapalli et al., 1998; Zheng 

et al., 2011). The latter one focuses on selecting efficient collo- 

cation points to build up full-rank multi-dimensional polyno- 

mials, where the efficiency of such a process may be affected 

by the increasing randomness of KLE approximation for the 

input field (Shi et al., 2010). In addition, the matrix inversion 

approach could not guarantee symmetry of the distribution of 

the collocation points with respect to the origin (Li et al., 2011). 

Hence, an alternative way of matrix inversion approach is de- 

sired to ensure a healthy matrix of PCE coefficients. 

As an alternative to PCM, a pseudospectral collocation 

approach, firstly proposed by Xiu and Krniadakis (2002), has 

been extensively applied in physical and engineering fields 

involving stochastic numerical modelling (Xiu and Karniada- 

kis, 2003; Xiu and Hesthaven, 2005; Xiu, 2010). It was an 

extended version of generalized polynomial chaos (gPC) me- 

thod based on the stochastic collocation method. Later on, Lin 

and Tartakovsky (2009) applied this approach coupled with 

KLE (gPC/KLE) to solve numerical modelling of three-dimen- 

sional flows in porous media involving random heterogeneous 

fields. Another example can be found in Yildirim and Karnia- 

dakis (2015), where gPC/KLE was applied in stochastic simu- 

lations of ocean waves. The gPC/KLE method is another SR- 

SM similar to PCM/KLE, of which the coefficients are the 

approximation of exact gPC coefficients and obtained by nodal 

construction via Smolyak sparse grid quadrature and a series  

of repetitive numerical executions for these nodes (Smolyak, 

1963; Xiu, 2007; Zhao et al., 2010). Nevertheless, this coupled 

method has not been applied in the field of uncertainty quan-

tification of flood inundation modelling.  

Thus, in this study, we aim to introduce the gPC/KLE me- 

thod and test its applicability in flood inundation modelling 

with random input fields. A numerical solver of flood inun- 

dation modelling (i.e., FLO-2D Pro) will be embedded into the 

proposed gPC/KLE framework for a hypothetical case. Then, 

the accuracy and efficiency of this approach will be examined 

under the possible effect of two intrinsic parameters of this 

SRSM, including the number of eigenpairs and the order of 

gPC expansion. The modelling domain will be involved with 

different levels of spatial variability, which is characterized by 

a random Manning’s roughness field with a lognormal distri- 

bution. We will also compare the performance of gPC/KLE 

with PCM/KLE in reproducing the statistics of the highly non- 

linear fields of flood flows. 

2. Mathematical Formulation 

2.1. 2D Flood Problem Formulations  

In this study, we focus on a 2D unsteady-inflow flood 

inundation modelling problem. The related stochastic gover- 

ning equations can be described as (O'Brien et al., 1993; FLO-

2D Software, 2012; Huang and Qin, 2014): 

 

 
( )
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x
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where t and r are the time [T] and hydraulic radius [L]; I is 

excess rainfall intensity; So is the bed slope; x (x, y) represents 

the spatial coordinate within a 2D rectangular modelling do-

main; V represents the velocity averaged in depth for each 

specific directions x [L/T]; g is the gravitational acceleration 

[L/T2]; and all of these above parameters are assumed as de- 

terministic during modelling process. In this study, we define 

the floodplain Manning’s roughness n(x) as a random input 

with a specific stochastic distribution related to 2D spatial co- 

ordinate x, and place our concern on the output field of flow 

depth h(x). The h(x) is affected by the input random field n(x) 

and hence would also be in a stochastic distribution. With these 

assumptions, equations (1a) and (1b) are transferred into sto- 

chastic differential equations (SDEs) and their solutions (i.e., 

h(x)) would be described by probability distributions or stocha- 

stic moments, including mean and standard deviation (STD). 
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2.2. Approximation of Random Input Field by Normalized 

Karhunen-Loevè Expansion (KLE)  

In this study, for a 2D modelling domain, we define ω  

 and x  D, where  and D are the probabilistic space and 

the measure of the modelling rectangular area, respectively. Let 

Z (x, ω) = ln n(x) be spatially second-order stationary random 

with mean µZ (x) and fluctuation Z′(x, ω), showing as: Z (x, ω) 

= µZ (x) + Z′(x, ω), where Z′(x, ω) represents a spatial fluctu- 

ation according to its bounded, symmetric, and positive cova- 

riance function CZ(x, x′) = <Z’(x, ω) Z’(x′, ω)>. The covariance 

function can be represented by KLE as (Ghanem and Spanos, 

1991): 
 

   1 2 1 2

1

1 2

( , ) ,  ( 1, 2, ..., ;  

, )

Z m m m

m

C f f m

D






  



x x x x

x x

 (2)
 

 

where λm and  mf   mean eigenvalues and eigenfunctions, 

which can be obtained by solving the Fredholm equation (Gha- 

nem and Spanos, 1991). Then, the random input Z(x, ω) can be 

represented as: 
 

1/2

1

( , ) ( ) ( )( ) ( )Z m m

m

Z f    




 x x x  (3) 

 

As the random input Z is dependent on the space D, use of 

normalizations (dimensionalizations) are necessary for redu-

cing complexity. For instance, the following normalizations  

are made in the x direction: (i) normalized length x   

/ [0,1]xx L   (where Lx is the length of the domain at x 

direction) and its corresponding normalized correlation length 

1 / xL  , (ii) normalized eigenvalues 2/ [0, ]xL     

(where   is the STD of Z), (iii) normalized eigenfunctions

( ) ( ) xf x f x L ; hence, we can obtain ( ) ( )f x f x  . 

