
14 

  
ISEIS Journal of 

Environmental 
Informatics 

 

 

 

Journal of Environmental Informatics 32(1) 14-24 (2018) 

www.iseis.org/jei         
 

A Generalized Model for Wind Turbine Faulty Condition Detection Using Combination 
Prediction Approach and Information Entropy 

 
J. S. Chen1, W. G. Chen1, J. Li1,*, and P. Sun2 

 
1State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Electrical Engineering, Chongqing 

University, Chongqing 400030, China 
2State Grid Henan Electrical Power Research Institute, Zhengzhou 450000, China 

 
Received 11 October 2015; revised 28 September 2017; accepted 13 February 2018; published online 20 September 2018 

 
ABSTRACT. A generalized model for detecting the incipient wind turbine (WT) faulty condition based on the data collected from 
wind farm supervisory control and data acquisition (SCADA) system is proposed in this paper. The linear combination prediction 
approach and the information entropy are integrated to develop the generalized model, in which the linear combination prediction 
approach improves the accuracy and generalization performance of the model, and the information entropy of prediction residual 
quantifies the abnormal level of the condition parameter. SCADA datasets were selected to establish the prediction models of WT 
condition parameters that are dependent on environmental conditions such as ambient temperature and wind speed. The combination 
prediction models of WT condition parameters were developed based on different data mining algorithms such as Back propagation 
neural network (BPNN) algorithm, radial basis function neural network (RBFNN) algorithm and least square support vector machine 
(LSSVM) algorithm. The information entropy was utilized to extract useful information from residuals of the prediction models for 
WT faulty condition detection. Finally, the proposed method has been used for real 1.5 MW WTs with doubly fed induction generators 
(DFIG). Through investigation of cases of actual WT faults, the effectiveness of the proposed WT imminent fault identification 
approach was verified. 
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1. Introduction  

The rapid expansion of wind farms in recent years have 
drawn great attention to operation and maintenance (O&M) 
issues (Johan et al., 2007; Gil et al., 2014; Yang et al., 2014). 
The O&M costs of wind turbines (WTs) account for approxi- 
mately 25 to 30% of the overall wind energy generation cost 
(Milborrow, 2006). Various condition monitoring and fault di- 
agnosis approaches of WTs have been proposed to improve 
the availability of WTs and reduce unscheduled downtime as 
well as O&M costs (e.g. Tavner et al., 2010; Djurovic et al., 
2012; GarcíaMárquez et al., 2012; Yang et al., 2013; Soua et 
al., 2013; Lee et al., 2013). However, most of these approaches 
have not been widely used in wind farms because of the high 
additional investments of installing extra equipments or sensors 
for condition monitoring systems of WT and generalization 
performance of the fault detection approaches. Most commer- 
cially available WT condition monitoring systems are vibration 
analysis-based systems to achieve the condition monitoring of 
WT blades and gearboxes (Ribrant et al., 2007). However, they 
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are not good at detecting WT electrical, electronic and hy- 
draulic problems, and the WT electrical, electronic and hy- 
draulic subassemblies also suffer failures (Kusiak et al., 2011; 
Yang et al., 2013). They would lead to long downtime as well. 
As one of the most important parts of the WT condition 
monitoring system, the supervisory control and data acquisi- 
tion (SCADA) system of a wind farm collects data exten- 
sively from key WT subassemblies. The SCADA system rec- 
ords comprehensive WTs condition parameters which contain 
rich information concerning the health of the WTs (Kusiak et 
al., 2012). Furthermore, SCADA systems have been installed 
in the majority of MW-scale WTs. No more hardware invest- 
ment is needed when developing a SCADA-based WT fault 
detection. Therefore, detection of incipient WT faults based 
on SCADA data is a cost-effective way to monitor the health 
of WT.  

