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ABSTRACT. A multiple regression method (MRM) is used for the first time with Ozone Monitoring Instrument (OMI) and Moderate 

Resolution Imaging Spectroradiometer (MODIS) data to estimate formaldehyde (HCHO) column over Asia in two categorized areas: (1) 

anthropogenic areas in East Asia (east-central China, Beijing, Seoul, and Tokyo) and (2) biogenic and pyrogenic areas (Indochina and 

South Borneo). In order to determine the multiple regression equations (MREs) for each study area, monthly mean and daily values of 

Nitrogen dioxide (NO2) level, land surface temperature (LST), enhanced vegetation index (EVI), and fire radiative power (FRP) from 

2005 to 2006 were used as independent variable candidates and monthly mean and daily HCHO measured by OMI (HCHOOMI) for the 

same period was used as the dependent variable. The MREs estimated HCHO (HCHOMRM) with inputs of independent variable data for 

from 2005 to 2006 whereas they estimated HCHO (HCHOVAL) with inputs of independent variable data in 2007. The agreement between 

HCHOOMI and HCHOVAL is comparable with that between HCHOOMI and HCHOMRM in both monthly and daily scale. The average 

correlation coefficient, slope, mean bias, mean absolute error, root mean square error, and percent difference between monthly HCHOOMI 

and monthly HCHOVAL (between daily HCHOOMI and daily HCHOMRM) are 0.89 (0.58), 0.77 (0.34), -0.82 × 1015 molecules cm-2 (-0.91 

× 1015 molecules cm-2), 1.28 × 1015 molecules cm-2 (3.01 × 1015 molecules cm-2), 1.75 × 1015 molecules cm-2 (4.32 × 1015 molecules  

cm-2), 10.2% (24.1%). MRM can be a useful tool to provide HCHO in certain area in Asia. 
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1. Introduction 

Formaldehyde (HCHO) is known to be toxic, with adverse 

effects on the human body that include, for example, damage 

to oral fibroblasts and epithelial cells (Nilsson et al., 1998). Bi- 

omass burning (Andreae and Merlet, 2001) and fossil fuel com- 

bustion (Olivier et al., 2003) are responsible for primary produ- 

ction of HCHO in the atmosphere, but only contribute about 

1% of global HCHO (Stavrakou et al., 2009a). Most HCHO is 

generated by secondary production from photo-oxidation of 

both Volatile Organic Compounds (VOCs) and Non Methane 

Volatile Organic Compounds (NMVOCs), which originate fr- 

om human activity, vegetation, and biomass burning (Palmer et 

al., 2003, 2006; Steinbacher et al., 2005; Fu et al., 2007; Bark- 

ley et al., 2009; Stavrakou et al., 2009a, 2009b). VOCs are one 

of the causes of photochemical smog while NMVOCs are a 

precursor of tropospheric ozone formation. The lifetime of HC- 

HO is only a few hours, driven by photolysis mainly at wave- 

lengths less than 400 nm and chemical reaction with hydroxyl 

radicals (Arlander et al., 1995). 

Regional and seasonal variations of HCHO can be large 

due to its diverse emission sources and variability in its for- 

mation. In order to understand the temporal and spatial charac- 

teristics of HCHO on regional and global scales, satellite sen- 

sors for HCHO measurements have been developed over the 

last two decades by taking advantage of the extensive spatial 

coverage of the satellite measurements. Satellite sensors that 

have measured HCHO include the Global Ozone Monitoring 

Experiment (GOME) on the European Remote Sensing-2 satel- 

lite (ERS-2) launched in April 1995, the SCanning Imaging 

Absorption SpectroMeter for Atmospheric CHartographY (SC- 

IAMACHY) on the European Environment Satellite (ENVI- 

SAT) launched in March 2002, the Atmospheric Chemistry Ex- 

periment-Fourier Transform Spectrometer (ACE-FTS) on Sci- 

ence Satellite (SCISAT-1) launched in August 2003, the Ozone 

Monitoring Instrument (OMI) on Aura launched in June 2004, 

GOME-2 on the Meteorological Operational satellites laun- 

ched in January 2007 (MetOp-A) and September 2012 (MetOp 

-B), the Ozone Mapping and Profiler Suite (OMPS) on Suomi 

National Polar-orbiting Partnership (Suomi NPP) launched in 

October 2011. 

Up to the present, measurements and analysis of global 

distributions of HCHO and its precursors have been actively 

conducted using hyperspectral Ultraviolet (UV) sensors on bo- 

ard of such satellite platforms. De Smedt et al. (2008, 2012) re- 
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ported the global-scale temporal and spatial characteristics of 

HCHO based on data from GOME, SCIAMACHY, OMI, and 

GOME-2 observations. Observations of HCHO over the West 

Pacific from SCIAMACHY and GOME-2 were validated using 

ship-based Multi axis differential optical absorption spectro- 

scopy (MAX-DOAS) observations (Peters et al., 2012). The 

spatial and temporal variability of OMI-derived HCHO was 

compared with GOME, SCIAMACHY and the Goddard Earth 

Observing System-Chem Model (GEOS-Chem) (Bey et al., 

2001) data over the US and Asia (Baek et al., 2014). Recently, 

spatial and seasonal characteristics of HCHO have been esti- 

mated using a Chemical Transport Model (CTM). Boeke et al. 

