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ABSTRACT. When studying a phenomenon on the earth surface, such as natural disaster, water pollution and land use, the data in some 

geographic units may be insufficient. Most interpolation models cannot estimate missing data because they rely on continuous assump- 

tions, however most geospatial data is not continuous. In this article, we develop an information diffusion technique, called self-learning 

discrete regression (SLDR), to infer the missing data of the gap units. To show how to use the suggested model, a virtual case based on 

flood experience in China is studied, where flood losses of the gap units are inferred with background data: population, per-capita GDP 

and relative exposure of the unit to flood. To the case, a comparison shows that SLDR is obviously superior to geographically weighted 

regression (GWR) and the back propagation neural network (BP network), reducing the error about 60% and 33%, respectively. To sub- 

stantiate the special case arguments, ten simulation experiments are done with pure random seed numbers. The statistical average results 

show that the validity of GWR for filling gap units is doubtful, and SLDR is more accurate than BP network. 
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1. Introduction 

The observations are very important for studying phenom- 

ena on the earth surface, such as natural disasters, water pol- 

lution and land use. However, in many cases, some units lack 

observations. For example, one day after the 2008 great Wen- 

chuan earthquake (Zhang et al., 2009), the rescuers did not have 

disaster information for places where communication was lost. 

When it is impossible to perform an on-site investigation to col- 

lect observations, some mathematical models would be employed 

to estimate the missing data. The most practical method is the 

interpolation method, which estimates the values of a curve at 

any position between known points and is widely used in geo- 

graphic information systems (GISs) (Eldrandaly and Abu-Zaid, 

2011) and risk assessment (Stavrou and Ventikos, 2014). Any 

interpolation is based on the mathematical hypothesis that the 

corresponding interpolation space is continuous. In this case, the 

researcher considers the data gaps because data are only col- 

lected at discrete points, and blank data can be calculated ac- 

cording to a suitable continuous function. Polynomial interpola- 

tion, Hermite interpolation, spline approximation and series fitting 

are common interpolation models. Inverse distance weighting (De 

Mesnard, 2013) and ordinary kriging (Gutiérrez de Ravé et al., 

2014), both of which are used to interpolate data from surround 
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ing geographic units, fall into this category. However, except for 

the temperature physics field, most geospatial data are not con- 

tinuous. In particular, data related to human society are usually 

non-continuous. Spatial data can be approximated as continuous 

only if the grid of the geographic units is notably small. In other 

words, when we study a phenomenon on the earth surface in 

geographic units at the township level, the continuity hypothesis 

for interpolation does not hold. 

A variety of prediction methods are often used to extrap- 

olate data. Among these, the grey system method is rather con- 

fusing. It appears that with the use of an accumulating gen- 

eration operator on a limited amount of data, the grey method 

can accurately estimate the behavior of unknown systems, such 

as prediction of stock prices (Kayacan et al., 2010). Many re- 

searchers have noted that generations of grey sequences ex- 

hibit an exponential trend, however it is not well known that 

only time series data generalized from an energy system are 

subject to an exponential trend. For estimation of the behavior 

of an energy system, exponential regression (Dette et al., 2006) 

might be superior to the grey model. Obviously, the grey sys- 

tem model cannot be used to fill the data gaps in geographic 

units because the spatial data are not time series data. 

Geographically weighted regression (GWR) is a potentially 

well-suited spatial predictive model (Lieske and Bender, 2011). 

An advantage of GWR is that it allows the actual parameters 

for each location in space to be estimated and mapped as op- 

posed to the fitting of a trend surface to the parameters. Essen- 

tially, any GWR model is a statistical regression model. The least 

squares method is commonly used to estimate the coefficients 
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in the model. GWR also offers extensions of generalized line- 

ar models, including logistic and Poisson regressions (Foth- 

eringham et al., 2002). If we clearly know what type of function 

can express the relationships between y and x, any highly non- 

linear or nonmonotonic relationship can be modeled using a GWR 

model with the known function, the parameters of which are 

determined using observations. However, it is notably diffi- 

cult to determine which nonlinear function is appropriate for 

expressing a phenomenon on the earth surface. The main limi- 

tation of GWR is that, in many cases, we do not know which kind 

of function is appropriate to regress the given observations. 