For y direction, similar normalizations can be made. Sub-

sequently, normalization for a 2D domain can be obtained 

based on independent normalizations for both directions. More 

details about the normalization of KLE can be referred to 

Zhang and Lu (2004) and Huang and Qin (2014a). A norma-

lized KLE approximation of Z with finite eigenpairs can be 

expressed as follows (Zhang and Lu, 2004): 
 

       
1

,

M

Z m m

m

Z g   


  x x x  (4) 

 

where ( )mg  represent eigenpairs (  , ( )f  ); ( )m  is the mth 

independent standard normal random variable (NRV). Accor- 

ding to the theory of KLE, 2

1
/ 1Z

m
 




 . In order to obtain 

a more accurate approximation of a certain input random field, 

more eigenpairs should be kept in the truncated expression of 

( )Z  , and then more energy can be reserved within the random 

field. However, this would require an additional computation 

demand (Roy and Grilli, 1997; Shi et al., 2009).  

Figure 1 demonstrates how the normalized eigenvalues de-

cay of two different normalized correlation lengths (i.e., 0.5 

and 1), and their corresponding cumulative 2/ Z  are close to 1 

when more and more eigenpairs are kept in the approximation 

and the normalized correlations length is the key factor to 

determine the decaying rate of eigenvalues and its corres- 

ponding cumulative rate. In applying KLE to the stochastic 

flood modelling system, each KLE item of Z(·) introduces an 

independent NRV. Therefore, the number of KLE items should 

be controlled within a suitable range; meanwhile, the energy of 

KLE approximation of Z(·) would need to be kept sufficient 

during the modelling process. As our domain of flood model- 

ling system is square-grid, we define 1 2    in the rest part 

of this study, and place more concern on how to represent the 

Manning’s roughness random field with a suitable . In addi- 

tion, in a 2D flood modelling system, the spatial complexity in 

x- and y-directions are generally different from each other, 

which may require different number of the eigenpairs in x- and 

y-directions, respectively (i.e., Mx and My). 
 

 
 

Figure 1. (a) Series of finite   for  = 0.5 and 1, and (b) 

their corresponding cumulative sums for the 2D modelling 

domain. Note: the same 
 

level is selected for both coordi-

nates of the domain 
 

For input parameterization, KLE provides an alternative to 

represent the heterogeneous fields by involving a finite number 

of eigenpairs shown in Equation (4). For Gaussian inputs fully 

characterized by mean and STD, KLE could provide an optimal 

approximation of the Gaussian processes with/without correla- 

tion between random variables. For non-Gaussian inputs, para- 

meterization would be more complicated for KLE and it is 

beyond the scope of this study (Xiu, 2010). More references on 

KLE approximation of non-Gaussian inputs can be referred to 

Phoon et al. (2002), Schwab and Todor (2006), and Li et al. 

(2007). In this study, we assume a logarithmic Manning’s rou- 

ghness to be Gaussian input and apply KLE to approximate its 

random field. 

 

2.3. Construction of gPC Approximation for Output Field  

A combined operation of gPC expansion for the approxi- 

mation of the output field and Smolyak sparse grid (SSG) qua- 

drature for nodal set construction was firstly proposed by Xiu 

and Karniadakis (2002) to deal with stochastic numerical mo- 

delling system with a high dimensionality of randomness (Xiu, 

2007). It has been proved that a low-level gPC expansion for 

the output fields could reach a high accuracy in terms of gPC 

simulations (Marzouk et al., 2007; Xiu, 2007; Jakeman et al., 

2010). 
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2.3.1 Generalized Polynomial Chaos (gPC) 

After decomposition of random field of logarithmic Man- 

ning’s roughness as ( ; )Z x ζ , the stochastic flood modelling 

system depends on a vector of spatial input variables 2[0,1]x , 

and an M-dimensional vector of NRVs ζ { }M M
m 1mζ ,   

1M  . However, we still have little knowledge on the output 

field of interest (i.e., stochastic moments of flood flows) unless 

we could solve its corresponding SDEs (i.e., Equation (1)); 

therefore, we try to use gPC expansion to establish the random 

functions of the output field. First, let index set 1{ }M
m mj j   

and random space Nth-order M-dimensional gPC approxima- 

tion of flood flow field (i.e., maximum flow depth field) be 

expressed as (Xiu and Karniadakis, 2002): 

 

     
1

ˆ ; ,

P

N
M j j

j

M N
h a P

M
 



 
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 
x x  (5) 

 

where ( )j  represents the jth orthogonal M-dimensional poly- 

nomial basis, product of a sequence of corresponding univari- 

ate polynomials ( )m m  in each directions of m , 1 m M  , 

which can be expressed as: 
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1
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

 Ψ ζ

M

j j jM M m

m
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The expansion coefficients can be obtained as (Xiu and 

Karniadakis, 2002): 

 

         
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Ej j j j
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where 2E[ ]j j  ψ are the normalization constants of the ortho- 

gonal basis; ρ is the probability density function: 
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where Γ is a M-dimensional random space. From Equation (5), 

( )ja  and ( )j Ψ  are in pairs but independent to each other. 