(2011) estimated HCHO using the GEOS-Chem model and va- 

lidated the results by comparison with OMI data.  

The multiple regression method (MRM) has been widely 

used for estimating concentrations of atmospheric constituents 

such as particulate matter (PM) and trace gases. Kim et al. (20- 

12) used MRM to estimate primary organic carbon (POC) and 

secondary organic carbon (SOC) concentrations. Gupta et al. 

(2009) estimated PM2.5 in the planetary boundary layer using 

MRM with aerosol optical thickness measured from the Mode- 

rate Resolution Imaging Spectroradiometer (MODIS) as an in- 

dependent variable. MRM often provides statistically robust 

predictions, although the accuracy of the estimation may vary 

with the target species. MRM has been also utilized to estimate 

diurnal variations in ambient ozone concentration (Abdul-Wa- 

hab et al., 2005). To date, however, there have been no attempts 

to estimate trace gases using MRM except for ozone.  

Sometimes, HCHO cannot be retrieved from satellite ob- 

servations because of poor measurement conditions (e.g., poor 

signal to noise ratio (S/N) at UV in winter) (Chance, 2002; Ste- 

ck et al., 2008). The noise of the sensor itself is constant, how- 

ever, S/N become poorer when radiation signal get weak espe- 

cially in winter. The spectral fitting procedure (e.g., DOAS) 

takes place to retrieve the HCHO slant column density (SCD), 

which is later converted into vertical column density using air 

mass factor (AMF). When the spectral fitting is done to retrieve 

the SCDs with the observation Level 1b data, if a magnitude of 

the unexplained residual signal’s optical depth is larger than 

that of the HCHO, the noise included in the observation data is 

too large to retrieve the HCHO SCDs, which can be regarded 

as the poor observation data. 

Therefore, as part of the efforts to provide HCHO column 

data, we, for the first time, used MRM with OMI and MODIS 

observational data to estimate HCHO vertical column density 

(HCHO VCD) over Asia where various HCHO sources are pre- 

sent. The present study also aims to demonstrate the feasibility 

of utilizing MRM for HCHO estimation, based on the agree- 

ment between HCHO VCD estimated by MRM (HCHOMRM) 

and that measured by OMI (HCHOOMI) in monthly scale. Addi- 

tionally, MRM and simple interpolation method are used for 

the estimation of HCHO column density in daily basis. 

2. Data and Methods 

2.1. Multiple Regression Method 

In the present study, MRM is used to estimate the spatial 

distribution of HCHO VCD in Asia. MRM can be carried out 

with least square fitting of a multiple regression equation (MR- 

E) that consists of a dependent variable, independent variables, 

and their regression coefficients. In order to find the candidates 

for independent variables to be used in the MRE, we considered 

the candidates for independent variables that are known to have 

a high correlation with HCHO. Figure 1 shows the spatial dis- 

tribution of correlation coefficient (R) of monthly mean values 

of HCHOOMI against those of (a) Nitrogen dioxide (NO2), (b) 

Fire Radiative Power (FRP), (c) Land Surface Temperature 

(LST), and (d) Enhanced Vegetation Index (EVI) for pixels wh- 

ere |R| > 0.4. In Figure 1, the HCHOOMI data are obtained from 

the OMI measurements (OMI Formaldehyde Level2G Global 

Table 1. Information about Data Products and Considered Flags Used in this Present Study 

Sensor Algorithm  Product name Spatial resolution Filtered flags and conditions Accuracy 

OMI  version 

003 

HCHO 

(OMHCHOG) 

0.25˚ × 0.25˚ -Missing 

-Suspect  

-Bad 

-Cloud Fraction > 0.2 

-Solar zenith angle > 70˚ 

50-105%  

(Chance, 2002) 

NO2  

(OMNO2d) 

0.25˚ × 0.25˚ Cloud-free and atmospherically corrected 

-Solar zenith angle > 85˚  

-Root Mean Squared Error Of Fit > 0.0003 

-Terrain Reflectivity > 30% 

-Cloud Fraction > 0.3 

(cloud-screened total column NO2) 

5% (unpolluted case) 

20% (polluted case) 

(Chance, 2002) 

MODIS  version 

005 

LST 

(MOD11C3, 

MOD11C1) 

0.05˚ × 0.05˚ Cloud-free and atmospherically corrected 1K (Wan, 1999) 

EVI (MOD13C2, 

MOD13C1) 

1.5% 

(Miura et al., 2000) 

FRP 

(MYD14CMH, 

MYD14C8H) 

0.5˚ × 0.5˚ Cloud-free and atmospherically corrected 5%  

(Freenborn et al., 2014) 
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binned data; OMHCHOG). The HCHOOMI used in this present 