In our study of estimating the missing data, in order to avoid 

the mistakes caused by the wrong assumption of a statistical rela- 

tionship, using the artificial neural networks (ANNs) may be an 

option. ANNs are well known as a tool for estimating relation- 

ships between input and output via learning on data samples. 

For example, an ANN model exhibited better results for the pre- 

diction of arsenic contamination in groundwater (Purkait et al., 

2008). A highly nonlinear neural network model outperformed 

advanced statistical methods and more effectively reduced risk 

in managerial decision making (Marcek, 2013). The most popu- 

lar ANN is the back propagation neural network (BP network) 

whose training algorithm is the well-known gradient descent meth- 

od (Sen, 2006). In theory, ANN multilayer networks using arbi- 

trary squashing functions can approximate any continuous func- 

tion to any degree of accuracy given that sufficient hidden units are 

available (Hornik et al., 1989). In practice, because networks are 

implemented on computers, the property of universal approxima- 

tion does not hold (Wray and Green, 1995). More importantly, 

an ANN does not converge if the training samples are contra- 

dictory due to random disturbances in the real world (Huang and 

Moraga, 2004). 

The research goal of this article is to find a universal mod- 

el that reasonably supplements incomplete spatial data when 

studying a phenomenon on the earth surface. The objectives of 

the suggested model are that, (i) It is able to process non-con- 

tinuous geospatial data; (ii) It is a universal approximation, and 

does not rely on any assumption of a statistical relationship; (iii) 

It can converge even if there are contradictions in the training 

sample due to random interference; (iv) When the size of a 

training sample is small, the data estimated by the model also 

have higher accuracy. As an information diffusion technique, 

the self-learning discrete regression (SLDR) model suggested 

in this article has achieved these four objectives. One of the 

contributions of this paper is that, based on flood experience in 

China, it provides a full virtual case to show how to use the 

suggested model and it is superior to GWR and BP network in 

reducing the error about 60% and 33%, respectively. Another 

contribution is that, ten simulation experiments are done with 

pure random seed numbers, and results show that the validity 

of GWR is doubtful to supplement incomplete spatial data, and 

SLDR is more accurate than BP network. 

2. Information Diffusion in Probabilistic Space 

The concept of information diffusion was suggested in func- 

tion learning from a small sample of data (Huang, 1997). The 

approximate reasoning of information diffusion was used to 

estimate probabilities and fuzzy relationships from scant and 

incomplete data for grassland wildfires (Liu et al., 2010). An 

information diffusion model was used to estimate the probabil- 

ity density function for average daily rainfall in an assessment of 

risk variability among several months in the three north-eastern 

provinces of China (Zhao and Zhang, 2012). An information 

diffusion method was also applied to calculate the risk values 

shown in risk radar for emergency management in a communi- 

ty (Huang et al., 2016). 

The simplest models of the information diffusion tech- 

nique are linear information distribution and normal diffusion. 

The latter is more convenient to use. Mathematically, normal 

diffusion can be illustrated in a fuzzy set, as shown in the fol- 

lowing (Huang, 2002): 

Let X = {xi | i = 1, 2, ..., n} be a given sample, and let U = 

{u} be its universe of discourse (the range of all possible val- 

ues). The function in Equation (1) is known as a normal diffu- 

sion function, which diffuses the information carried by obser- 

vation x to the monitoring point u in the normal approach: 
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The diffusion coefficient h can be calculated using Equa- 
tion (2) (Huang, 2012): 
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Using a diffusion function u(x, u), we change a given sample 

point x (observation) into a fuzzy set with membership function 

( ) ( , )x u x u  in universe U. The principle of information diffu- 

sion guarantees that reasonable diffusion functions exist to im- 

prove the non-diffusion estimates if the given samples are in- 

complete (Huang, 1997). 

Current information diffusion models are based on an as- 

sumption that a given sample X is drawn from a population with 

probability density function p(x). The basic advantage of using the 

information diffusion technique is that it can naturally fill the 

gaps in incomplete data using reasonable fuzzy sets to im- 

prove the estimation of p(x). 

If we change a random sample point x into a set-value sample 

point µx(u), we essentially diffuse the information carried by x in the 

probability space U (or subspace) using a diffusion function. 

It has been proven with analytic geometry that the principle 

of information diffusion is applicable not only in probability space 

but also in any measurable space (Makó, 2005). This statement 
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implies that the information diffusion technique can be developed 

to fill the gaps caused by incomplete geospatial data. 