Furthermore, another approximation is made for the exact gPC 

expansion coefficients 1{ }P
j ja  as (Xiu and Karniadakis, 2002; 

Xiu, 2007): 
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where
q
ζ and qw are the qth quadrature node and its corre- 

sponding weight of an integration rule in the M-dimensional 

random space Γ , respectively. Herein, sampling in Γ is a cru- 

cial step in order to get convergent and efficient approximation 

of gPC expansion coefficients. In this study, 
q
ζ used in KLE 

approximation of Manning’s roughness are defined as the stan- 

dard NRVs and the best polynomials basis for them are normal 

Hermite orthogonal polynomial basis to construct the smooth 

gPC expansion for the output field h(·). 
 

2.3.2 Construction of Nodal Sets: Smolyak Sparse Grid (SSG) 

Quadrature 

As a crucial step in gPC, constructing multi-dimensional 

nodal sets can be done by several ways, such as full tensor pro- 

duct and Smolyak sparse grid quadrature (Smolyak, 1963; Xiu, 

2010). The full tensor product is a more straight-forward way, 

and its one-dimensional (1D) rule can be shown as (Smolyak, 

1963): 
 

     
1

, 1, ,
m

m

q

q i i i i
m m m m m

i

U h h w h d m M  




     (9) 

 

The corresponding 1D nodal set is defined as: 

 

 1 1Ξ Γmq
m m mζ , ..., ζ 

 
 

For M-dimensional random space Γ , its full tensor product 

quadrature can be described as (Smolyak, 1963): 
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where ir (r = 1, 2, …, M) represents the rth node index; qr (r = 

1, 2, …, M) represents the number of nodes in the rth dimension 

and defined by the node indexes. Obviously, if qr ≡ q (r = 1, 

2, …, M), the total amount of full-tensor product nodes Q 

would be qM. As our study involves a high-dimensionality of 

KLE randomness, the so-called ‘curse of dimensionality’ wou- 

ld probably be caused by the full tensor product quadrature. 

Therefore, Smolyak sparse grid (SSG) quadrature, which is 

specific for (i.e., gPC coefficients) M-dimensional random spa- 

ce, can be described as (Smolyak, 1963): 
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where k is the level of sparse grid integration; and M represents 

the random dimensionality of the uncertainty (i.e., the total 

dimensionality of KLE). The SSG nodal set is defined as (Smo- 

lyak, 1963): 
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Ξ Ξ Ξ
1 MM i i
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In this study, we construct SSG nodal set based on the 

delayed Genz-Keister basis sequence, which is a full-symme- 

tric interpolatory rule with a Gauss weight function. For more 

technical details, readers are referred to Genz and Keister 

(1996). Figure 2 demonstrates a comparison of a two-dimen- 

sional (M = 2) SSG grid with an accuracy level at k = 3 and the 

corresponding full tensor grid, both of which are based on 1D 

normal Gauss-Hermite grid with q = 9 quadrature points and 

polynomial exactness 15b  in each dimension.  

Figure 2. Two nodal constructions based on the Gauss-

Hermite grids with delayed Genz-Keister basis sequence: (a) 

Smolyak sparse grid (SSG), and (b) full tensor grid. 

 

2.4. Pseudo-spectral Stochastic Collocation Approach Bas- 

ed on gPC/KLE in Flood Inundation Modelling  

The framework of pseudo-spectral stochastic collocation 

approach (gPC/KLE) for flood modelling system involves the 

following steps: 

(i) Identify the prior distribution (i.e. mean and variance) 

of Z = lnn;  

(ii) Run a set of Monte Carlo simulations via a flood nu- 

merical solver, e.g. FLO-2D Pro (FLO-2D Software 2012) and 

obtain the mean and STDs of the flood flow field as the ben- 

chmark for the proposed gPC/KLE results; 

(iii) Choose  for the specific scenario and the M eigen- 

pairs, M = Mx × My, where Mx and My are the items selected in 

x and y directions, respectively. According to Huang and Qin 

(2014b), the optimal settings of the above parameters are: 

[0.1, 5] and , [2,4]x yM M  ; 