study are those with cloud free (cloud fraction < 0.2) and those 

flagged as “0” which indicates good quality level. The NO2 

VCD data (NO2OMI) are also obtained from OMI measurements 

(OMI Level-3 Global Total and Tropospheric NO2 VCD Data 

Product; OMNO2d). The HCHOOMI and NO2OMI data are ob- 

tained from the NASA Goddard Earth Sciences Data and Infor- 

mation Service Center (http://disc.sci.gsfc.nasa.gov/Aura/data-

holdings/OMI). The NO2 retrievals of OMI have relatively re- 

liable accuracy even for the poor measurement condition (e.g., 

large solar zenith angle, viewing zenith angle, and cloud frac- 

tion (less than 0.3)) since it uses visible wavelengths where the 

signal is stronger than that in UV wavelengths, so that the MR- 

M method may be helpful to compensate the operational OMI 

HCHO retrievals. Also, the monthly FRP (FRPMODIS), LST (L- 

STMODIS), and EVI data (EVIMODIS) data are obtained from MO- 

DIS products (MYD14CHM, MOD11C3, and MOD13C2, res- 

pectively) available from Reverb (http://reverb.echo.nasa.gov/ 

reverb). For the estimation of daily HCHO, MYD14C8H, MO- 

D11C1, and MOD13C1 are used for FRPMODIS, LSTMODIS, and 

EVIMODIS, respectively. Since the temporal resolution of MYD- 

14C8H and MOD13C1 are 8 days and 16 days, it may have an 

effect on the performance of daily HCHO estimation using 

MRM. The independent variable data that are used in this pre- 

sent study have been utilized in a lot of researches for several 

study areas in various purposes (Zhang et al., 2004; Giglio et 

al., 2006; Sims et al., 2008; Irie et al., 2012; Russell et al., 20- 

12). Table 1 summarizes sensor, algorithm version, product na- 

me, spatial resolution, filtered flags and conditions, and accura- 

cy for OMI and MODIS products. 

NO2 was selected as one of the candidates for independent 

variables to account for both primary (Olivier et al., 2003) and 

secondary (Steinbacher et al., 2005) HCHO formation related 

to anthropogenic fossil fuel combustion, and to biomass bur- 

ning (Andreae and Merlet, 2001; Palmer et al., 2003, 2006; Go- 

nzi et al, 2011). Furthermore, high level of nitrogen oxides 

(NOx = NO + NO2) can lead to active oxidation of isoprene 

which is one of the precursor of the HCHO in physicochemical 

point of view (Trainer et al., 1987). In Figure 1, there are diver- 

se distributions of correlations between HCHOOMI and the in- 

dependent variable candidates due to various HCHO sources 

and their contribution to HCHO level on each area. In Figure 

1a, there are high positive correlations between HCHOOMI and 

NO2OMI in the Indochina peninsula, northeast Sumatra, and 

south Borneo in Southeast Asia. However, there are high nega- 

tive correlations between HCHOOMI and NO2OMI values over 

the east coast of China, South Korea, and the south coast of 

Japan due to their opposite seasonal cycles (Figure 1a). FRP, 

which represents the radiative heat emitted from fires such as 

forest fires, was chosen as a candidate for independent vari- 

ables, since HCHO is produced from biomass burning. Accor- 

ding to the previous study (Barkley et al., 2009), biomass bur- 

ning is a significant source of HCHO which implies that the 

stronger biomass burning can lead to the more HCHO produ- 

ced. Thus, FRP can be a reasonable independent variable candi- 

date to explain HCHO in biomass burning areas. There are high 

positive correlations between HCHOOMI and FRPMODIS in Sou-  

  
 

Figure 1. Distribution of correlation coefficient (R) between 

HCHOOMI and (a) NO2OMI, (b) FRPMODIS, (c) LSTMODIS, and 

(d) EVIMODIS from January 2005 to December 2007 in Asia. 
 

theast Asia and south Borneo in Figure 1b. However, high ne- 

gative correlations are found in South China, due to the oppo- 

site seasonal cycles of HCHOOMI and FRPMODIS in this area: 

HCHOOMI and FRPMODIS have their maximum values in sum- 

mer and winter, respectively. Although winter FRP in South 

China was likely to be enhanced by active wood fuel combus- 

tion, the enhanced FRP could not lead to increase in HCHO 

level due to negligible HCHO emission from heating with wo-

od fuel (Andreae and Merlet, 2001; Cuiping et al., 2004). In or- 

der to account for biogenic HCHO, LSTMODIS and EVIMODIS are 

selected as candidates for independent variables in the MRE 

since HCHO precursors such as isoprene are significantly in- 

http://reverb.echo.nasa.gov/
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fluenced by type of vegetation, foliar density, leaf age, photo- 

synthetic photon flux density (PPFD), and temperature (Guen- 

ther et al., 2000). Leaf area index was also initially considered 

as one of the independent variable candidates. The emission of 

biogenic VOCs such as isoprene, emitted from biosynthesis of 

vegetation are dependent with temperature (Laothawornkitkul 

et al., 2009) so that LSTMODIS and EVIMODIS can be physico- 

chemically suitable independent variable to estimate HCHO 

column density. Leaf area index, however, is eventually exclu- 

ded from the independent variable candidates due to its high 

value of variation inflation factor (VIF) against EVI. The de- 

tails of VIF are explained later in this Section 2.1. Additional 

explanation of correlations between independent variable can- 

didates and HCHOOMI can be found later in Section 2.3. In ge- 

neral, positive correlations between HCHOOMI and LSTMODIS 

and EVIMODIS in Northeast Asia tend to be higher than those in 

Southeast Asia (Figure 1c and 1d). In Northeast Asia, we found 

that the spatial distribution of R between HCHOOMI and LS- 

TMODIS (Figure 1c) is very similar to that between HCHOOMI 

and EVIMODIS except in the central east industrial region in 

China (Figure 1d). However, we found no significant correla- 

tions between HCHOOMI and LSTMODIS and EVIMODIS in South- 

east Asia (Figure 1c and 1d). These insignificant correlations 

may be driven by the small amplitude of seasonal LSTMODIS and 

EVIMODIS variations due to strong but steady solar radiation 

throughout the year.  