Values of some WT condition parameters obtained from 
SCADA system, such as rotor speed, output power, and com- 
ponent temperature, fluctuate quite obviously with the environ- 
mental conditions and vary over wide ranges under varying 
operational conditions. Hence, it is hard to detect incipient faults 
from the raw SCADA data. An effective data-driven method is 
necessary to address this problem. Various WT condition pa- 
rameter prediction models and anomaly identification methods 
(e.g. Zaher et al. 2009; Schlechtingen and Santos, 2011; 
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Kusiak and Verma, 2012; Schlechtingen et al., 2013) have 
been developed to extract the useful information hidden within 
the raw data and mitigate the impacts of environmental con- 
ditions upon the real WT condition parameters. For instance, an 
anomaly identification method was presented based on the pre- 
diction residuals for WT condition parameters. It was claimed 
that the prediction residuals coming from successfully trained 
models were normally distributed with a mean around zero 
(Schle-chtingen, 2013). Various data-driven approaches, such 
as neural network (NN) (Zaher et al., 2009; Ata, 2015), 
support vector machine (SVM) (Liu et al., 2012; Yang et al., 
2006) and nonlinear state estimate technique (Cross and Ma, 
2014) have been used for developing WT condition parameter 
prediction models. Performance of the prediction models es- 
tablished by six data mining algorithms was studied, and input 
parameter selection method was investigated to improve the 
prediction accuracy (Kusiak and Li, 2010). Different algo- 
rithms were used to obtain the relevant input parameters for 
the predicting target parameters (Kusiak and Verma, 2012). 

In the above work, the condition parameter was pre- 
dicted with one single prediction model, and the model was 
developed based on SCADA data collected from one single 
WT. Since the sensitivity of WT faulty condition detection is 
affected by the precision of the condition parameter predic- 
tion model, a single-model-based method may cause problems 
on the accuracy and generalization performance of the anoma- 
ly identification. Instead of using a single-model-based pre- 
dicttion method, the combination prediction approach was uti- 
lized in this paper. The combination prediction approach can 
take advantages of different data mining algorithms to improve 
the accuracy and generalization performance of condition pa- 
rameters prediction models. 

The existing statistical anomaly identification methods 
are based on the assumption that normal instances occur in the 
high probability region of a stochastic model, while abnormal 
conditions happen in the low probability regions (Chandola et 
al., 2009). Thus, the prediction residual (i.e. the difference be- 
tween the measured value and model output) could provide an 
indication of incipient WT faults. Certain thresholds of pre- 
dicttion residuals are usually set to identify the anomalies in 

WTs (Kusiak and Verma, 2012; Schlechtingen et al., 2013). 
However, a certain threshold-based method may cause misdiag- 
nosis (Sun et al. 2016). To accurately quantify the abnormal 
level of condition parameter is another key point for detecting 
incipient WT fault. Recently, the information entropy has proved 
its suitability for condition monitoring, fault detection and risk 
assessment (Cabal et al., 2010; Zhang et al., 2010; Li et al., 
2012; Ai et al., 2013; Yang et al., 2015; Nourani et al., 2015). 
For instance, faulted rotor bars were detected through the anal- 
ysis of vibration signals based on information entropy (Cabal 
et al., 2010). The utility of multiscale entropy in diagnosing faulty 
bearings in a rotating machine was investigated (Zhang et al., 
2010). Therefore, the information entropy was employed to 
quantify the abnormal level of the condition parameters in this 
study. 

The motivation of the present paper lies in the detection 
of WT faulty condition based on wind farm SCADA data. In 
this study, the linear combination prediction approach and the 
information entropy of prediction residual were integrated to 
develop a generalized model for incipient WT fault detection. 
The SCADA datasets were selected through the analysis of the 
cumulative probability distribution of wind speed, and the rela- 
tionship between output power and wind speed. The combi- 
nation prediction models of WT condition parameters were de- 
veloped based on linear combination prediction approach. The 
information entropy of prediction residual was utilized to ex- 
tract the useful information from the residual of the prediction 
model for WT fault detection. 

The remainder of the paper is organized as follows. The 
SCADA data that can be used for WT faulty condition detec- 
tion is discussed and grouped in Section 2. Section 3 presents 
the selection of wind farm SCADA data. The combination con- 
dition parameter prediction models are developed in Section 4. 
The anomaly identification method based on the information 
entropy is illustrated in Section 5. Two cases are investigated 
to validate the proposed method in Section 6. The conclusions 
are drawn in Section 7.  