(iv) Construct a set of SSG nodal sets 1{ }q Q
qζ  by k-level 

(starting from k = 1) SSG quadrature, and then transform them 

into the corresponding random field of Manning’s roughness  

as 
1{ ( ; )}q Q

i qZ x ζ over the 2D modelling domain; substitute 

them into Equation (1a-b), which could be solved by the flood 

numerical solver; finally, build up a matrix of the correspond-

ding gPC expansion coefficients 1ˆ{ }M
j ja  , which is the sto-

chastic surface response model; 

(v) Select a set of P collocation points for a given order N; 

build up their corresponding   1{ }P
j jΨ ζ and calculate the flood 

-flow mean and STD based on the following equations (Li and 

Zhang, 2007; Shi et al., 2009): 
 

Mean:  1
ˆ ˆh a x  (13a) 

STD:    2 2

2

P

j jh
j

a



  ψx x  (13b) 

 

(vi) Evaluate the efficiency and accuracy of gPC/KLE. To 

quantitatively assess the accuracy of gPC approximation of 

flood flow field, the root means squared error (RMSE) and coe- 

fficient of determination (R2) are used (O'Connell et al., 1970; 

Karunanithi et al., 1994; Yu et al., 2014). 

(vii) Repeat the operation from step (ii) to step (v) until an 

optimal SRSM is found. 

The distinct advantage of this framework is that, unlike 

PCM/KLE, it establishes the PC expansion matrix not by sol- 

ving its corresponding Vandermonde matrix, but by using an 

approximation based on another projection via SSG quadrature.  

There are a number of sensitive parametric factors that 

would affect the efficiency of implementing the mentioned me- 

thod. For KLE approximation of input fields, the normalized 

correlation length and the number of KLE items are sensitive 

parameters. For PCE approximation of the output field, the 

Smolyak’s sparse grid (SSG) level, the order of PCE expansion, 

and the construction rule for SSG nodes (e.g. full tensor cons- 

truction, Gauss-Hermite rule, or Genz-Keister rule) would no- 

tably influence the results. In addition, some extrinsic factors 

may also affect the efficiency of gPC/KLE application, such as 

the spatially variability, grid size, inflow hydrograph and other 

boundary conditions. In this study, we focus on two intrinsic 

parameters (including the number of KLE items and the order 

of gPC expansion) and one extrinsic factor (i.e. spatial varia- 

bility) as they are considered most sensitive based on our test. 

Other potentially sensitive parameters could be considered in 

further studies.  

3. Illustrative Example 

3.1. Configuration of Study Case 

A simple 2D flood inundation case (with an area of 228 m2) 

under the dual effect of unsteady-inflow and rainfall is intro- 

duced (FLO-2D Software, 2012). The peak discharge for the 

unsteady-inflow hydrograph is 393.55 m3/s and the total rain- 

fall is 236.2 mm. The study area is a typical conically-shaped 

desert alluvial with multiple distributary channels and is discre- 

tized into 31  33 rectangular domain. In this study, X (in x-

direction) and Y (in y-direction) are denoted as the normalized 

coordinates (with 0  X, Y  1). More details about this study 

case can be referred to FLO-2D Software (2012) and Huang 

and Qin (2014b). Three modeling scenarios (i.e. Scenarios 1, 2 

and 3) are designed to validate the introduced gPC/KLE app- 

roach, which are of different variances of the 2nd-order statio- 

nary Gaussian random fields for logarithmic Manning’s rough- 

ness. Scenarios 1, 2, and 3 have the same mean (i.e. <Z> =    

-3.0), but their variances ( 2
Z ) are set to 0.09, 0.01 and 0.25, 

respectively. Due to the existence of multiple distributary chan- 

nels within the 2D modelling domain, the geological formation 

leads to stochastic asymmetry of random-input distributions 
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(i.e., Manning’s roughness); as a consequence, the complexity 

of the random inputs in x-direction is higher than that in y-

direction. Therefore, 12 SRSMs with different levels of comp- 

lexities (i.e. with different eigenpairs used in x and y directions) 

are designed to tackle the random fields. The statistics, espe- 

cially the standard deviation (STD) of the flow field simulated 

by the above established SRSMs, are compared with those 

obtained from MC simulations. To ensure convergence, 5000, 

5000, and 10,000 runs for Scenarios 1, 2 and 3, respectively, 

are adopted. The MC simulation results are considered as ‘true’ 

moments and taken as the benchmarks. Table 1 shows the SR- 

SMs used in this study. They include: (i) 6 gPC/KLE SRSMs 

(M1 to M6) for Scenario 1, (ii) 3 (M7 to M9) for Scenario 2, 

(iii) 3 SRSMs (i.e., M10 to M12) for Scenario 3, and (iv) 2 

SRSMs (i.e., M13 and M14) for Scenario 1, which are based 

on PCM/KLEs and used to compare with SRSMs M1 and M2. 

The first 12 SRSM models (M1-M12) are shortlisted based on 

performances of a large number of SRSMs (more than 200) 

tested under each scenario.  

