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ABSTRACT. In this paper, based on the behavior of Caenorhabditis elegans (C. elegans) in response to a toxic substance, we propose 
a novel biological monitoring method for the detection of water contamination. Both before and after the introduction of formaldehyde 
into the water at the concentration of 0.1 ppm, the swimming activities of C. elegans are continuously recorded by a charge coupled 
device camera at the rate of four frames per second. The behavior in each of the image frames is characterized by the branch length 
similarity (BLS) entropy profile. The shapes quantified by the BLS entropy profiles are classified into seven shape patterns via the 
self-organizing map combined with the k-means clustering algorithm. Subsequently, a monitoring scheme composed of two hidden 
Markov models decides the water quality based on the sequence of shape patterns over a certain observation time. The performance of 
the proposed method is generally affected by the observation interval; yet, experimental results show an accuracy of about 83% for an 
observation time of five minutes. It is also observed that, by taking the distribution of individual decisions into account, the accuracy of 
the proposed method can be improved up to 93% and the false negative rate can be reduced to 10%. 
 
Keywords: biological monitoring method, Caenorhabditis elegans, branch length similarity entropy, water management, machine 
learning

 
 

 

1. Introduction  

With advances in modern industry and agriculture, vari- 
ous pollutants have leaked into water bodies, causing serious 
water pollution. An accurate and efficient monitoring method 
has emerged as an essential factor in the effective manage- 
ment of water quality and aquatic ecosystems. For real-time 
monitoring, sensor-based methods are widely used by detec- 
ting changes in the physicochemical factors such as pH, di- 
ssolved oxygen demand, and biochemical oxygen demand. 
However, use of devices for such methods requires expensive 
analysis and manpower (Gunatilaka, 2001). 

In the meantime, a wide range of methods to assess water 
quality using indicator species have been studied, from the 
molecular level to communities and ecosystems (Bae, 2014). 
Among the various methods, monitoring techniques based on 
the behavior of an organism seem to be the most effective means 
of linking small and large scale assessments (Bae, 2014). Bur- 
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ridege et al. (2000) studied the response behavior of sea louse 
(a parasite on lobsters) to a short-term exposure to azame- 
thiphos and cypermethrin. Roast et al. (2000) examined beha- 
vioral disruption, particularly of swimming ability, in the hy- 
perbenthic mysid N. intger by the effects of chlorpyrifos, an 
organophosphate pesticide. These studies mainly focused on 
the effect of a specific pesticide used to get rid of parasites in 
fishery products to maintain salability. Results from these re- 
search on response behavior at the individual level are applied 
in the development of biomonitoring systems to determine whe- 
ther pollutants have been introduced or not.  

Shedd et al. (2001) proposed an automated biomonitoring 
method using the differences in the ventilation frequency, 
whole body movement, ventilator depth, and cough frequency 
of the bluegill (Lepomis macrochirus) before and after expo- 
sure to toxic substances. Based on the response behavior of 
seabream (Sparus aurata) and turbot (Scophthalmus maximus) 
at an acute hypoxic test condition (2 mg O2 l-1), an online bio- 
monitor system was presented to monitor the quality of marine 
water in real time (Cunha, 2008). Other biomonitoring sche- 
mes includes those utilizing abnormal swimming behavior of 
Daphnia (Jeon, 2008) and valve-gape of mussels (Kramer, 19 
89). These biomonitoring methods are based commonly on 
signals such as ventilator frequency and cough frequency co- 
llected from electrodes in water, which usually contain noise, 
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and consequently, require elaborate signal processing techni- 
ques.  

Recently, with advances in image processing techniques 
and related digital equipments, the response behavior of indi- 
cator species has been explored by utilizing digital images in 
many studies. Park et al. (2005) suggested a method based on 
image processing techniques for detecting and analyzing the 
response behavior of medaka (Oryzias Latipes). To characteri- 
ze the response behavior, the method employs several mea- 
sures such as speed, angle, and angular speed calculated from 
the movement tracks of medaka exposed to diazinon, as re- 
corded by a charge coupled device (CCD) camera. Liu et al. 
(2011) proposed a method to analyze behavioral changes of 
zebrafish (Danio rerio) in response to formaldehyde. 