2. Parameter Description and Classification 

Table 1 shows typical condition parameters measured and 
delivered by the SCADA system of a wind farm. The positions 
of corresponding sensors are shown in Figure 1. These con- 
dition parameters can be grouped into two types: 

Type 1: Type 1 parameters include various component tem- 
peratures, WT output power and rotor speed, which are strongly 
influenced by environmental conditions. For example, the re- 
lationship between the gearbox input shaft temperature of a 
variable speed constant-frequency (VSCF) WT and the wind 
speed is shown in Figure 2. For the VSCF WT, when the wind 
speed is below its rated speed, a faster rotational speed due to 
a higher wind speed will evidently raise the temperature of the 
mechanical components. When the wind speed is over the rated 
wind speed, the WT will be kept at its rated output power by 
variable pitch control and the component temperatures will be 
less affected by the wind speed. Figure 3 shows the relation- 

 
Figure 1. The main components and sensor positions of the 
considered WT. 
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ship between the gearbox input shaft temperature and the am- 
bient temperature. The heat dissipation of mechanical compo- 
nents of a WT is also affected by the ambient temperature. At 
a lower ambient temperature, the heat dissipation is faster and 
the component temperatures can vary in a larger range. Con- 
versely, at a higher temperature, the component temperature 
tolerable variation range is smaller with slower heat dissipa- 
tion. For the parameters of output power and rotor speed, the 
wind speed is the most influential factor and wind farm oper- 
ators usually use a power curve to estimate the power gener- 
ated by a WT at different wind speeds. 

Type 2: Type 2 parameters include yaw angle error, pitch 
angle error and hydraulic oil pressure. Yaw angle error is the 
angle between the wind and the nacelle position. Pitch angle 
error represents the pitch angle that deviates from the set point. 
Type 2 condition parameters do not have an obvious relation- 
ship with environmental conditions. Since the anomaly identifi- 
cation for condition parameters of Type 2 can be easily done by 
setting certain threshold values, only the WT anomaly identi- 

fication based on condition parameters of Type 1 will be dis- 
cussed. 

3. SCADA Data Collection 

The SCADA data used in this paper are obtained from an 
onshore wind farm in Northern China. The wind farm has 34 
WTs with 1.5 MW, labeled WT 1 to WT 34. All the WTs are 
the same type with doubly fed induction generators (DFIG) in 
the wind farm. The SCADA data have been collected since 
February 15, 2011. The SCADA data of WTs 3, 10, 17, 23, 
and 31 are randomly selected for analysis of condition para- 
meters. The SCADA data with a time interval of 10 min are 
used for the work. 

The SCADA data are selected with a criteria of wind 
speed. The Bin method is used to analyze the SCADA data. 
Figure 4 shows the wind speed probability distributions of 
five WTs in the studied wind farm. The cumulative proba- 
bility of the wind speed of WT 17, as shown in Figure 4a, in- 
dicates 99.22% of wind speed values is lower than 13.5 m/s. 
Figure 4b shows that the wind speed probability distributions 
of WTs 3, 10, 23, and 31 that are identical with that of WT 17. 
The wind speed range between 3 and 13.5 m/s is thus deter- 
mined for SCADA data selection, which covers most output 
power of each WT in the wind farm. 

4. Combination Prediction Model Development 

The sensitivity of anomaly identification is affected by 
the accuracy of the condition parameter prediction models. In 
this paper, the linear combination prediction approach is used 
to improve the accuracy and generalization performance of the 
prediction models. 

 

4.1. Principle of the condition parameter combination pre- 
diction model 

It is assumed that there are m kinds of individual pre- 
diction methods to predict an index sequence {xt, t = 1,2, …, 
N} of the same predicting object. xit represents the predicted 
value of the ith individual prediction method at time t (i = 1, 
2, …, m; t = 1, 2, …, N). The eit = (xt - xit) is the prediction 
residual.  