The multiple regression equation can be defined as the fo- 

llowing equations: 
 

0 1 1 2 2
ˆ

n ny x x x    = + + + + +  (1) 

 

where ŷ and 0 are dependent variable (HCHOMRM) and cons- 

tant coefficient, 1 2, , ..., nx x x are the independent variables (N- 

O2OMI, LSTMODIS, EVIMODIS, and FRPMODIS), 1 2, , ..., n    are 

the regression coefficients of the independent variables, and 

is the difference between observations (HCHOOMI) and esti-

mated values (HCHOMRM). The regression coefficients can be 

estima- ted by the least square fitting (Equation 2): 

 

2 2

1 1

ˆ( )
m m

j j j

j j

y y
= =

= −   (2) 

 

where jy is observed value with m numbers of data points. By 

minimizing the sum of
2 , regression coefficients can be deri- 

ved. To determine MREs which ensure statistical significances, 

two criteria are considered: VIF and p-value. First, we exami- 

ned the VIF that explains the multicollinearity of an indepen- 

dent variable candidate with regard to other independent vari- 

able candidates. The VIF of the j-th independent variable is ex- 

pressed as: 
 

2

1
( )

1
j

j

VIF x
R

=
−

 (3) 

 

where 
2

jR  is the coefficient of determination for the regres-

sion of jx against the other (a regression that does not involve 

the dependent variable j). The VIF indicates how much jx  is 

correlated with the variables. A candidate for independent 

variables with a very high VIF can be considered redundant and 

should be removed from the MRE. The candidates for 

independent variables that do not satisfy the criterion VIF > 10 

(Kutner et al. 2004), were excluded from the independent 

variables. We also used p-value to select independent variables. 

The highest, still statistically significant p-level was shown by 

Sellke et al. (2001) to be 5%. Among the independent variables 

that satisfy the VIF criterion, those that also satisfy the p-value 

less than 0.05 (p-value < 0.05) are selected as final independent 

variables in the MRE. The independent variables and re- 

gression coefficients determined by least square fitting for each 

area are shown in Table 2.  

In order to determine the final form of the MREs in mon- 

thly and daily basis, monthly mean and daily values of NO2OMI, 

FRPMODIS, LSTMODIS, and EVIMODIS from 2005 and 2006 were 

used as independent variable candidates and monthly mean and 

daily HCHOOMI for the same period was used as the dependent 

variable. In order to reflect the various HCHO source types 

possibly present in each area selected in Figure 2, the data for 

the independent variables are averaged within each area. 

 

 

Figure 2. The areas where the MRM was used for HCHO 

estimation. 

 

2.2. Regions of Interest  

We selected the areas where MRM is used to estimate 

HCHO according to two criteria: first, in order to include the 

areas where HCHO estimation using MRM may be feasible, 

we selected areas where there are high correlations (|R| > 0.4) 

between HCHOOMI and one or more independent variables in 

Figure 1. Among the areas that satisfy the primary criterion, 

only the areas where the monthly value of HCHOOMI is within 

the top 10% (> 1.28 × 1016 molecules cm–2) were selected since 

areas with high HCHO are more likely to have explicit seasonal 

cycles. Depending on the correlation coefficient from the linear 

regressions, the area types are subjectively classified as: 

Biogenic and pyrogenic area: the regions where there are 

positive correlations between HCHOOMI against NO2OMI and 

FRPMODIS (R ≥ 0.4). 

Anthropogenic area: The regions where there are positive 

correlations between HCHOOMI against LSTMODIS and EVIMODIS 

(R ≥ 0.4) but negative correlations between HCHOOMI and N- 

O2OMI (R ≤ -0.4). 
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The areas that satisfy these two criteria in Southeast Asia 

are Indochina (18° - 22°N, 98° - 102°E) and South Borneo (4° 

S - 0° N, 108° - 116° E) where biomass burning is reported to 

take place regularly (Fu et al., 2007). In East Asia, the areas 

that satisfy these criteria are the three megacities; Beijing 

(39.5° - 40.5° N, 115.5° - 117.5° E), Seoul (37° - 38° N, 126.5° 

- 127.5° E), and Tokyo (35.5° - 36.5° N, 139° - 140° E), along 

with industrial areas along the east coast of China (36° - 40° N, 

113° - 119.75° E). Finally, these selected areas (Figure 2) were 

classified into two categories: (1) Biogenic and Pyrogenic Are- 

as (BPA; green circles; Indochina, South Borneo) and (2) Anth- 

roPogenic Areas in East Asia (APA; blue circles; east-central 

China, Beijing, Seoul, Tokyo). South China is excluded in the 

regions of interest due to its complexity of HCHO sources inc- 

luding biogenic, anthropogenic, and biomass burning in the 

post-harvest season. 