3. Incomplete Geospatial Data 

When we study a phenomenon on the earth surface in a 

study area, some information, such as the locations of the geo- 

graphic units, is easy to obtain, and population and gross do- 

mestic product (GDP) data are also easy to collect. However, 

other information might not be as easy to obtain. For example, 

when we study the natural disaster risk in a county, it is diffi- 

cult to collect historical disaster data for each township. In emer- 

gency rescue during a natural disaster, rescuers cannot obtain 

the disaster data of the townships where traffic and communi- 

cation are interrupted. 

Let G be a study area, where the phenomenon under study 

is denoted as F. Suppose that G is composed of n geographic 

units g1, g2, ..., gn, i.e.: 

 

1 2  ,  , ...,  { }nG g g g  (3) 

 

Furthermore, suppose that the phenomenon F could be 

recognized using n observations taken from the n geographic 

units. An observation, denoted as w, is a number or a vector that 

could be obtained directly or might be estimated. For example, 

when we study the phenomenon of “earthquake risk” in Yunnan 

Province, China, which is composed of 129 counties and muni- 

cipal districts, the phenomenon can be written as Erisk, the study 

area G is Yunnan, and each county and municipal district is a 

geographic unit; thus, we write the area as the following: 

 

1 2 129  ,  , ...{ },  YunnanG g g g  (4) 

 

To recognize Erisk in GYunnan, we must know the seismic 

hazard and seismic vulnerability for each unit. In GYunnan, Tong- 

hai, where a 7.8 magnitude earthquake occurred in 1970, is marked 

as g27. In this case, the observation of g27 is a vector that in- 

cludes “seismic hazard” and “seismic vulnerability”. 

All of the observations for recognizing phenomenon F in 

an area G form a set. When all of the observations are known, 

we say that the set is complete, and otherwise, it is incomplete. 

Formally, we give the following definition. 

Definition 1: Let G be an area composed of geographic 

units g1, g2, ..., gn, and let wi be an observation of gi. If a 

phenomenon F in G can be recognized using a set of observa- 

tions taken from the geographic units, i.e.: 

 

 1 2  ,  , ,  nW w w w   (5) 

 

when all wi, i = 1, 2, …, n, are assigned, we say that W is a complete 

data set with respect to F in G, and otherwise, it is incomplete. 

If W is an incomplete data set, the data in W are referred to 

as incomplete geospatial data. An unassigned unit is known as a 

gap. Obviously, whether a data set is complete is related to what 

phenomena must be recognized and which area must be stu- 

died. The more complex or meticulous the phenomenon, the more 

difficult it is to obtain complete data. The greater the number 

of geographical units involved in the study area, the more 

difficult to collect complete data. 

4. Information Diffusion in Geographical Space 

If a sample X drawn from a population with a probability 

density function p(x) is small, we can directly apply the infor- 

mation diffusion technique to improve the estimation of p(x). 

If a data set W taken from a study area G is incomplete, to rec- 

ognize a phenomenon F, we cannot directly apply the infor- 

mation diffusion technique to fill the data gaps. 

According to Tobler’s first law of geography, “Everything is 

related to everything else, however close things are more related 

than distant things” (Tobler, 1970). Inverse distance weighted 

(IDW) interpolation is most often used by GIS analysts to fill 

the data gaps (Eldrandaly and Abu-Zaid, 2011). In the IDW 

method, z0, zi, and di are used to denote the estimated value at 

point 0, the z value at known point i, and the distance between 

point i and point 0, respectively; z0 is estimated using a series 

of known values, z1, z2, …, zn, with the aid of a series of dis- 

tances d1, d2, …, dn as media. 

Let w0 and wi be the estimated value in geographic unit g0 

and the observed value in unit gi, respectively. To mathema- 

tically express the information diffusion in geographical space, 

we first formally define the terms “observed unit”, “gap unit”, 

“media” and “background data”. 

Definition 2: Let g and o be two geographic units in a study 

area. If g is observed and assigned but o is not, g is known as an 

observed unit and o is known as a gap unit to recognize pheno- 

menon F. For example, in a flood area, the units where the flood 

disasters have been investigated are observed units, and other 

units are gap units. 