J1 is defined as the sum-of-squares of the prediction re- 
sidual. The linear combination prediction model is developed 
based on the following optimization problem: 
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where ejt is the prediction residual of the jth prediction method 
at time t, and l1, l2, …, lm represent the weight of each 

Table 1. WT Condition Parameters Studied in this Paper 

No. WT condition parameters Unit Type 

1 Temp. of gearbox input shaft °C 1 
2 Temp. of gearbox output shaft °C 1 
3 Temp. of gearbox oil °C 1 
4 Temp. of gearbox cooling water °C 1 
5 Temp. of main bearing a (on the rotor side) °C 1 
6 Temp. of main bearing b (on the gearbox side) °C 1 
7 Temp. of generator winding ph.1 (U) °C 1 
8 Temp. of generator winding ph.2 (V) °C 1 
9 Temp. of generator winding ph.3 (W) °C 1 
10 Temp. of generator bearing A °C 1 
11 Temp. of generator bearing B °C 1 
12 Temp. of generator cooling air °C 1 
13 Temp. of control cabinet °C 1 
14 Temp. of converter controller °C 1 
15 Output power kW 1 
16 Rotor speed  rpm 1 
17 Yaw angle error ° 2 
18 Pitch angle error  ° 2 
19 Hydraulic oil pressure for yaw bar 2 
20 Hydraulic oil pressure for rotor brake bar 2 

Figure 2. Relationship between the gearbox input shaft 
temperature of a VSCF WT and the wind speed. 



 J.S. Chen et al. / Journal of Environmental Informatics 32(1) 14-24 (2018) 

 

17

individual prediction method. The summation of the weights 
is equal to 1. The matrix form of Equation (1) can be expressed 
as: 

 
T

1

T

min 

1
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J L EL

R L

L

=
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         (2) 

 

where L = [l1 l2 … lm]T is the column vector of weight of each 
individual prediction method; R is m-dimensional column vec- 
tor with all the elements equal to 1; and E is m×m informa- 
tion square matrix of combination prediction residual. When i 
≠ j, Eij represents the covariance of the prediction residual of 
the ith and the jth individual prediction method. When i ≠ j, 
Eii represents the sum-of-squares of prediction residual for the 
ith individual prediction method. 

Equation (2) is a quadratic convex programming problem, 
which has a unique optimal solution on the feasible region or 
the boundary of the feasible region. However, it is difficult to 
obtain the direct-form of the solution for Equation (2). In this 
paper, the iterative algorithm for optimal combination pre- 
diction of nonnegative weighs is utilized to find the optimal 
weights. Kuhn-Tucker (K-T) condition is the necessary and 
sufficient condition of the existence of optimal solution ac- 
cording to the quadratic programming theory (Wismer and 
Chattergy, 1978). Therefore, the solving of Equation (2) can 
be transformed into the solving of K-T problem. Equation (2) is 
equivalent to: 
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where U = (u1, u2, …, um)T; ui and li are the complementary 
slack variables; λ1 and λ2 are the Lagrange multipliers of 
equation RTL = 1. 

Equation (3) is a linear programming problem. It can be 

solved through adding artificial variables Z = (z1, z2,…, zm)T 
and z. Hence, the auxiliary linear programming model is 
obtained as follows: 
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where ui•li = 0 (i = 1, 2, …, m). In order to apply this non- 
linear constraint condition, the following modifications are 
required when selecting a base variable: if li is the base var- 
iable, the corresponding ui cannot be selected as a base var- 

  
Figure 4. Wind speed distribution of wind turbine: (a) WT 17; 
(b) Five WTs. 

Table 2. Input Parameters of the Prediction Models.  

Target condition parameters Input parameters (SCADA data) 

Output power (t) Wind speed (t) 
Yaw angle error (t) 
Pitch angle (t) 

Rotor speed (t) Wind speed (t) 
Yaw angle error (t) 
Pitch angle (t) 

Component temperatures (t)  Wind speed (t) 
Output power (t) 
Ambient 
Temperature (t) 
Component temperatures (t-1) 

    
   Figure 3. Relationship between the gearbox input shaft . 
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iable. Similarly, if ui is the base variable, the corresponding li 
cannot be selected as a base variable. Therefore, the optimal 
weights of the optimal combined prediction of nonnegative 
weights are obtained by Equation (4). 

 

4.2. Development of the condition parameter combination 
prediction model 

The BPNN model, RBFNN model and LSSVM model 
are selected as the individual prediction model. The linear 
combination prediction models of WT condition parameters 
are developed based on the principle of minimizing the sum 
-of-squares of the prediction residual. The development of the 
prediction model for generator bearing B temperature of WT 
17 is taken as an example.  