 

2.3. Seasonal Characteristics of the Wariables Used in the 

MRE 

2.3.1. Biogenic and Pyrogenic Areas (BPA) 

Figure 3 shows time series of HCHOOMI, NO2OMI, FR- 

PMODIS, LSTMODIS, and EVIMODIS from January 2005 to Decem- 

ber 2007 in the BPA of Indochina and South Borneo, which are 

marked with green circles in Figure 2. In South Borneo, there 

is good agreement between the seasonal cycles of HCHOOMI 

and the three independent variables (NO2OMI, FRPMODIS, and 

LSTMODIS) in Figure 3. There are high FRPMODIS values from 

August to November, which could be associated with an inc- 

rease in FRPMODIS due to biomass burning events. Most fires 

occurred in the period were related to slash and burn activities 

(Langner et al., 2007). In 2006, the monthly average HCHOOMI 

is 53% higher than in other years, which is in good agreement 

with the 56% increase in monthly average FRPMODIS during the 

biomass burning period in 2006 relative to 2005 and 2007. Fur- 

thermore, during the biomass burning period in 2006, NO2OMI 

increases by about 26% and LSTMODIS reaches its maximum. In 

Indochina, the seasonal cycle of HCHOOMI is in good agree- 

ment with those of the independent variables during the bio- 

mass burning events that took place annually from January to 

May.  

 

Figure 3. Time series of monthly HCHOOMI, NO2OMI, 

FRPMODIS, LSTMODIS, and EVIMODIS (see text for an explana-

tion of these variables) in the BPA (South Borneo and 

Indochina). 

2.3.2. Anthropogenic Areas in East Asia (APA) 

Figure 4 shows time series of HCHOOMI, NO2OMI, LS- 
TMODIS, and EVIMODIS from January 2005 to December 2007 in 
the APA marked with blue circles in Figure 2 (east-central 
China, Beijing, Seoul, and Tokyo). We have excluded FRPMODIS 

from Figure 4 as no fires were detected in those areas during 
our study period. The values of HCHOOMI tend to increase in 
summer, which could be attributed to increased secondary 
HCHO from fossil fuel combustion under enhanced solar 
radiation conditions in summer (Ahmad et al., 2011). Ac-
cording to a previous study (Pang et al., 2009), such an increase 
in HCHOOMI could be partly explained by enhanced emission 
from biogenic HCHO even in the APA in summer when both 
LSTMODIS and EVIMODIS tend to increase as shown in Figure 4. 
NO2 tends to reach its minimum in summer when the solar 
radiation is strongest. Thus, NO2OMI tend to be negatively 
correlated with HCHOOMI, LSTMODIS, and EVIMODIS as shown 
in Figure 4.  

 

 

Figure 4. Time series of monthly HCHOOMI, NO2OMI, 

LSTMODIS, and EVIMODIS (see text for an explanation of these 

variables) in the APA. 

3. Results 

3.1. Estimation of Monthly HCHO Column Density  

3.1.1. Determination of the MREs  

The regression coefficients are obtained by least square 
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fitting (Timm, 2002). Table 2 presents the MREs with regres- 

sion coefficients determined for each region of interest. The va- 

riables, that satisfy the two criterions VIF > 10 (Kutner et al., 

2004) and p-value < 0.05 (Sellke et al., 2001), are included in 

the MREs in Table 2. We used two different terms for NO2 in 

Table 2 to represent the two different major sources, biomass 

burning and fossil fuel combustion. In the biogenic and pyro- 

genic dominant areas with very low population density where 

there is negligible fossil fuel combustion activity, NO2 is cate- 

gorized as BBNO2 (NO2 derived from biomass burning). Since 

biomass burning was not detected in the APA during the study 

period, as inferred from the unavailability of FRPMODIS, NO2 in 

the APA is categorized as FFCNO2 (NO2 derived from fossil fuel 

combustion). We found better agreement between monthly H- 

CHOMRM and monthly HCHOOMI in South Borneo than in In- 

dochina. In BPA, both BBNO2 and LSTMODIS are included in the 

MREs for both South Borneo and Indochina. In the MRE for 

South Borneo, FRPMODIS is included while EVIMODIS is exclu- 

ded due to a high p-value (0.753). In the MRE for Indochina, 

EVIMODIS is included whereas FRPMODIS is excluded from the 

MRE for Indochina due to high VIF (14.8). The correlation co- 

efficients (R) obtained from linear regression between monthly 

HCHOOMI and monthly HCHOMRM are 0.99 in South Borneo 

and 0.94 in Indochina, respectively.  

In APA, FRPMODIS is excluded from independent variable 

candidates for MREs due to its unavailability in these areas. 

Only a few number of FRPMODIS data are available in east-cen- 

tral China, Beijing, Seoul, and Tokyo. Both FFCNO2 and LS- 

TMODIS are included in the MREs for Beijing and east-central 

China. For Beijing, EVIMODIS is included in the MRE. However, 

EVIMODIS is excluded from the MRE for east-central China due 

to a high p-value (0.382). For Seoul and Tokyo, only EVIMODIS 

is included in the MREs. LSTMODIS and FFCNO2 is excluded 

from the MREs for Seoul and Tokyo due to the high p-values. 

The correlation coefficients obtained from linear regression 

between monthly HCHOOMI and monthly HCHOMRM are 0.89, 

0.97, 0.91, and 0.90 in east-central China, Beijing, Seoul, and 

Tokyo, respectively. 

3.1.2. An Evaluation of the Performance of the MREs 

The regression coefficients of the MREs in Table 2 were 

determined based on monthly mean data for dependent and in- 

dependent variables for 24 months period from 2005 and 2006. 