Definition 3: Let o be a gap unit. With data  and a series of 

observed units, if a model exists to assign o to a value for the 

purpose of recognizing phenomenon F,  are known as media. For 

example, in the IDW method, d1, d2, …, dn} are media. 

Selected attribute values describing the geographic features are 

media. The attribute values are known as background data. 

Definition 4: Let o be a gap unit in area G: 

 

1 2 1  ,  , ...,  { },  nG g g g o  (6) 

 

If a set ZG of the attribute values describing selected geo- 

graphic features are media, ZG is known as a background data set: 

 

1 2 1
{ , ,     , , }

nG g g g oZ z z z z


 L  (7) 

 

For example, the attribute values of population and per- 

capita GDP features are background data for recognizing the 

losses of natural disasters. Thus, we can formally give a defi- 

nition of information diffusion in geographical space: 

Definition 5: Let W be an incomplete data set for recog- 

nizing phenomenon F in area G, and let ZG be a background data 
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set. If a model γ can use ZG to make W complete, it is said that γ 

uses ZG to diffuse the information of W in G for recognition of F. 

Figure 1 shows the logical relationship among the objects in 

Definition 5. 

 

 
 

Figure 1. With support from background data ZG, model γ 

diffuses information of W from observed units to fill gap 

units, and W becomes a complete data set W’ that serves to 

recognize a phenomenon F in study area G. 

5. An Information Diffusion Model with  

Background Data 

Without loss of generality, suppose that a study area G is 

composed of n - q observed units g1, g2, ..., gn - q and q gap units 

gn – q + 1, ..., gn, i.e.:  

 

1 2 1  ,  , ...,  ,  , ..., } { n q n q nG g g g g g    (8) 

 

Furthermore, suppose that the attribute values of t geographic 

features are background data. In unit gi, the attribute value of the jth 

feature is zij. The information of G is shown in Table 1. 

 

Table 1. Observations and Background Data in Area G 

Geographic Unit Background Data Observation 

g1 z11     z12          … z1t w1 

g2 z21     z22          … z2t w2 

… … … 

gn - q zn - q1     zn - q2       … zn - qt wn - q 

gn - q + 1 z n - q + 1, 1 z n – q + 1, 2  … z n – q + 1, t Unknown 

… … … 

gn zn1     zn2          … znt Unknown 

 

Recalling the above interpolation methods and prediction 

methods, we know that unless the size of the geographic unit in 

Table 1 is very small, or we know which type of function is 

appropriate to express a dependent variable wi with indepen- 

dent variables zi1, zi2, ..., zit, we cannot use those methods to fill the 

gap units gn – q + 1, ..., gn.. In this section, we suggest an information 

diffusion model to fill the gap units with background data. 

This model consists of two parts. The first is a multiple nor- 

mal diffusion to construct a relationship matrix. The second is 

an approximate reasoning to infer values in the gap units with 

background data. 

 

5.1. Constructing a Relationship Matrix 

Let U1, U2, ..., Ut be t monitoring spaces that serve to dif- 

fuse background data of t features, respectively, and let Ut + 1 be 

a monitoring space that diffuses observations obtained from the 

observed units. Let = t + 1, we define a -dimensional moni- 

toring space: 

 

1 2     U U U L  (9) 

 

where Uj = {uj1, uj2, …, ujmj}, j = 1, 2, …, λ. In this subsection, 

two kinds of subscripts are used: double or multiple subscripts 

and variable subscripts. They are all expressed in strict mathe- 

matics. For example, a double subscript is used in uj1, i.e., j and 

1, which can also be written as uj,1. A variable subscript is used 

in ujmj, i.e., mj. For different j, m may be different or the same. 

Let = n - q. From Table 1, we obtain a -dimensional 

sample X with size  : 
 

1 2 1{( , , , , ) | 1, 2,        } ,i i i iX x x x x i   L L  (10) 

 

where xi1 = zi1, xi2 = zi2, …, xiλ-1 = zit, xiλ = wi, i = 1, 2, …, τ. 