The selection of input parameters of prediction model is a 
premise in simplifying models and ensuring prediction 
accuracy (Yan et al., 2014; Sun et al., 2016). The input pa- 
rameters of different types of condition parameter prediction 
models are shown in Table 2. A fixed pitch is usually applied 
at the VSCF WT and the generator torque control is used to 
maximize the captured power from the wind (Assareh and 
Biglari, 2015). The wind speed, yaw error, and the pitch angle 
are selected as the input parameters to improve the accuracy 
of the models of output power and rotor speed. The compo- 
nent temperatures depend on the wind speed, the ambient 
temperature, the WT’s output power and the previous compo- 
nent temperatures. Based on this, four condition parameters 
such as the wind speed; the output power, the ambient tem- 
perature, the previous temperature of generator bearing B are 
selected as the input parameters of the prediction model for 

generator bearing B temperature. The modeling progress is 
shown as follows: 

1) A total of 30,000 data obtained under normal opera- 
ting conditions are randomly selected from the 1-year SCADA 
data of WT 17 to form the sample dataset. The 10-fold cross- 
validation method is used for parameter optimization of indi- 
vidual prediction models to ensure the better generalization 
ability of the prediction models. 

2) Figure 5 shows the modeling procedures of the combi- 
nation prediction model. A total of 3000 data is randomly 
selected from the sample data (30,000 data) to form a dataset. 
The selection process is repeated for N times to obtain N data 
groups. The BPNN model, the RBFNN model and the LSSVM 
model are tested for N times by using the N sets datasets. For 
each time, the prediction residuals of the three individual 
models are recorded respectively. The iterative algorithm for 
optimal combination forecasting of non-negative weigh is ap- 
plied to obtain the weight distribution for each individual mod- 
el to develop the combination prediction model. Figure 6 shows 
the weight distribution when N = 15. 

As shown in Figure 6, the weight of BPNN model is 
greater than that of RBFNN model and LSSVM model, which 
indicates that the output of BPNN model contains more useful 
information. The average of the weights that are obtained by 
each test is determined as the optimal weight of the corre- 
sponding individual prediction model. Based on this, the com- 
bination prediction model can be obtained as follows: 

 

1 1 2 2 3 3
ˆ ˆ ˆˆ = ⋅ + ⋅ + ⋅F l f l f l f       (5) 

          
    

Figure 5. Sketch of the combination prediction model. 



 J.S. Chen et al. / Journal of Environmental Informatics 32(1) 14-24 (2018) 

 

19 

where F̂  is predicted value of the combination prediction 
model; l1, l2 and l3 are the optimal weights of the BPNN 

model, the RBFNN model and the LSSVM model; 1f̂ , 2f̂ and

3f̂ are predicted value of each individual model, respectively. 

The optimal weights for each individual prediction model of 
generator bearing B temperature are l1 = 0.645, l2 = 0.2018, 
and l3 = 0.1532. 

The mean absolute error (MAE), mean absolute percent- 
age error (MAPE), root-mean-square error (RMSE) and mean 
squared percentage error (MSPE) are used to analyze the 
performance of each prediction model, as shown in Equations 
(6) ~ (9). 
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where n is number of test samples; ri is the measured value; 

îr is the predicted value. 

The prediction accuracy of the combination prediction 
model and three individual models (the BPNN model, the 
RBFNN model and the LSSVM model) is compared. The 
temperature of generator bearing B of WT 17 in the studied 
wind farm is taken as an example. 15 test datasets that are se- 
lected randomly from the 30000 sample data. 

Table 3 shows the mean value of each index of prediction 
models for generator bearing B temperature of WT 17. The 
combination prediction model has the highest accuracy. The 
accuracy of BPNN model is obvious higher than that of RBFNN 
model and LSSVM model. Therefore, the combination predict- 
tion model of WT condition parameters based on the principle 
of minimizing the sum-of-squares of the predicttion residual 
is effective to improve the prediction accuracy. 