For the assessment of the performance of the MREs in Table 2, 

monthly mean HCHOOMI data in 2005 and 2006 were compared 

with HCHO estimated (monthly HCHOMRM) using the MREs 

in Table 2 with the inputs of monthly mean independent vari- 

able data for 24 months period from 2005 and 2006. In addi- 

tion, we tried to carry out an unbiased assessment of the perfor- 

mance of the MREs in Table 2 via estimating HCHO (monthly 

HCHOVAL) using the MREs in Table 2 with the inputs of mon- 

thly mean independent variable data for 12 months period in 

2007. Monthly HCHOVAL was compared with monthly HCH- 

OOMI in 2007.  

Figure 5 b-c shows spatial distributions of two years mean 

HCHOOMI for 24 months period from 2005 to 2006 and two ye- 

ars mean values of HCHOMRM for the same period in South Bo- 

rneo, whereas Figure 5d-e shows annual mean HCHOOMI for 

12 months period in 2007, and annual mean values of HCH- 

OVAL for the same period in South Borneo. Figures 6 and 7 are 

the same as Figure 5 but for Indochina and east-central China, 

respectively. In general, spatial distributions of two years mean 

HCHOMRM and annual mean HCHOVAL in Figures 5, 6, and 7 

show good agreements with HCHOOMI. Spatial distributions of 

two years mean HCHOMRM and annual mean HCHOVAL are not 

shown here for Beijing, Seoul, and Tokyo due to the small num- 

ber of pixels which compose each of those megacity areas. 

However, in order to quantify the performance of the MREs for 

all of the study areas including Beijing, Seoul, and Tokyo, the 

statistical values between monthly HCHOOMI and HCHOMRM is 

compared with that between monthly HCHOOMI and monthly 

HCHOVAL. 

Table 2. Final Form of the MRE and Correlation Coefficient (R) Obtained from the Linear Regression between Monthly HCHOMRM 

and HCHOOMI for 24 Months Period from 2005 and 2006 

Type Area VIF* p-value** Multiple regression equation [× 1015 molecules cm-2]*** 

Comparison with 

monthly HCHOOMI 

R**** 

BPA South Borneo (4° S - 0° N, 

108° - 116° E) 

‒ EVI (0.753) 6.21 × BBNO2 + 0.01 × 1.27LST – 0.202 × FRP – 11.7 0. 99 

Indochina (18° - 22° N, 

98° - 102° E) 

FRP (14.8) ‒ 2.51 × BBNO2 + 0.58 × LST + 11.4 × EVI – 16.8 0.94 

APA East-central China (36° - 

40° N, 113° - 119.75° E) 

‒ EVI (0.382) 0.284 × FFCNO2 + 0.326 × LST + 2.34 0.89 

Beijing (39.5° - 40.5° N, 

115.5° - 117.5° E) 

‒ ‒ 0.298 × FFCNO2 + 0.247 × 1.12LST + 7.14 × EVI + 3.90 0.97 

Seoul (37° - 38° N, 126.5° 

- 127.5° E) 

‒ LST (0.748) 

FFCNO2 (0.245) 

7.50 × 9.11EVI – 0.269 0.91 

Tokyo (35.5° - 36.5° N, 

139° - 140° E) 

‒ FFCNO2 (0.275) 

LST (0.327) 

5.34 × 20.7EVI + 0.031 0.90 

* The independent variable candidates that do not satisfy the VIF criterion (VIF < 10) are indicated. 
** The independent variable candidates that do not satisfy the p-value criterion (p-value < 0.05) are indicated. 
*** FRP is excluded from independent variable candidates for MREs in APA.  
**** Correlation coefficient between monthly HCHOOMI and HCHOMRM. 
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Figure 5. (a) Map of South Borneo, spatial distributions 

of (b) two years mean HCHOOMI for 24 months period 

from 2005 to 2006, (c) two years mean values of HCHO 

estimated (HCHOMRM) using the MREs in Table1 with 

the inputs of monthly mean independent variable data 

for 24 months period from 2005 and 2006, and (d) 

annual mean HCHOOMI for 12 months period in 2007, 

and (e) annual mean values of HCHO estimated 

(HCHOVAL) using the MREs in Table 1 with the inputs 

of monthly mean independent variable data for 12 

months period in 2007. 

 
Figure 6. Same as Figure 5 but for Indochina. 

 

 
Figure 7. Same as Figure 5 but for China. 
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Figure 8 shows the (a) R (correlation coefficient), (b) slo- 