These methods, commonly based on digital image proce- 
ssing techniques, showed the possibility of improving the ac- 
curacy of monitoring systems and determining water quality 
in real time. Unfortunately, these methods provide only sup- 
portive information about the water quality, but not automatic 
alarms. In other words, the final decision on whether a body 
of water is contaminated with pollutants or not is entirely de- 
pendent on human experts, not on the system itself.  

The main contribution of this paper is to demonstrate that 
C. elegans can be used as a bio-indicator in the monitoring of 
water quality and to propose a novel method for the moni- 
toring of water quality using C. elegans as a bio-indicator. Re- 
cently, with the help of image processing techniques, the 
swimming behavior of C. elegans has been shown to follow a 
Markov process (Kang, 2012a). The possibility of the swim- 
ming behavior of C. elegans as a measure for biological early 
warning systems was briefly discussed as well (Choi, 2012; 
Kang, 2012a). The proposed method is based on the behavio- 
ral change of C. elegans after the introduction of formalde- 
hyde into the water at a concentration of 0.1 ppm. The me- 
thod also employs digital image processing and machine lear- 
ning techniques such as the self-organizing map (SOM) and 
hidden Markov model (HMM). Additionally, taking the distri- 
bution of individual decisions over a certain period into consi- 
deration, a strategy for improving the performance of the pro- 
posed method is also suggested and tested. 

2. Materials and Methods 

2.1. Organisms and Experimental Set-up 
In this study, 40 adult individuals of wild type N2 C. ele- 

gans were considered. They were cultivated in Petri dishes(60 
mm in diameter and 15 mm in height) filled with growth me- 
dium for nematode in an incubator at 20 °C and fed with Es- 
cherichia coli of strain OP50.  

We made small circular arenas with a diameter of 4.0 mm 
and a depth of 2.0 mm. The arenas for the control group (com- 
posed of 20 randomly selected specimens) were filled with 
deionized distilled water without any chemical treatment. For 
the treated or control group (composed of the remaining 20 
specimens), formaldehyde at a concentration of 0.1 ppm was 
directly added to the water in the arena. 

Formaldehyde is a colorless and strong-smelling gas, of- 
ten found in water-based solutions. In addition to being an in- 
dustrial pesticide, it is commonly used in the production of 
particle board, household products, and paper coatings. In the 
light of its widespread use and toxicity, formaldehyde is a sig- 
nificant factor for human health and is even known to be a hu- 
man carcinogen (Shaham, 1996). It has been reported that a 
1% concentration of formaldehyde is lethal to nematodes (Mo- 
erman, 1981), and that airborne concentrations above 0.1 ppm 
can cause irritation of the eyes and respiratory tract in human 
adults (OSHA, 2011). Although the species is differrent, the 
behavioral changes of zebrafish under 0.1 ppm concentration 
of formaldehyde have been studied (Liu, 2011). We chose the 
concentration of 0.1 ppm based on these observations.  

Immediately after introducing the organism into the are- 
na, a cover glass was placed on the arena to prevent water 
evaporation. The specimen was acclimated for about 10 min. 
The swimming behavior of each specimen was monitored and 
recorded at four frames per second for 40 minutes with a CCD 
camera during the day under the natural light at the same 
temperature of 20 °C as in the incubator. The swimming be- 
havior for each of the 40 nematodes was individually ob- 
served, producing 9,600 frame images in total from each spe- 
cimen. 

 
2.2. Image Processing 

As a preprocessing phase to characterize the behavior of 
C. elegans, 13 points at equal intervals along the length of the 
organism in each image were extracted using image pro- 
cessing techniques (Gonzalez, 2002). Firstly, the background 
image (Figure 1(a)) was subtracted from the target image with 
a nematode at a certain position (Figure 1(b)). Then the image 
was transformed into a binary image containing the organism 
alone by averaging and appropriate thresholding for noise re- 
moval. Finally, by segmenting the binary image and applying 
a skeletonization algorithm, 13 points were placed at equal in- 
tervals along the length of the individual. 
 