5. Anomaly Identification 

Anomaly identification aims to detect data patterns that 
do not conform to the principle of expectation. Based on the 
developed combination prediction model, the residuals be- 
tween the predicted value and measured value of the con- 
dition parameters can be calculated. In normal condition, the 
prediction residuals change in a small range centered at 0. In 
the abnormal condition, the residuals show a high fluctuation 
with large amplitude. Effective quantization for the abnormal 
level of the prediction residuals is the basis for WT anomaly 
identification. The information entropy could effecttively quan- 
tify the order degree of the systems or the complexity of the 
signals (Zhou, 2012). In this paper, the information entropy is 
utilized to quantify the intensity of the change of prediction re- 
siduals.  

The information entropy of prediction residual with the 
interval 1 day can be calculated as follows: 

 

d
1 d d

( )ln( )
N

i i

i

n n
H

T T=
= −       (10) 

 

where Hd is the information entropy with the interval 1 day; N 
is the number of the statistical intervals; ni is the number of 
prediction residuals in the ith statistical interval. For example, 
if [-2, -1], [-1, 0], [0, 1] and [1, 2] °C are the statistical 
intervals for the temperature parameter, ni represents the num- 
ber of prediction residuals that fall into the ith interval. Td is 
the number of prediction residuals in one day. Entropy is cal- 
culated only when ni is not equal to 0. 

Figure 7 shows the flowchart of anomaly identification of 
the WT condition parameters, which is based on the condition 
parameter prediction model and the information entropy. The 
procedure can be summarized into the following steps: 

Step 1: The appropriate wind farm SCADA data are 
selected to form the training and testing datasets. 

 

 

Table 3. Prediction Performance of Different Prediction 
Models for Generator Bearing B Temperature 

Type 
Index 
MAE 
(°C) 

MAPE 
(%) 

RMSE 
(°C) 

MSPE 
(%) 

BPNN model 1.6015 3.5618 2.3869 6.2083 
RBFNN model 1.7232 4.2419 2.5381 6.8371 
LSSVM model 1.7549 4.3627 2.6016 7.0946 
Combination prediction 
model 

1.5861 3.3217 2.1593 5.6192 

 

 
  
Figure 6. Weight distribution for the individual models. 
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Step 2: The individual prediction models of the target 
condition parameter are developed. The optimal weight dis- 
tribution is calculated and the combination prediction model 
is developed. 

Step 3: Target parameter is predicted with the combi- 
nation prediction model. The predicted values of the target pa- 
rameter are compared with the actual monitoring value so as 
to obtain the prediction residuals. 

Step 4: For reflecting the change tendency of the RMSE, 
continuous equivalent interval RMSE are calculated. The sta- 
tistical interval is 1 day when calculating RMSE in the paper. 
Change situation of RMSE is obtained with calculating RMSE 
of each day. 

Step 5: When the RMSE is smaller than the threshold, the 
condition parameter is considered as normal. 

Step 6: When the RMSE is greater than the threshold, the 
information entropy of prediction residual data is calcu- lated.  

Step 7: The thresholds of information entropy for each 
condition parameter are determined through analyzing the dis- 
tribution of information entropy of each parameter when the 
WT is under normal conditions. The condition parameter is 
considered as normal if the entropy is smaller than the thresh- 
old. In this case, the prediction residuals change slightly. Al- 
though RMSE is greater than the threshold, the corresponding 
condition parameter cannot be considered as abnormal. 

Step 8: The condition parameter is considered abnormal 
if the entropy is greater than the threshold. 

6. Verification and Analysis 

Two cases are selected to validate the proposed WT fault 
detection method. In Case 1, the proposed method is verified 
when WT operates at normal condition. The proposed method 
is validated in case 2 when WT occurs fault. 

 

6.1 Verification under normal condition 

In this section, SCADA data of WT 17 during a period of 
20 days (3000 data points) are collected during normal con- 
dition, which are used to verify the information entropy based 
anomaly identification method. Figure 8 shows the run chart 
of the generator bearing B temperature. It can be seen that the 
component temperature shows obvious dynamic characteris- 
tics under varying wind speed. The highest temperature is 
85 °C and the lowest temperature is 27 °C. Both the highest 
and the lowest temperature do not exceed the threshold value 
(± 95 °C).  