pe, (c) mean bias, (d) MAE (mean absolute error), (e) RMSE 

(root mean square error) and (f) percent difference between 

monthly mean monthly HCHOOMI in 2005 and 2006 against 

monthly HCHOMRM, and between monthly HCHOOMI in 2007 

against monthly HCHOVAL. The correlation coefficient (R) and 

the slopes are found to be up to 0.99 and 0.98, respectively, 

showing very good agreements between monthly HCHOOMI 

and monthly HCHOMRM. The mean bias values are found to be 

close to zero in Figure 5c, implying negligible bias of monthly 

HCHOMRM against monthly HCHOOMI. The MAE values ran- 

ges from 0.58 to 1.26 × 1015 molecules cm-2 in Figure 5d. Fig- 

ures 5 e and 5f present RMSE and percent difference obtained 

from the linear regressions between monthly HCHOOMI and 

monthly HCHOMRM. The RMSE and percent difference are fo- 

und to range from 0.75 to 1.64 × 1015 molecules cm-2 and from 

7.1 to 9.9%, respectively, showing good performances of MR- 

M. The statistical values between monthly HCHOOMI in 2005 

and 2006 against monthly HCHOMRM are found to be either 

similar or slightly different from those between monthly HCH- 

OOMI in 2007 against monthly HCHOVAL. The correlation coe- 

fficient (R) and the slopes are found to be up to 0.96 and 0.91, 

respectively, showing good agreements between monthly HC- 

HOOMI and monthly HCHOVAL. In terms of east-central China, 

we found R (0.81) and slope (0.50) between monthly HCHOOMI 

in 2007 against monthly HCHOVAL lower than those between 

monthly HCHOOMI in 2005 and 2006 against monthly HCH- 

OMRM. However, we found almost negligible differences in oth- 

er statistical values (mean bias, MAE, RMSE, percent differ- 

rence) for all of the study areas. The mean bias values are found 

to be either close to or smaller than zero in Figure 5c, implying 

negligible bias of monthly HCHOVAL against monthly HCH- 

OOMI. The MAE values range from 0.77 to 1.54 × 1015 molecu- 

les cm-2 in Figure 5d. Figures 5 e and 5f present RMSE and per- 

cent difference obtained from the linear regressions between 

monthly HCHOOMI and monthly HCHOVAL. The RMSE and 

percent difference range from 0.96 to 2.15 × 1015 molecules 

cm2 and 7.4 to 14.1%, respectively, showing similar perfor-

mances of monthly HCHOVAL to those of monthly HCHOMRM. 

For Tokyo, most of the statistical values except for mean   

bias between monthly HCHOOMI and monthly HCHOVAL are 

better than those between monthly HCHOOMI and monthly 

HCHOMRM. 

 

3.2. Estimation of Daily HCHO Column Density 

We also evaluated the performance of the MREs in Table 

3 by comparing daily HCHO estimates using the MREs and 

those using an interpolation method. Table 3 shows the MREs 

with regression coefficients determined using daily data of de- 

pendent and independent variables for 728 days period from 

2005 to 2006. Table 3 shows the MREs with regression coeffi- 

cients determined using daily data of dependent and indepen- 

dent variables for 728 days period from 2005 to 2006. In BPA, 

FRPMODIS and LSTMODIS are excluded in the MRE for South 

Borneo due to high p-values (0.576 and 0.166, respectively) 

while the least square fitting is optimized when all of indepen- 

dent variables are included in the MRE in Indochina. In APA, 

all of independent variables are selected in the final form of 

MREs in east central China, Beijing, and Seoul. However, in 

Tokyo, LSTMODIS and FFCNO2 are excluded in the MRE due to 

high p-values, which are 0.413 and 0.252, respectively. The R 

between daily HCHOOMI and daily HCHOMRM is generally sm- 

aller than that between monthly HCHOOMI and monthly HCH- 

OMRM. It may be explained by the use of 8 and 16 days data for 

FRPMODIS and EVIMODIS, respectively in the estimation of daily 

HCHOMRM. We then estimated daily HCHO (daily HCHOVAL) 

using the MREs in Table 3 with the inputs of daily independent 

variable data for 364 days in 2007. A simple interpolation me- 

thod is also used to estimate HCHO column density (daily HC- 

HOInterpol) for 364 days in 2007. In this present study, twenty 

five percent of the total number of pixels within each target area 

is randomly removed and linearly interpolated with the value 

of near pixels for each area (Kythe and Wei, 2011). 
 

 
Figure 8. (a) R, (b) slope, (c) mean bias, (d) mean absolute 

error (MAE), (e) the root mean square error (RMSE), and (f) 

percent difference between monthly HCHOOMI against 

HCHOMRM and HCHOVAL. Solid triangles represent the values 

for the regression between monthly HCHOOMI in 2005 and 

2006 and HCHOMRM. Open circles represent those between 

monthly HCHOOMI and HCHOVAL in 2007. 
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Figure 9 presents the (a) R, (b) slope, (c) mean bias, (d), 

(e) RMSE, and (f) percent difference between daily HCHOOMI 

in 2007 and daily HCHOInterpol, and those between daily HCH- 

OOMI in 2007 and daily HCHOVAL. There are generally better 

MAE, RMSE, and percent difference between daily HCHOOMI 

and daily HCHOVAL than those between daily HCHOOMI and 

daily HCHOInterpol. Especially, in South Borneo, Indochina, Be- 

ijing and east-central China, the average MAE, RMSE, and per- 

cent difference between daily HCHOOMI and daily HCHOVAL 

are 2.78 × 1015 molecules cm-2, 3.76 × 1015 molecules cm-2, and 

21.1%. These statistical values show the good performance of 

the MREs, which is similar with those between monthly HCH- 

OOMI and monthly HCHOVAL. However, a simple interpolation 

method does not show a good performance of the HCHO 

estimates as the average MAE, RMSE, and percent difference 

between daily HCHOOMI and daily HCHOinterpol are 5.41 × 1015 

molecules cm-2, 7.62 × 1015 molecules cm-2, and 53.9% in Sou- 

th Borneo, Indochina, Beijing and east-central China. In terms 

of mean bias, the mean biases between daily HCHOOMI and dai- 

ly HCHOInterpol are close to zero since the data points in scatter 

plots between daily HCHOOMI and daily HCHOInterpol are sym- 

metrically and widely scattered in most of regions of interest. 