2.3. Branch Length Similarity Entropy 

In this study, we used the branch length similarity (BLS) 
entropy (Lee, 2010a, b) to characterize the swim- ming 
behavior of C. elegans. The BLS entropy has been suc- 
cessfully used in a number of shape recognition schemes for 
identifying objects such as the human face (Lee, 2011) and 
butterflies (Kang, 2012b, 2014). The BLS entropy is defined 
on a simple branch network, referred to as the unit branch 
network (UBN), consisting of a single node and its branches. 
The BLS entropy S is defined as: 
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with li representing the length of the i-th branch and n the 
number of branches in the UBN. 

The BLS entropy for the C. elegans in an image is com- 
puted by applying Equation (1) to the network composed of 
the 13 points placed at equal intervals along the length of an 
individual. Figure 2 shows an example of the UBN to cal- 
culate the BLS entropy S7 for point 7. The assembly (S1, S2, 
…, S13) of BLS entropy for the 13 consecutive points is called 
the BLS entropy profile, and is used as a descriptor to cha- 
racterize the shape of C. elegans in an image. 

 
2.4. Representation of Swimming Behavior 

Owing to the large number of elements and the precision 
of each element, the BLS entropy profile can be used as an in- 
put feature to a machine learning method such as the hidden 
Markov model (HMM) only after an appropriate partitioning 
into several patterns. To address this problem, we propose a 
partitioning procedure composed of the self-organizing map 

(SOM) (Kohonen, 1982, 2001) and the k-means clustering al- 
gorithm (Hartigan, 1975). 

The SOM is one of the representative clustering techni- 
ques dividing data into clusters through unsupervised lear- 
ning. Owing to its usefulness and relative simplicity, the SOM 
has been widely used in various studies such as the data ana- 
lysis of environment monitoring (Li, 2015; Riga, 2015) and 
ecological modelling (Bae, 2014) as well as data visualization 
(Oyana, 2009). 

The SOM maps a high dimensional input data into a two- 
dimensional grid map while preserving the topological pro- 
perties of the input data. The basic structure of the SOM con- 
sists of the input and neuron layers, where the neurons are ar- 
ranged in a two-dimensional grid and each neuron is directly 
connected to neighbor neurons and to every node in the input 
layer.  

In the proposed method, the SOM was trained with BLS 
entropy profiles iteratively. A 14 × 10 hexagonal lattice was 
adopted as the structure of the neuron layer of the SOM as it 
yields a good performance. Before the BLS entropy profiles 
were fed to the input layer of the SOM for training, the values 
{S1, S2, …, S13} of the elements of a BLS entropy profile were 
linearly scaled to range from 0 to 1. At each training step, a 
BLS entropy profile was randomly drawn from the profile set. 
Given a BLS entropy profile S = (S1, S2, …, S13), the best 
matching unit (BMU), a neuron with the prototype vector clo- 
sest to the input vector S in terms of Euclidean distance, is 
selected. The prototype vector of the BMU and its topological 
neighbors are updated and moved closer to the given input 
vector. After an adequate number of iterations, the neuron 
layer is spatially organized according to the topological struc- 
ture of the input dataset. 

Although the SOM preserves the topological structure of 
the input data on a grid map, it does not have the ability to 
automatically determine the number of shape patterns (Koho- 
nen, 2001). In order to represent the swimming behavior of C. 
elegans with several meaningful shape patterns and to effect- 
tively utilize the information provided by the SOM, additional 
methods are required. For the grouping of the neurons in the 

 
Figure 1. A nematode object is taken out by subtracting the background image from the target image. a) background image; b) tar-
get image. 

 
Figure 2. An example of a UBN at node 7 with 12 branches.
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trained SOM into several clusters, we employed the k-means 
clustering algorithm together with Davies-Bouldin (DB) in- 
dex (Davies, 1979). The k-means clustering algorithm parti- 
tions map units (neurons in the neuron layer) into clusters so 
that the error function: 
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is minimized, where k is the number of clusters, Qi is the i-th 
cluster of neurons, and ci indicates the center of Qi. Here, 
‘center’ denotes the mean value of the weight vectors of neu- 
rons in a cluster. In the k-means clustering algorithm, the num- 
ber k of clusters is not determined automatically but should be 
given in advance by the user. In order to avoid this arbitra- 
riness, we employ the DB index defined as: 
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where Dc(Qi) and Dc(Qi,Qj) denote the average of the distance 
between a unit and the cluster center in cluster Qi and the dis- 
tance between the centers of Qi and Qj, respectively. Input vec- 
tors (BLS entropy profiles) associated with the neurons be- 
longing to the same cluster after neuron clustering are consi- 
dered to have the same shape pattern. 