The generator bearing B temperature is predicted with 
the developed WT condition parameter prediction model. Fig- 
ure 9a shows the prediction residuals of the combination pre- 
diction model of the generator bearing B temperature. It can 
be seen that most of the residuals are distributed in the range 
between -5 to 5 °C. The values of few residuals exceed this 
range mainly due to the collected raw SCADA data used to 
train the prediction models are disturbed. Figure 9b shows the 
histogram of the prediction residuals data. It can be seen that 
the prediction residuals coming from the trained prediction 
models are normally distributed with a mean around zero. The 
distribution of residual data is consistent with the Gaussian 
distribution. 

Figure 9c shows the run chart of the RMSEs on a daily 
basis. The RMSEs change slightly and are mainly distributed 
between 2 and 3 °C during the normal condition of WTs. The 
information entropy of the residual is calculated according to 
Equation (5). The run chart of the information entropy is 
shown in Figure 9d. The entropy changes in a small range 
centering at 2 when the WTs operate at normal condition. 

 
 

Figure 7. Flowchart of anomaly identification of condition 

parameters. 

 
 Figure 8. Temperature of generator bearing B of WT 17. 



 J.S. Chen et al. / Journal of Environmental Informatics 32(1) 14-24 (2018) 

 

21

The proposed model for incipient WT fault detection 
performs well without misdiagnosis when WT operates during 
normal condition. The combination prediction model for ge- 
nerator bearing B temperature has a good performance on pre- 
diction accuracy. Besides, the information entropy distribution 
of prediction residual is consistent with the situation at WT 
normal condition. 

 

6.2 Verification under Abnormal Condition 

The SCADA data of WTs 17 and 31 are used to verify the 
proposed incipient WT fault detection method in this section. 

According to maintenance records, WT 17 suffered a 
sudden breakdown on May 30, 2012 due to the overheating of 
generator bearing B. The SCADA data from March 1, 2012 
(i.e., 90 days before the fault occurrence) to May 30, 2012 are 
analyzed. WT 31 experienced an overheating fault in bearing B 
on July 30, 2012. The SCADA data from May 16, 2012 (i.e., 
73 days before the fault occurrence) to July 30, 2012 are 
analyzed. These two WTs have been in operation for three 
months before the fault. 

The process of anomaly identification of the generator 
bearing B is given in this case study. The upper limit of the 
generator bearing B temperature of is 95 °C according to the 
setting values of WT parameters in the studied wind farm. 

Figure 10 shows the analysis results of the WT 17’s generator 
bearing B temperature. Figure 10a shows the run chart of the 
generator bearing B temperature. Based on the traditional 
prediction residual or RMSE threshold-based diagnosis method, 
the generator bearing B temperature is normal before the fault 
occurrence. Therefore, misdiagnosis occurs when using the 
threshold-based method. Figure 10b presents the prediction re- 
siduals of the combination prediction model. From the begin- 
ning to around the 10,000th data point, the prediction residuals 
are mainly distributed between −5 and 5 °C, and the WT 17’s 
generator bearing B temperature is at normal condition. At 
about the 10,000th data point, the residual rapidly increases to 
20 °C and decreases to −18 °C. The residuals become smaller 
during a short time after the 10,810th data point, and then 
show a great change of magnitude at about the 12,000th data 
point. 

It can be seen from Figure 10b that data points with the 
absolute value of the residual greater than 5 °C are less. 
However, the data points with the absolute value of the 
residuals greater than 10 °C exist. Thus, it is difficult to 
identify these points are abnormal data or disturbance. Figure 
10c shows the run chart of RMSEs with the interval 1 day. 
From the first day to the 70th day, the amplitudes of RMSE 
during normal condition are mainly smaller than 4 °C. It 
nearly reaches to 6.6 °C at the 75th day, then drops to around 4, 

 
Figure 9. Residual, RMSE and entropy of parameter model for temperature of generator bearing B in WT17 under normal 
condition: (a) Residual; (b) Histogram of Residual; (c) RMSE; (d) Entropy. 

Number of data points (× 103)
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and increases rapidly two days before the fault occurrence. It 
can be observed that the RMSEs around the 75th day and 
before fault occurrence are significantly greater than the situ- 
ations in the normal condition. 