 

3.2. Effect of Parameters Related to the gPC/KLE Appro- 

ximations 

In Scenario 1, the coefficient of variance for the random 

field is σn / <n> = 0.307. The SSG level and the normalized cor- 

relation length are set as 3rd and 0.5, respectively. These settings 

are based on tests using different SSG levels and correlation 

lengths. The definitions of these parameters are referred to 

Chow et al. (1988). After a few tests, the 3rd-order gPC/KLE 

model with the 3rd-level SSG (M2) is considered as the best 

SRSM for Scenario 1. Figure 3 shows two realizations of the 

random field of Manning’s roughness corresponding to: (a) the 

15th SSG node, and (b) the 35th collocation point for the 3rd-

order gPC/KLE approximation of the flow depth field with the 

3rd-level SSG (M2), respectively. The two realizations are from 

two different collocation point systems.  
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Figure 3. Example realizations of random field of Manning’s 

roughness over the modelling domain under Scenario 1 at (a) 

the 15th SSG node, and (b) the 35th collocation point of the 

3rd-order gPC/KLE with the 3rd-level SSG, respectively. 

Note: The modelling domain is divided into 31 (in X-direc-

tion) × 33 (in Y-direction) grid elements; the 2D covariance 

function for the random field n(x) corresponds to the norma-

lized correlation length = 0.5 and M = 6 KLE items. 
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Figure 4. Comparison of statistics of the flow depth between 

the gPC/KLE and MC methods: (a) mean, and (b) STD. 

Note: The grey contour map is the result from MC simulation 

and the solid lines are from the 3rd-order gPC/KLE model 

with the 3rd-level SSG construction (M2) for Scenario 1. 

Table 1. Fuzzy Parameters of Economic Data ($/m3) and Seasonal Flows (103 m3). 

Type Scenario SRSM Ƞ M (Mx × My) k N Q P 

gPC/KLE 1 M1 0.5 4 (2 × 2) 3 3 81 - 

M2 0.5 6 (2 × 3) 3 3 257 - 

M3 0.5 8 (2 × 4) 3 3 609 - 

M4 0.5 9 (3 × 3) 3 3 871 - 

M5 0.5 6 (2 × 3) 3 2 257 - 

M6 0.5 6 (2 × 3) 3 4 257 - 

2 M7 0.5 4 (2 × 2) 2 2 33 - 

M8 0.5 4 (2 × 2) 2 3 33 - 

M9 0.5 4 (2 × 2) 2 4 33 - 

3 M10 0.5 8 (2 × 4) 3 2 609 - 

M11 0.5 8 (2 × 4) 3 3 609 - 

M12 0.5 8 (2 × 4) 3 4 609 - 

PCM/KLE 1 M13 0.5 6 (2 × 3) - 2 - 28 

M14 0.5 6 (2 × 3) - 3 - 84 
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Figure 4 shows the simulated mean and STD of flood flow 

fields from M2 and MC simulations. M2 requires only 257 nu- 

merical executions based on the nodal set from SSG constru- 

ction; it can closely capture the statistics of the simulated depth 

field from MC with 5,000 runs. For instance, the mean and STD 

of flow depth at grid (31/31, 10/33) (the peak values within the 

entire domain) simulated by M2 are 1.8255 and 0.1616 m, 

respectively; those from MC are about 0.0109 and 3.32% lower 

(i.e. 1.8253 and 0.1564 m, respectively). For all gPC/KLE (M1 

to M12) results, the means are found consistently close to those 

from MC. Hence, in the followed discussions, the performance 

of STD will be focused on. In the next two sections, we try to 

examine the effect of the three parameters on the prediction 

performance. They include the number of eigenpairs, the order 

of gPC/KLE approximation, and the spatial variability.  
 

3.2.1. Effect of the Number of Eigenpairs Kept for Normalized 

KLE 

To test the effect of the number of eigenpairs kept in the x- 

and y- directions of the rectangular modelling domain (i.e., Mx 

and My), 4 gPC/KLE models (i.e. M1 to M4) are designed with 

4, 6, 8 and 9 eigenpairs (M = Mx  My), which could help keep 

59.3, 65.4, 68.4, and 72.0% energy within the random Man-

ning’s roughness field, respectively. To obtain the correspond-

ding gPC/KLE approximation for the output field of flood-flow 

depths, four SSG nodal sets (with 81, 237, 609 and 871 nodes) 

are constructed and then the corresponding random Manning’s 

roughness fields are obtained by involving a series of numerical 

executions via FLO-2D Pro solver. The results at six locations, 

with X being 10/31, 17/31 and 30/31 and Y being 10/33, 17/33 

and 30/33, are chosen for analysis; these locations are from the 

upstream, middlestream and downstream in both x and y di-

rections.  

Figures 5(a) and 5(b) present the RMSE and the R2 of 

STDs fitting for the six locations, respectively. Both the errors 

and the determination coefficients are plotted against the num- 

ber of eigenpairs (corresponding to the models M1-M4). Firstly, 

it can be found that the RMSEs in all the locations would 

decrease slightly and then increase with the increase of the 

number of eigenpairs (> 6), and the trend of R2 is opposite. 