For a -dimensional sample point: 

 

1 2( , , ,    ) ,  i i i ix x x x X L  (11) 

 

and a -dimensional monitoring point: 

 

1 21 2 1 2          ( , , , ) , k k ku u u u U U U
    L L  (12) 

 

where kj ∈ {1, 2, …, mj}, j = 1, 2, …, λ, we use∙the -dimen- 

sional normal diffusion formula in Equation (13) to diffuse the 

information of x to point u: 
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where the diffusion coefficient hj can be calculated using Equa- 
tion (2) with the attribute values (background data) of the jth fea- 

ture and the observations in Table 1. Let: 
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We can obtain an information matrix of X in U1 × U2 ∙∙∙ × Uλ, as 

shown in Equation (15): 

 

 
1 2 1 1 2 1               1,  2, ...,  { } ,k k k k m m m m k mQ Q
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 Table 2. Losses and background Data in the Flood Disaster Area 

Unit 

g 

Background Data Loss 

w 

Unit 

g 

Background Data Loss 

w z1 z2 z3 z1 z2 z3 

1 1,911 2,571 0.55 656,548 55 1,391 2,748 0.55 2,759,376 

2 1,078 4,075 0.68 2,476,669 56 1,720 3,570 0.04 1,136,662 

3 2,530 4,868 0.81 6,755,590 57 670 2,654 0.58 1,869,182 

4 1,419 1,947 0.44 Unknown 58 3,693 5,620 0.77 12,672,757 

5 2,556 3,753 0.57 5,002,579 59 2,083 2,124 0.40 1,850,408 

6 1,033 3,540 0.51 1,839,030 60 1,007 3,386 0.48 2,440,424 

7 1,761 2,001 0.80 297,269 61 4,106 3,059 0.81 7,077,901 

8 2,296 2,113 0.43 1,886,001 62 1,802 4,483 0.41 4,522,170 

9 2,476 1,230 0.65 1,879,989 63 1,748 4,714 0.59 5,497,062 

10 1,747 3,494 0.65 985,527 64 1,339 2,507 0.25 2,458,746 

11 560 3,319 0.37 1,444,768 65 3,211 3,107 0.77 6,449,972 

12 2,614 954 0.72 1,357,580 66 3,404 3,168 0.71 6,205,189 

13 1,580 3,304 0.62 4,217,023 67 3,331 2,138 0.81 4,062,944 

14 1,786 4,437 0.61 2,739,781 68 2,977 4,224 0.76 7,279,226 

15 1,770 3,114 0.06 1,643,408 69 2,093 2,667 0.36 2,176,381 

16 2,040 1,531 0.60 Unknown 70 2,081 3,881 0.78 2,664,408 

17 3,190 2,318 0.73 3,910,232 71 1,364 2,395 0.65 3,696,478 

18 2,155 3,932 0.69 2,707,680 72 2,006 3,613 0.54 3,004,322 

19 1,174 1,813 0.29 1,192,620 73 1,036 2,338 0.63 740,752 

20 2,159 3,230 0.70 5,432,413 74 2,307 3,447 0.41 4,649,048 

21 613 6,407 0.29 1,165,556 75 2,675 2,523 0.78 3,349,675 

22 1,587 1,152 0.40 1,687,707 76 1,767 744 0.80 245,698 

23 1,735 3,554 0.35 3,657,313 77 1,543 5,134 0.61 Unknown 

24 1,101 4,817 0.80 3,754,194 78 766 4,201 0.45 1,007,248 

25 3,174 3,326 0.74 5,907,755 79 1,565 2,510 0.52 360,735 

26 2,671 3,916 0.54 3,356,160 80 2,780 2,783 0.80 3,476,874 

27 1,653 961 0.56 634,680 81 764 4,091 0.54 2,620,863 

28 1,555 6,628 0.09 3,512,912 82 1,851 2,650 0.47 3,149,617 

29 2,039 923 0.55 1,059,176 83 343 3,958 0.23 1,374,069 

30 2,803 4,328 0.56 5,530,820 84 1,085 1,743 0.36 923,417 

31 1,179 2,829 0.69 7,844 85 2,482 3,010 0.66 3,554,269 

32 950 3,640 0.60 Unknown 86 1,611 3,127 0.51 Unknown 

33 2,489 3,181 0.61 5,106,087 87 1,985 1,579 0.80 1,903,301 

34 2,459 5,866 0.94 9,188,236 88 2,434 3,689 0.55 5,978,810 

35 2,842 4,487 0.65 8,085,900 89 1,400 1,127 0.86 2,105,238 

36 1,369 3,417 0.65 2,060,827 90 2,567 3,307 0.56 3,496,726 

37 2,201 3,420 0.42 3,011,924 91 2,963 2,198 0.66 4,069,675 

38 1,362 2,427 0.51 1,153,395 92 1,525 4,106 0.45 3,041,438 

39 2,318 3,997 0.63 3,730,012 93 2,766 3,875 0.60 4,465,330 

40 3,272 4,588 0.66 Unknown 94 2,014 5,150 0.73 5,640,014 

41 1,990 4,269 0.48 4,572,379 95 2,313 4,468 0.88 6,518,108 

42 862 2,568 0.53 1,989,547 96 2,651 2,710 0.79 2,500,870 