According to the analysis in Section 4.1, the distribution 
of the generator bearing B temperature prediction residual 
submit to the normal distribution during the normal condition. 
Therefore, the information entropy of prediction residual 
changes slightly. Figure 10d presents the run chart of the daily 
information entropy. It can be observed that the information 
entropy is smaller than 2.5 before the 75th day, and then de- 
crease to 2. The information entropy increases more than 2.5 
suddenly and rapidly before the fault occurs. The bearing fault 
of WT 17 leads to the anomalies in generator bearing B 
temperature. There is a great different between the predicted 
value and the measured value with the generator bearing B 
temperature. Compared with the residual distribution during 
normal condition, the residual distribution during the abnormal 
condition changes disorderedly. To detect the WT fault, the 
information entropy is employed to quantify the abnormal 
level of the residual. It can be observed that the information 
entropy is effective to detect the WT faulty condition by 
quantifying the abnormal levels of the residuals from Figure 
10d. 

Figure 11 shows the analysis results of the generator 
bearing B temperature of WT 31, which presents a similar 

change tendency with that in Figure 10. The prediction resi- 
duals deviate without fluctuating around 0 °C mainly because 
the training data of the prediction model are collected from 
other WT. Due to the deviation of prediction residual in WT 
31, the RMSE amplitudes in WT 31 are greater than the 
RMSE amplitudes in WT 17. Although the anomalies in gen- 
erator bearing B temperature of WT 31 also can be seen from 
the change tendency of the prediction residual and RMSE in 
Figs. 11b and 11c, the abnormal level of condition parameter 
is unquantifiable. The incipient WT faulty cannot be detected 
with traditional residual or RMSE threshold-based method 
because the thresholds of prediction residual and RMSE are 
difficult to determine. The run chart of daily information en- 
tropy is presented in Figure 11d. It can be seen that the 
entropy is still smaller than 2.5 before the 55th day, and then 
increases rapidly more than 2.5 before the fault occurrence. 
The values of information entropy are both lower than 2.5 
through analyzing the distribution of information entropy of 
generator bearing B temperature when the WT is under nor- 
mal conditions. The condition parameter generator bearing B 
temperature can be considered abnormal. The generator bearing 
fault of WT 31 can be detected effectively through the com- 
bination prediction model and the analysis of information 
entropy. 

However, the threshold values of information entropy for 
each condition parameter are different because of the different 

 
Figure 10. Analysis results for SCADA data of WT 17: (a) Temperature of generator bearing B; (b) Residual; (c) RMSE; (d) 
Entropy.  

Number of data points (× 103) Number of data points (× 103) 
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distributions of each condition parameter. Therefore, it is via- 
ble to develop the uniform quantization standard for detecting 
anomalies in a certain condition parameter of different WTs. 

7. Conclusions 

In this work, a generalized model for WT faulty con- 
dition detection was developed using the combination predict- 
tion approach and the information entropy. SCADA datasets 
were selected for developing the prediction models of WT 
condition parameters that are dependent on environmental 
conditions such as ambient temperature and wind speed. The 
combination prediction models were developed for these WT 
condition parameters. The modeling method was illustrated by 
using the temperature of generator bearing B as an example. 
The BPNN model, the LSSVM model, and the RBFNN model 
were used as the individual prediction models. The weights of 
the individual prediction models were optimized to improve 
the prediction accuracy based on the principle of minimizing 
the sum-of-squares of the prediction residual. The information 
entropy was utilized to quantify the abnormal level of con- 
dition parameters. Two case studies for an onshore wind farm 
in Northern China have been carried out and analyzed. The 
results revealed that the proposed method is more effective in 
detecting the parameter anomalies prior to fault occurrence 
than traditional methods such as prediction residual or RMSE 
threshold-based method and a single-model-based method. 

The linear combination prediction approach was demonstrated 
to be effective at developing the prediction models for WT 
condition parameters with better accuracy and generalization 
performance in this paper. The information entropy of predict- 
tion residual was also proved to be useful in establishing the 
uniform quantization standard for detecting faulty conditions 
of different WTs of a wind farm. 

Due to the limited data that we collected at present, the 
impact of different training data (e.g., current SCADA data, 
historical SCADA data and SCADA data obtained on other 
WTs with different geographical positions) on the effectiveness 
of proposed WT fault detection method will be investigated in 
our future work. 

We hope our work is useful for researchers who are 
interested in WT condition monitoring, fault detection and 
helpful for wind farm operators to monitor the health con- 
dition of WTs. 
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