When the number of eigenpairs is 6 (i.e. M2), the RMSE and 

R2 achieve their best values for all profiles. This may because 

the selection of ratio of My to Mx for M2 (i.e. My/Mx = 3/2 = 1.5) 

is more appropriate for this specific modeling domain. Secon- 

dly, the performance of different models shows large variations 

along different profiles. For the x coordinate, the highest accu- 

racy of STD fitting under the same model is found for the pro- 

file X = 30/31 where the average RMSE and R2 (for M1-M4) 

are 0.003 m and 0.998, respectively; the poorest performer is 

found at profile of X = 17/31, where RMSE ranks in the mid-

dle (i.e. 0.009 m) and the R2 ranks the lowest (i.e. 0.782); the 

profile X = 10/31 shows better performance than X = 17/31, 

but the error becomes more significant when the number of 

eigenpairs is above 6. For the y coordinate, the profile Y = 

30/33 also shows a better result (i.e. average RMSE is 0.004 

and average R2 = 0.930 over different numbers of eigenpairs) 

than others; while those at Y = 10/33 and Y = 17/33 illustrate 

similar inferior performances. The notable spatial variations in 

terms of STD fitting may because of the existence of multiple 

distributary channels in the 2D modelling domain (as shown in 

Figure 4). For instance, the profiles of X = 30/31 and Y = 30/33 

are characterized by almost single channel conditions, and 

profiles along the upper and middle parts of the domain show 

much higher complexity of topographical and morphological 

conformations. From Figure 4, the flow depth contours along 

the y direction are more heterogeneously distributed than those 

along the x direction.  
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Figure 5. Evaluation of STD fitting in terms of (a) RMSE 

and (b) R2 for gPC/KLE with different numbers of eigenpairs 

at six locations of concern. Note M1, M2, M3 and M4 are 

built up with 4, 6, 8 and 9 eigenpairs, respectively. 
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Figure 6. Comparison of STDs of flow depths simulated by 

the 2nd-, 3rd-, and 4th-order gPC/KLE models and MC 

simulation along the cross-section profiles of (a) X = 30/31 

and (b) X = 10/31, respectively. 
 

3.2.2. Effect of the Order of gPC Expansion  

To explore the effect of the order (N) of gPC expansion on 

the efficiency of approximating the highly nonlinear flows over 

the rectangular domain, three gPC/KLE models including M5 

(2nd-order), M2 (3rd-order), and M6 (4th-order) are established. 

M5 and M6 are set up with the same level of SSG construction 

as M2. Figure 6 compares the STDs of the flow depths in 

Scenario 1, simulated by the 2nd, 3rd, 4th-order gPC/KLE models 

and the MC method along the cross-section profiles of X = 

30/31 (single channel) and X = 10/31 (multiple channels), res- 

pectively. It is indicated that, for the single-channel condition, 

M5, M2, and M6 reproduce almost identical STD results as the 

MC method (i.e. the corresponding RMSE and the R2 are 0.001 

m and 0.999, respectively). For multiple-channel condition, 

Figure 6(b) shows that when STD of the flow depth is below 
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0.02 m, all of the three orders of gPC/KLE models would lead 

to similar results as obtained from MC simulation; whereas, for 

the high peak flow depths, the 2nd- and the 3rd- order models 

(i.e. M5 and M2) outperform the 4th-order one (i.e. M6). For 

instance, the simulated STDs in grid element (10/31, 10/33) are 

0.0235, 0.0251, 0.0343 m by the 2nd-, 3rd-, and 4th-order models, 

respectively. 
 

3.2.3. Effect of Spatial Variability 

In this section, the effect stemming from the spatial varia- 

bility is analysed. Scenarios 1 to 3 are designed with 2
Z levels 

at 0.09, 0.01, and 0.25, respectively. The result from Scenario 

1 has been demonstrated in the previous sections. For Scenario 

2, based on our tests on various combinations, the following 

optimal parameter settings are employed: (i) the coefficients 

matrix of gPC/KLE is built up based on the 2nd-level SSG; (ii) 

the correlation length is set as 0.5; and (iii) the number of eige- 

npairs are selected as M = Mx  My = 2  2 = 4. MC simulations 

are based on 5,000 runs of numerical solver for benchmarking. 

Under Scenario 2, 3 gPC/KLE models with 3 different orders 

(M7, M8, and M9 as listed in Table 1) are established to gene- 

rate the flood flow field.  

Figure 7 shows the comparison of STDs of flow depths si- 

mulated by the 2nd-, 3rd-, and 4th-order gPC/KLE models (M7, 

M8, and M9) and MC simulations for Scenario 2. In total, 4 

different profiles within the modeling domain are selected, 

including X = 10/31, X = 30/31, Y = 10/33, and Y = 30/33. It 

appears that the performances of STD simulations are satis- 

factory, except for somewhat fluctuations of accuracy from 

models with different orders. For example, the RMSE of STD 

fitting for M7, M8, and M9 along the profile X =10/31 are 

0.0036, 0.027 and 0.002 m, respectively; and the corresponding 

R2 are 0.9547, 0.9624 and 0.9442. Comparing with the perfor- 

mances of models in Scenario 1, those in Scenario 2 are found 

comparable. For example, the average RMSE value over the 

2nd-, 3rd-, and 4th-order gPC/KLE models (i.e. M5, M2, and M6) 

along the profile X =10/31 in Scenario 1 is about 0.00175 m 

lower than that in Scenario 2; the average R2 of the three mo- 

dels in Scenario 1 (i.e. 0.954) is slightly higher than that in 

Scenario 2 (i.e. 0.949). This demonstrates that 2 eigenpairs for 

each coordinate is sufficient to reflect the spatial variability for 

Scenario 2. Hence, the gPC/KLE model can be constructed 

using a lower number of SSG nodes (i.e. lower computational 

requirement) for less complex spatial conditions. 