43 1,067 3,815 0.63 3,473,850 97 1,968 4,835 0.54 5,492,120 

44 3,027 4,721 0.63 7,171,829 98 2,439 2,067 0.78 2,863,983 

45 2,743 3,392 0.37 5,859,156 99 1,584 1,209 0.64 1,109,807 

46 2,477 4,659 0.46 6,514,906 100 2,009 2,942 0.91 3,625,000 

47 3,412 1,884 0.77 3,006,031 101 860 1,948 0.32 Unknown 

48 3,226 2,989 0.72 4,460,642 102 1,500 1,914 0.55 1,211,300 

49 1,423 2,518 0.78 1,230,468 103 1,460 4,993 0.30 5,126,319 

50 1,231 2,191 0.43 2,641,717 104 2,686 4,615 0.69 6,516,619 

51 2,519 2,230 0.73 3,517,937 105 2,479 3,071 0.22 4,047,061 

52 2,291 4,732 0.63 5,600,220 106 3,357 4,567 0.93 7,496,821 

53 1,892 3,386 0.85 Unknown 107 497 5,641 0.33 62,251 

54 877 5,306 0.46 572,849 108 2,227 2,969 0.67 3,441,624 

Note: z1-Population; z2-Per-capita GDP (RMB Yuan); z3-Relative exposure to flood; w-Flood loss (RMB Yuan). 
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We can obtain a relationship matrix for the background data 

and observations in Table 1, written as: 

 

1 2 1 1 2 1          { }  k k k k m m m mR r
        L L  (18) 

 

5.2. Inferring with Background Data 

Let 1 2 , ...( ,, ) tz zz z be the background data of a gap unit in 

Table 1 and let:  

 

1 2 11 1 2 1 1 2 1           ( , , , )k k ku u u u U U U
       L L  (19) 

 

where z can be changed into a fuzzy set in the universe of dis- 

course U1 × U2 ∙∙∙ × U-1 using the -1-dimensional normal dif- 

fusion formula in Equation (20) and normalizing by the max- 

imum value, as shown in Equation (21): 
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The fuzzy set is written as A% with memberships
1 2 1  k k ka

L , 

kj = 1, 2, …, mj, j = 1, 2, …, λ – 1. For the fuzzy input A% , using 

the approximate reasoning operator represented in Equation 

(22), we can obtain a fuzzy output B% with a membership func- 

tion µB(uλkλ): 
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Finally, using the center-of-gravity method in Equation 

(23), we obtain a crisp value for w: 
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The model consisting of Equations (13) ~ (23) is known as 

self-learning discrete regression (SLDR). 

6. A Virtual Case for Filling Gaps with  

Background Data 

Based on China's flood experience, we give the following 

virtual case: a disastrous flood occurred in an area, causing se- 

rious economic losses. We quickly obtained data on flood losses 

in some geographic units, however we are unable to obtain data 

in the units where traffic and communication have been disrupted. 

In this section, we apply the developed information diffusion 

technique to complete the flood loss data. 

A total of 108 units are located in the flood disaster area, 

where 100 units are the observed units in loss w and 8 units are 

gap units. The information in the area is shown in Table 2. The 

background data for inferring the loss in a gap unit include po- 

pulation z1, per-capita GDP z2, and relative exposure z3 of the 

unit to flood, which is determined by the flood path and the 

terrain of the unit.  

The background data z1, z2, and z3 are randomly generated 

by using a three-dimensional normal distribution, and the loss 

w is obtained by using a nonlinear function with the background 

data, and superimposed random interference. In total, 108 data 

sets are completely generated. Then, the first 100 data sets serve 

as the 100 observed units. After artificially deleting the loss 

values in the next 8 units, we consider the units as 8 gap units. 