A series of test trials were carried out to determine the pa- 
rameter value k. The k-means clustering is repeated by vary- 
ing k from 2 to ⌊√14×10⌋ = 11 to acquire the best clustering. 
The value which minimizes the DB index is chosen as the num- 
ber of clusters.    

The procedures for the clustring of shape patterns men- 
tioned above can be summarized as follows: 

Firstly, the BLS entropy profile for each image is com- 
puted by Equation (1). Each element of the BLS enropy pro- 
file is then scaled into a value between 0 and 1. Subsequently, 
the SOM is trained against the dataset of the scaled BLS en- 
tropy profile. The best clustering is selected as an output of 
the shape pattern clustering by applying the k-means clustering 
algorithm to the neurons of the trained SOM with the goal of 
minimizing the DB index.  

As a result of the clustering procedure of shape patterns, 
seven shape patterns were identified. The shapes of specimens 
represented by the BLS entropy profile were classified into 
one of the seven shape patterns. 

Figure 3 shows the seven classes of shape patterns, which 
we will call flat, medium flat, low flat, curve, low circular, 
medium circular, and circular according the angles between 
the lines connecting adjacent points for the 13 points. In 
sequel, the swimming behavior of C. elegans over a time 
period is characterized by a series of shape patterns, each 
from the patterns at intervals of 0.25 seconds. The movement 
behavior of an organism for five seconds (corresponding to 20 
frames) would be characterized by a vector p = (p1, p2, …, p20) 

of shape patterns, where pt indicates the shape pattern of the 
t-th frame. 

 
2.5. Decision Maker 

The decision-maker in the proposed method is based on 
two HMMs, one learned with the normal state data generated 
from specimens under the ‘normal’ (unpolluted, clear) water 
condition and the other with the abnormal state data under the 
‘abnormal’ (polluted, contaminated) water condition.  

The HMM is one of the representative machine learning 
techniques, which usually deals with sequential data with tem- 
poral properties. It has been successfully applied to a number 
of areas such as speech recognition (Juang, 1991), online han- 
dwriting recognition (Igarza, 2003), spam mail detection (Gor- 
dillo, 2007), and gesture recognition (Wilson, 2001) as well as 
animal behavior modeling (Bagniewska, 2013).  

An HMM is defined by the 5-tuple (N, M, A, B, π) 
(Rabiner, 1989; Won, et al, 2010), where N is the number of 
states, M is the number of observation symbols, A is the pro- 
bability distribution of the state transition indicating the pro- 
bability of transitioning between states, B is the probability dis- 
tribution of the observation symbol in a state, and π is the pro- 
bability distribution of the initial state. 

In the proposed method, we have M = 7, the number of 
classes of shape patterns. The number N of states was tuned to 
bestfit the training data through many experiments. The pro- 
bability distributions A, B, and π are determined from the lear- 
ning with training data. We adopted an ergodic (or fully con- 
nected between state nodes) model (Rabiner, 1989) as the 
structure for the two HMMs, and employed the well-known 
Baum-Welch algorithm (Rabiner, 1989) as the learning algo- 
rithm for the two HMMs.  

The individual decision (whether the water is polluted or 
not) for each test shape sequence was made by comparing the 
log likelihoods of the sequence produced by the two HMMs. 
If the log likelihood issued by the HMM learned with the 
normal training data is greater than that issued by the HMM 
learned with the abnormal training data, the water quality at 
that instant is decided to be normal. Otherwise, the water qua- 
lity is decided to be abnormal. This can be described by the 

Figure 3. The seven representative shape patterns (flat, 
medium flat, low flat, curve, low circular, medium circular, 
circular) of C. elegans obtained using the SOM combined 
with the k-means clustering algorithm. 
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individual decision function: 
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where p denotes a vector (sequence) of shape patterns, and hN 
and hA are the log likelihoods issued by the HMM learned 
with the normal and abnormal data, respectively.  