Thus, the mean biases between daily HCHOOMI and daily HC- 

HOInterpol are small, there are poor agreements between daily 

HCHOOMI and daily HCHOInterpol. In Seoul and Tokyo, We fou- 

nd that the average MAE, RMSE, and percent difference bet-

ween daily HCHOOMI and daily HCHOVAL are 3.65 × 1015 mole- 

cules cm-2, 5.45 × 1015 molecules cm-2, and 29.9% whereas tho- 

se between daily HCHOOMI and daily HCHOInterpol are 5.00 × 

1015 molecules cm-2, 7.10 × 1015 molecules cm-2, and 48.6%. 

Although daily HCHOVAL shows the good agreements with dai- 

ly HCHOOMI than daily HCHOInterpol, the performance of both 

the MRM and interpolation method for HCHO estimates is not 

good enough to provide the HCHO data. 

 
 

Figure 9. (a) R, (b) slope, (c) mean bias, (d) MAE, (e) RMSE, 

and (f) percent difference between HCHOOMI against daily 

HCHOInterpol and HCHOVAL. Solid triangles represent the 

values for the regression between daily HCHOOMI in 2007 and 

HCHOInterpol. Open circles represent those between daily 

HCHOOMI in 2007 and HCHOVAL. 

Table 3. Final Form of the MRE and Correlation Coefficient (R) Obtained from the Linear Regression between Daily HCHOMRM 

and Daily HCHOOMI for 728 Days Period from 2005 through 2006 

Type Area VIF* p-value** Multiple regression equation [× 1015 molecules cm-2]*** 

Comparison with 

daily HCHOOMI 

R**** 

BPA South Borneo (4° S - 0° N, 

108° - 116° E) 

‒ FRP (0.576) 

LST (0.166) 

4.59 × BBNO2 – 32.80 × EVI + 10.61 0.87 

Indochina (18° - 22° N, 

98° - 102° E) 

FRP (14.8)  1.92 × BBNO2 + 0.81 × 1.04LST + 14.98 × EVI + 0.09 × 

FRP – 5.14 

0.71 

APA East-central China (36° - 

40° N, 113° - 119.75° E) 

‒  0.09 × FFCNO2 + 6.41 × 1.01LST + 9.69 × EVI + 0.04 0.55 

Beijing (39.5° - 40.5° N, 

115.5° - 117.5° E) 

‒  0.15 × FFCNO2 + 0.06 × LST + 21.2 × EVI + 5.78 0.55 

Seoul (37° - 38° N, 126.5° 

- 127.5° E) 

‒  0.07 × FFCNO2 + 2.07 × 1.02LST + 22.37 × EVI + 5.26 0.51 

Tokyo (35.5° - 36.5° N, 

139° - 140° E) 

‒ LST (0.413) 

FFCNO2 (0.252) 

34.90 × EVI + 3.27 0.47 

* The independent variable candidates that do not satisfy the VIF criterion (VIF < 10) are indicated. 
** The independent variable candidates that do not satisfy the p-value criterion (p-value < 0.05) are indicated. 
*** FRP is excluded from independent variable candidates for MREs in APA.  
**** Correlation coefficient between daily HCHOOMI and HCHOMRM. 
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4. Conclusions 

For the first time, we have estimated HCHO VCD in East 

Asia and Southeast Asia using a MRM with OMI and MODIS 

data. There is better agreement between monthly HCHOOMI and 

monthly HCHOMRM than that between daily HCHOOMI and 

HCHOMRM in the BPA and the APA. The agreement between 

monthly HCHOOMI and monthly HCHOMRM was compared wi- 

th that between monthly HCHOOMI and monthly HCHOVAL. In 

addition, the agreement between daily HCHOOMI and daily 

HCHOMRM was compared with that between daily HCHOOMI 

and HCHOInterpol. 

The statistical values (R, slope, mean bias, MAE, RMSE, 

and percent difference) indicate that the agreement between 

monthly HCHOOMI and monthly HCHOMRM is generally com- 

parable to that between monthly HCHOOMI monthly daily HC- 

HOVAL. There are generally better MAE, RMSE, and percent 

difference between daily HCHOOMI and daily HCHOVAL than 

those between daily HCHOOMI and daily HCHOInterpol. How- 

ever, a simple interpolation method does not show a good per- 

formance of the HCHO estimates. Although daily HCHOVAL 

shows the good agreements with daily HCHOOMI than daily 

HCHOInterpol, the performance of both the MRM and interpo- 

lation method for HCHO estimates is not good enough to pro- 

vide the HCHO data. 

In the present study, we found that estimation of HCHO 

using MRM can be useful in areas where the relationship bet- 

ween HCHO and the independent variables is strong, and the 

variables have explicit seasonal cycles. The applicable areas 

are limited and the temporal resolution poorer than a CTM such 

as GEOS-Chem, which usually provides global coverage with 

high temporal resolution. However, as part of the efforts to pro- 

vide HCHO data, MRM can be used to produce HCHO over 

the areas with poor measurement conditions such as poor signal 

to noise ratio at UV at high solar zenith angles which reduce 

the availability of satellite HCHO data. Similar studies can be 

done to produce HCHO data for other satellite sensors (e.g., 

SCIAMACHY, GOME-2). For future researches, the HCHO 

estimation can be attempted in higher time resolution with a 

variety of environmental variables as inputs for various statis- 

tical models.  
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