Figure 2 shows a subarea in this case, where g1, g2, and g3 are 

observed units and g4 is a gap unit. 

 

g3

g2

g1

g4

Loss 656548 RMB
Population 1911
Per Capita GDP 2571 RMB
Relative Exposure 0.55

Loss 2476669 RMB
Population 1078
Per Capita GDP 4075 RMB
Relative Exposure 0.68

Loss 6755590 RMB
Population 2530
Per Capita GDP 4868 RMB
Relative Exposure 0.81

Loss Unknown
Population 1419
Per Capita GDP 1947
Relative Exposure 0.44

 
 

Figure 2. Subarea of a flood disaster area. The flood loss is 

unknown in unit g4. 

 

To make the virtual case more realistic, 100 complete data 

sets and 8 incomplete data sets are randomly assigned to the 

108 units. From the 100 observed units, we have a 4-dimen- 

sional sample X shown in Equation (24): 

 

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4

100,1 100,2 100,3 100,4

{( ,  ,  ,  ,  ,  ,  ...,

( ,  ,  

), ( ),

)},  

X x x x x x x x x

x x x x


 

 
{(1911, 2571, 0.55, 656548),

(1078, 4075, 0.68, 2476669), ... ,


 

 (2227, 2969, 0.67, 3441624)}  (24) 

 

Please note that there are 100 sample points in Equation 

(24) rather than 108 because 8 units in Table 2 are gap units. 

Let: 

 

1 1,1 2,1 100,1{ , ,  ..., {1911,1078,  ...,}  2227}X x x x   

2 1,2 2,2 100,2}{ , ,  ..., {2571,  4075,  ...,  2969}X x x x   



C. F. Huang / Journal of Environmental Informatics 38(2) 93-105 (2021) 

 

99 

3 1,3 2,3 100,3}{ , ,  ..., {0.55,  0.68,  ...,  0.67}X x x x   

4 1,4 2,4 100,4{ , ,  . .,  }.  X x x x  

{656548, 2476669, ...,  3441624}  (25) 

 

Using Equation (2) for X1, X2, X3, and X4, respectively, we 

obtain a set of diffusion coefficients in Equation (26): 

 

 1 2 3 4,  ,  ,  H h h h h  

 102.061,  159.587,  0.024,  343500.594  (26) 

 

According to the accuracy we require, we apply the 

following U1, U2, U3, and U4 in Equation (27) with equal step 

lengths as monitoring spaces for diffusing the population, per- 

capita GDP, relative exposure and flood loss, respectively: 

 

1 1,1 1,2 1,30

2 2,1 2,2 2,30

3 3,1 3,2 3,30

{ , , , } {343, 472.76, , 4106}

{ , , , } {744, 946.9, , 6628}

{ , , , } {0.04, 0.07, , 0

    

    

   . 94}

U u u u

U u u u

U u u u

 

 

 

L L

L L

L L

 

4 4,1 4,2 4,30{ , , , } U u u u L  

{7844, 444565.12, , 12672  754} L  (27) 

 

In theory, the more points that monitoring space U con- 

tains, the better. However, too many points will only increase 

the amount of calculations but not improve the accuracy of the 

model. Usually, we use the amount about three times the value 

of the Otness-Encysin formula Equation (28) (Otness and En- 

cysin, 1972) to determine the number of points: 

 
2/51.87( 1)m n   (28) 

 

where m is the number of intervals for constructing a histo- 

gram and n is the size of the given sample. In our case, n = 100, 

and we obtain m = 11. Then, 30 is approximately equal to three 

times 11. The first and last elements of U are the minimum and 

maximum values of the sample, respectively. 

Using Equation (13), we diffuse the information of X in 

Equation (24) in the 4-dimensional monitoring space U1 × U2 

× U3 × U4. For example, if we diffuse the sample point:  

 

70 70,1 70,2 70,3 70,4( , , , ) (2675 2523 0    78 3349675)x x x x x , , . ,   

 

to the monitoring point  

 

1,19 2,10 3,25 4,8( , , , ) (2678 66 2570 07 0 78 3064891 50),u u u u u . , . , . , .   

 

we have the following: 

 
2 2

70 1 1,19 70 2 2 10

70 2 2

1 2

( ) ( )
( , ) exp[

2

   

2

 
      

x u x u
x

h h
u

 
  

， ， ，
 

2 2

70 3 3,25 70 4 4,8

2 2

2 4

( ) ( )
] 0

    
.665.  