Figure 8 shows the simulated STDs of the flow depths by 

gPC/KLE models with three orders (2nd for M10, 3rd for M11, 

and 4th for M12) for Scenario 3. The number of SSG nodes is 

set as 609 and the MC simulations are based on 10,000 runs. 

Similar to M7 - M9, the STDs from M10 - M12 along the profile 

of X = 30/31 (i.e. single channel) are almost identical. However, 

for the profiles with a higher complexity (e.g. more than 3 

channels as shown in Figures 8a and 8d), higher errors of fitting 

are found compared with those from Figures 7a and 7d. For 

example, along the profile X = 10/31, the deviation of the simu- 

lated STD would increase significantly (i.e. RMSE increases 

from 0.0108 to 0.326 m, and R2 decreases from 0.892 to 0.872) 

with the increase of order (from 2nd to 4th). Particularly, the 

errors of STD fitting on peaks have larger deviations. For exa- 

mple, at grid element of (10/31, 10/33) for Scenario 3 (as 

shown in Figure 8a), the STDs are 0.0051, 0.0189, and 0.0696 
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Figure 7. Comparison of STDs of flow depths simulated by 

the 2nd-, 3rd-, and 4th-order gPC/KLE and MC simulations for 

Scenario 2 along the cross-section profiles of: (a) X = 10/31; 

(b) X = 30/31; (c) Y = 10/33; (d) Y = 30/33. 
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Figure 8. Comparison of STDs of flow depths simulated by 
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gPC/KLE and MC methods for Scenario 3 along the cross-

section profiles of: (a) X = 10/31; (b) X = 30/31; (c) Y = 

10/33; (d) Y = 30/33. 

m higher than that from MC simulation (i.e. 0.0603 m) for M10, 

M11, and M12; while for Scenario 1 (as shown in Figure 6b), 

the differences are 0.00005, 0.0053 and 0.0198 m for M5, M2, 

and M6, respectively. Hence, the spatial variability associated 

with input random field is linked with the fitting performance 

of the gPC/KLE model. Generally, the greater the variability, 

the higher the fitting error. It is also noted that, at the same 2
Z  

level, the order of gPC approximation could also cause consi- 

derable effect on fitting performance. This implies that the 

order can be taken as a more operable tool in fine-tuning the 

gPC/KLE model to achieve a higher accuracy, compared with 

the number of eigenpairs and the SSG levels; this is because 

the change of order would not bring additional runs of the 

numerical solver (i.e. FLO-2D). 
 

3.3. Further Discussions 

To further demonstrate the advantage of the introduced 

method, we compared gPC/KLE with another popular probabi- 

listic collocation method, namely PCM/KLE. PCM/KLE has 

been applied to deal with the field of 2D flood modelling 

system with nonlinear flood flow under uncertainty (Huang and 

Qin 2014b). Herein, the 2nd- and 3rd-order gPC/KLE models (i.e. 

M1 and M2) under Scenario 1 are used for comparison. Corre- 

spondingly, the 2nd- and 3rd-order PCM/KLE models (i.e. M13 

and M14 as shown in Table 1, respectively) are established 

under the same scenario, with 6 eigenpairs being adopted and 

the normalized correlation length being set as 0.5. Figure 9 

presents the simulated STDs from two models (i.e. M1 vs. M13 

and M2 vs. M14) and MC simulations at different locations 

within the modelling domain.  
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Figure 9. Comparisons of STDs of flow depths between 

gPC/KLE and PCM/KLE models: (a) the 2nd order modelling 

along profile X = 30/31; (b) the 2nd order modelling along 

profile Y = 30/33; (c) the 3rd order modelling along profile X 

= 30/31; (d) the 3rd order modelling along profile Y = 30/33. 