The individual decision about the water quality with a 
shape sequence is simple and efficient; yet a considerable 
number of miss classifications are produced especially against 
the abnormal data set. In other words, the method often de- 
cided incorrectly the water state as normal when it was in fact 
in an abnormal state (the experimental results will be pre- 
sented in the section Results and Discussion). In an effort to 
resolve this problem and make the scheme more practical, we 
designed a decision making scheme which provided a final 
decision by considering the distribution of individual deci- 
sions about the water quality over a time period. 

Denote a series of shape sequences over a time period as 
P = (p1, p2, …, pn) where, pi indicates the i-th sequence of 
shape patterns. In the proposed method, composed of two trai- 
ned HMMs, the i-th individual decision about the water qua- 
lity is made at intervals of given time length using pi. Over an 
observation time, the final decision about the water quality is 
then made based on the ratio of individual positive decisions 
(warning signals) in that period. If the ratio of individual posi- 
tive decisions becomes higher than or equal to a pre-defined 
threshold, the final decision will be that the water is in the ab- 
normal state. Otherwise the water is decided to be in the nor- 
mal state. The final decision Ω about the water quality over a 
certain time period can be formulated as: 
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where q indicates the length of the time period over which the 
final decision is made, d is the length of the interval for 
individual decisions, and r is the threshold ratio of individual 
warning signals. For example, assume that an individual 
decision about the water quality is made at intervals of three 
minutes (d = 3) over a period of ten minutes (q = 10) with the 
threshold ratio of 0.7 (r = 0.7). Then, when the number of 
individual warning signals is greater than ⌊10/3 × 0.7⌋ = 2, the 
abnormal state is issued by the proposed scheme as the final 
decision about the water quality. 

 

3. Results and Discussion 

3.1. Performance with Individual Decision 
In order to evaluate the performance of the proposed mo- 

nitoring method, we conducted a number of experiments with 
various values of the parameters. Firstly, datasets of the sequ- 
ence of shape patterns were built with observation times ran- 
ging from 15 seconds (shape sequence of length 60) to 480 se- 
conds (shape sequence of length 1920) to evaluate the effect 
of observation length on the performance. Each sequence is 
generated to overlap with the next sequence by 30% to redu- 
ce the gap effect between two consecutive sequences to a cer- 
tain degree. Table 1 shows the composition of datasets from a 
total of 40 organisms (20 under normal condition and the 
other 20 under abnormal condition).  

A 20-fold cross-validation was used (Mitchell, 1997) to 
justify the performance evaluation of the proposed method. A 
total of 20 rounds of cross-validation were performed using 
various partitions of specimens, and the validation results were 
averaged over the rounds. In general, the accuracy of the war- 
ning method is measured by: 

 
the number of true positives accuracy = 

the total number of test instances
the number of true negatives+

the total number of test instances

 (6) 

 
where a true positive occurs when the method correctly de- 
tects the abnormal state (water pollution), and likewise, a true 
negative is produced when the method correctly declares the 
normal state. 

Figure 4 plots the accuracies measured over the valida- 
tion data. Each experiment was performed with HMMs with 
various numbers (from six to nine) of hidden states and sequ- 
ences of various length (from 15 to 480 seconds). It is obser- 
ved that HMMs composed of nine hidden states yield the best 
performance. In addition, the proposed method achieved an 
accuracy of 82.9 ± 12.9 % when the input data with an ob- 
servation time of 480 seconds was used. The results also 
indicate that, in order to guarantee an accuracy above 80%, at 
least 960 frames (corresponding to 240 seconds of observa- 
tion time) are required before the method can make a decision 
about the water quality.  

As an effort to investigate detailed aspects of the perfor- 
mance, we examined the performance with respect to the true 
positive and true negative rates separately. Figure 5 plots the 

Table 1. The Composition of the Data Set 
Observation time 
(sec) 

Length of an instance 
(frames) 

The number of 
instances 

15 60 9120 
30 120 4520 
60 240 2240 
120 480 1120 
240 960 520 
300 1200 440 
480 1920 240 

*generated from 40 adult individuals of wild type C. elegans, 20 under 
normal water condition and 20 under abnormal water condition.
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changes in the true positive rate (the lower line in the figure) 
and the true negative rate (the upper line in the figure) along 
with the average accuracy when an HMM with nine hidden 
states is employed.  

The true negative rate over the test data with observation 
times of not less than 60 seconds shows an accuracy of above 
95%, whereas the true positive rate over the same test data is 
lower than 70%. This result might have come from the fact 
that the swimming behavior of C. elegans after exposure to a 
toxic substance often, but not always, shows the same tem- 
poral patterns as it was before the exposure (Anderson, 2004; 
Kang, 2012a). Clearly, although a chemical may stimulate the 
neuro system of an organism, resulting in the characteristic 
swimming behavior of the chemically treated condition (Ka- 
ng, 2012a), the chemical does not dominate the swimming 
pattern all the time. Therefore, it is not unexpected that orga- 
nisms exposed to a toxic substance show sometimes the swim- 
ming pattern of the normal water condition.  

Unfortunately, this fact makes it difficult to decide the 
water quality correctly at a certain moment solely by the be- 
havior (sequence of shape patterns) of organisms, which we 
believe is a common vulnerability in every bio-monitoring 
method.  

 
3.2. Performance with Combined Decision 

In order to make our scheme more useful, we have taken 
into account the distribution of individual decisions over a 
time period in making the final decision. Firstly, original data 
from the 40 organisms (normal and abnormal states) were 
divided into segments (each corresponds to a decision period) 
of 10 minutes. From these newly generated data sets, 6 seg- 
ments (three each from the normal and abnormal state sets) 

were randomly drawn and then combined as shown in Figure 
6. Ten test instances were generated for experiments in this 
manner, resulting in a total of 60 decision periods. The values 
of ratio r were selected in the range of 5 to 20%. For observa- 
tion periods ranging from 15 to 480 seconds, two types of 
experiments were conducted with individual decision inter- 
vals of 5 and 10 seconds. 

Figure 6 shows two examples of individual decisions at 
intervals of 10 seconds for a one hour test composed of alter- 
nating 10-minute normal and abnormal periods. Figures 6(a) 
and 6(b) show the distributions of individual decisions using 
shape sequences of 60 frames (corresponding to an observa- 
tion time of 15 seconds) and 240 frames (corresponding to an 
observation time of 60 seconds), respectively. Since the inter- 
val of an individual decision is set to 10 seconds, there exist 
60 individual decisions in each of the 10-minute time periods. 
From the figure, it is observed that the modified method cor- 
rectly decides the water states of 11 periods using Equation 
(6) except for the last one in Figure 6(b), where all of the 60 
individual decisions are ‘normal’ while the water is in fact ab- 
normal. 

In conducting the test, we have taken into consideration 
that the procedure to process images and to calculate BLS en- 
tropy profiles for a sequence sample is expected to require at 
least 5 seconds or longer. In addition, when a toxic chemical is 
detected in the water body, to provide a proper information 
before incurring significant damage, we have adopted a period 
of 10 minutes for a decision. Of course, these choices can be 
modified as appropriate.  

Figure 7 shows the average accuracy of the proposed 
scheme with the distribution of individual decisions (at in- 
tervals of 5 and 10 seconds) into account, in which the ave- 
raging was performed over several threshold rates from 5 to 
20%. The method decided the water quality of 60 periods 

 
Figure 4. The accuracy of the warning system based on in- 
dividual decision over the test data with observation time va- 
rying from 30 to 480 seconds. Experiments were carried out 
by varying the number of hidden states of the HMM from six 
to nine. 

 
Figure 5. The true positive and true negative rates of the pro- 
posed method based on individual decision with nine hidden 
states.
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(comprising of 30 normal and 30 abnormal periods) using 
Equation (6). Except in one case of observation time of 15 se- 
conds, the accuracy with a 5-second interval decision was hi- 
gher than that with a 10-second interval. When the threshold 
ratio, observation length, and individual decision interval are 
10%, 480 seconds, and 5 seconds, respectively, the method 
showed an accuracy above 93%.  