 

Figures 9a and 9b illustrate the 2nd-order comparison. For 

simple channel condition (like single channel), the STD from 

PCM/KLE (M13) is slightly higher than those from gPC/KLE 

and MC. For more complicated profile (like multiple channels 

at Y = 30/33), the PCM/KLE model has a few obvious over- 

estimations at some peaks. Overall, the RMSEs for M13 and 

M1 are 0.0027 and 0.0019 m, respectively. From Figures 9c 

and 9d, the STD reproductions from PCM/KLE show a much 

higher overestimation for both single and multiple channel 

conditions. For example, the STD values at the grid element 

(17/31, 30/33) simulated by MC, gPC/KLE and PCM/KLE are 

0.0183, 0.0176 and 0.216 m, respectively. The reason may be 

that, building up the 3rd-order full-rank matrix of the Hermite 

polynomials requires an efficient selection of collocation points 

from the roots of the 4th-order Hermite polynomial [ 3 6 , 

3 6 , 3 6 , 3 6 ]    . However, such a root set does not 

include ‘0’ that captures the highest probability region for 

Gaussian random field, which could lead to an inferior perfor- 

mance of the 3rd-order PCM/KLE compared with the 2nd-order 

one (Li and Zhang, 2007; Li et al., 2011). 

Comparing with PCM/KLE, a significant advantage of 

gPC/KLE is that, to obtain an accurate gPC/KLE approxima- 

tion of flood flow field (in Equation 5), we can express the ran- 

dom input(s) using the analytical polynomial formula as shown 

in Equation 6. Subsequently, the gPC expansion coefficients 

1{ }P
j ja  (in Equation 7) are obtained based on a finite number 

of fixed values of SSG nodes (i.e. roots of higher order poly- 

nomial). This treatment can effectively avoid the difficulty in 

applying the inverse matrix approach (as adopted in a normal 

PCM/KLE framework) to complex problems with a high di- 

mension of randomness and a large number of KLE items. Such 

a difficulty is brought about from construction of a full-rank 

Vandermonde-like coefficient matrix (i.e. a set of given-order 

orthogonal polynomials) and computation of its inverse (Xiu, 

2007; Li et al., 2011). Hence, a relatively high veracity in repro- 

ducing the statistics of the non-linear flood flow field can be 

achieved at a much lower computational cost compared with 

traditional MC simulation. For instance, M3 is built up with 

257 numerical executions of FLO-2D solver. The STD simu- 

lated from M3 well reproduced the result from MCS with 5,000 

numerical executions. The computational cost has saved by 

about 95%.  

The spatial variability in the x and y directions would bring 

different effects on the predicted STDs of the flood flows. This 

is especially true for those multi-channel conditions (i.e. asym-

metric geological conditions), which is common in real flood 

modeling process. To tackle such a complexity, it is necessary 

to use different numbers of eigenpairs for different directions 

(i.e. Mx and My kept for x- and y-direction, respectively) within 

the modeling domain. When 2
Z is small enough, such as 0.01 

adopted in Scenario 2, the effect of the geological asy- mmetry 
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becomes negligible, and there is no need to consider the dif-

ference between Mx and My. 

4. Conclusions 

In this study, a pseudospectral collocation approach cou- 

pled with the generalized polynomial chaos and Karhunen-

Loevè expansion (gPC/KLE) for flood inundation modelling 

with random input fields was introduced. The gPC/KLE frame- 

work enabled accurate and efficient approximation of the non-

linear flood flows with specific input random fields, while avo- 

iding construction of the Vandermonde-like coefficient matrix 

adopted in a normal PCM/KLE approach. Three scenarios with 

different spatial variabilities of the Manning’s roughness fields 

were designed for a 2D flood modeling problem via the nume- 

rical solver (i.e. FLO-2D), within a rectangular modelling do- 

main involving multiple channels. Twelve gPC/KLE models 

(i.e., M1-M12) with different combinations were built and the 

simulated moments were compared with those from Monte 

Carlo simulations. Further comparison between gPC/KLE and 

PCM/KLE were conducted.  

The study results revealed that a relatively higher accuracy 

in reproducing the statistics of the non-linear flood flow field 

could be achieved at an economical computational cost com- 

pared with traditional MC simulation and normal PCM/KLE 

approach. It was also indicated that: (i) the gPC/KLE model 

should be constructed using different number of SSG nodes 

(namely lower computational requirement) for spatial condi- 

tions with different levels of complexities; (ii) at the same 2
Z

level, the order of gPC approximation could also cause consi- 

derable effect on fitting performance without additional com- 

putational runs; and (iii) the spatial variability in the x and y 

directions would bring different effects on the predicted STDs 

of the flood flows, especially for those asymmetric geological 

conditions (i.e. multi-channel conditions).  

The major contributions of this study are: (i) introduction 

of gPC/KLE to a two-dimensional flood inundation problem to 

address a heterogeneous random input field of logarithmic 

Manning’s roughness involving different levels of spatial vari- 

ability at reduced computational requirements; and (ii) evalua- 

tion of effects from adopting different numbers of eigenpairs in 

x and y coordinates considering existence of different levels of 

spatial variability associated with input random field. A number 

of limitations will need to be enhanced in the future. Firstly, 

flood modeling for many real-world cases may involve tempo- 

ral uncertainty in model parameters, such as rainfall and inflow 

hydrographs; this was not tackled in this study. Furthermore, 

when other modeling/external processes, such as additional un- 

certainty sources, climate change impact, and hydrological 

process, are linked with flood modeling, the efficiency and 

configuration of the uncertainty assessment framework may 

need to be re-evaluated. 
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