It is also observed from the experiments that the true po- 
sitive and true negative rates have tradeoff relations with res- 
pect to the threshold: If the threshold ratio decreases, then the 
true positive rate increases whereas the true negative rate de- 
creases. This tradeoff relation was conspicuous especially in 
the case of a short observation time (e.g. 15 and 30 seconds). 
Figure 8 shows the tradeoff between the true positive and true 
negative rates when the individual decisions were made at 
intervals of five seconds with observation time of 30 seconds. 

These results imply that we should choose the parameters 
according to the requirements of the water environment. For 
example, when a significant damage is expected even with a 
small amount of pollutants, a lower threshold ratio and a shor- 
ter individual decision time interval are recommended.  

 
3.3. Discussion 

We have so far demonstrated that the swimming behavior 
of C. elegans combined with digital image processing techni- 
ques and machine learning methods could be successfully 
used to monitor the water quality. In order to better under- 
stand the locomotion behavior, researchers have focused on 
patterns of movements of C. elegans and their distributions, 
and also on how to characterize them. For example, Choi et 
al. (Choi, 2012) showed that the swimming behavior of 

nematodes could be classified into several shape patterns by 
using the distributions of distances and angles between po- 
ints along the length of body. In addition, they observed that 
the distributions of patterns were different between before and 
after chemical treatments. Kang et al. (Kang, 2010) extended 
these experiments and found that the temporal sequence of pa- 
tterns followed a Markov model. In addition, they showed that 
the temporal pattern sequences were different between before 
and after chemical treatments by using the distribution of pa- 
ttern sequences and Levenshtein distance, one of the metrics 
to measure the similarity between sequences. In these studies, 
the possibility of nematode as a bio-indicator is also briefly 
discussed. In essence, we have in this study confirmed the 
possibility of using the response behavior of nematode to 
chemicals as a bio-indicator suggested previously. 

The proposed method could be extended to other slender 
bio-indicators such as earthworm. Interestingly, earthworm has 
attracted many researchers as a bio-indicator in the evaluation 
of soil conditions (Paoletti, 1999, Rombke, 2005); the conven- 
tional methods are mainly based on abundance or biomass. We 
believe that our method, based on the individual behavior of 
earthworm in response to specific chemicals, could be more 
useful. 

In spite of the successful results described above, the 
chemical used to bring about the response of C. elegans in our 
scheme was limited to formaldehyde. It is necessary to carry 
out more research on the response behavior of organisms to 
other chemicals such as benzene and toluene. In addition, the 
investigation of how to measure the changes in the behavior 
of an organism at different levels of concentration of chemi- 
cals is also an interesting research topic for the development 
of a more complete biological monitoring and early warning 
systems. 

 

4. Conclusions  

In this study, we have proposed a novel bio-monitoring 
scheme based on the responses of C. elegans to formaldehyde. 
The study has demonstrated the possibility of nematode as a 
successful bio-indicator in the assessment of water quality wh- 
en an appropriate scheme is employed for pattern recognition 
and decision making. The BLS entropy profile, a series of the 
BLS entropy for 13 points along the length of C. elegans, was 
employed as the main feature to characterize the behavior of 
nematodes. The SOM combined with the k-means clustering 
algorithm was used to partition the BLS entropy profile and 
the swimming behavior of C. elegans was characterized by a 
sequence of seven shape patterns. In determining the water 
quality, the HMM, a representative machine learning method, 
was employed. 

With an observation time of five minutes, the results from 
experiments exhibited an initial accuracy of about 83%. To 
enhance the applicability of the proposed method, the ratio of 
individual positive decisions over a 10-minute period was 
exploited to finally decide the water quality over the period. 

 
Figure 6. Two examples showing the individual decisions 
about the water quality at intervals of 10 seconds for a one 
hour test composed of alternating 10-minute normal and ab- 
normal periods. a) Result of an experiment using shape se- 
quences of 60 frames (corresponding to observation time of 
15 seconds); b) Result of an experiment using shape sequen- 
ces of 240 frames (corresponding to observation time of 60 
seconds). 
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The results of this modified method showed an accuracy of 
above 94% while maintaining a high true positive rate. In 
short, the proposed method based on the behavior of C. ele- 
gans is expected to help the development of biological mo- 
nitoring and early warning systems with other organisms also. 
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