2
 

2
 

x u x u

h h

 
  

， ，
 

Note that x70 is not the background data and loss in unit g70 

in Table 2, and x70 corresponds to unit g75 because the gap units 

of Table 2 are not in sample X. By summing all diffused infor- 

mation with Equation (13), we obtain an information matrix Q 

of X in monitoring space U1 × U2 × U3 × U4. For example, 

corresponding to the above monitoring point u, the element of the 

matrix is written as follows: 

 

19,10,25,8 0.934.Q 
 

 

By normalizing Q with Equations (16) ~ (17), we obtain 

a relationship matrix R among the population, per-capita GDP, 

relative exposure and flood loss. For example, corresponding 

to the above monitoring point u, the element of the relation- 

ship matrix is written as follows: 

 

19,10,25,8 1.r 
 

 

Our task is to infer the losses in the gap units in Table 2 

using the relationship matrix R. First, using Equations (20) and 

(21), we change z = (z1, z2, z3)
 
into a fuzzy set in U1 × U2 × U3 

defined in Equation (26). For example, for gap unit g4, the back- 

ground data are z = (1419, 1947, 0.44), which derives a fuzzy 

input Ã4 with memberships: 

 

9,7,13 9,7,14 9,7,14, 0.533, 1, 0.372,a a a  L L
 

 

Employing Equation (22) with relationship matrix R and 

input Ã4, we obtain a fuzzy output 4

~
B with memberships: 

 

4 4 446 47 48, ( ) 0.148, ( ) 0.316, ( ) 0.15,B B Bu u u    L L  

 

Using the center-of-gravity method in Equation (23), from 4B% , 

we obtain a crisp value wA4 = 2266178. Similarly, we infer the 

flood losses in the other gap units. Finally, we have Table 3 to 

make Table 2 complete.  

 

Table 3. Estimated Flood Losses in the Gap Units by SLDR 

Unit gi Loss w Unit gi Loss w 

4 2,266,178 53 3,355,138 

16 1,226,910 77 5,101,474 

32 3,250,729 86 2,230,053 

40 7,437,407 101 1,044,825 

Note: w-Flood loss (RMB Yuan) 

7. Comparisons with Geographically Weighted 

Regression and BP Network 

To demonstrate the advantages of the new information tech- 

nique in filling the gaps caused by incomplete data, we com- 

pare it with GWR and BP network. In general, to fill the gaps 

caused by incomplete data, other common methods are less 

accurate than GWR and BP networks. For example, the accu- 

racy of inverse distance weighted (IDW) interpolation is low- 

er than that of GWR (Deng et al., 2018). Therefore, in this ar- 
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ticle, the suggested method is only compared with GWR and 

BP network. 

 

7.1. Comparison with Geographically Weighted Regression 

GWR modeling is based on the distance between geo- 

graphical points. Equation (29) gives the basic GWR: 

 

0 1 1      ) ( , ) ( , ) (  ,  ( , )y u v b u v b u v x u v    (29) 

 

where y is the dependent variable with a Gaussian distribution, 

x is the independent variable, u and v are the coordinates of the 

data, b0 is the intercept term, b1 is the coefficient to be estimated 

and  is the random error term. Equation (30) describes mul- 

tiple GWR: 

 

0

  1

       ( , ) ( , )  
m

i i i k i i ik i

k

y u v u v x  


    (30) 

 

where yi denotes the dependent variable, β0(ui, vi) is the inter- 

cept coefficient at location i, xik is the value of the kth explan- 

atory variable at location i, and βk(ui, vi) is the local regression 

coefficient for the kth explanatory variable. Furthermore, (ui, vi) 

denotes the Cartesian x and y point coordinates, and εi denotes 

the random location specific error term. 

In GWR, u and v are the coordinates of the data, not the 

monitoring point in SLDR. The coordinates of a unit deter- 

mine the relative exposure of the unit to the flood. This state- 

ment implies that the data in Table 2 include the geographic 

information of the units. We use GWR in Equation (30) to stati- 

stically regress the sample in Equation (24), where m = 4. 

If we use GWR to process samples directly, data over- 

flow occurs in the computer program used during the statistical 

calculation process. To avoid this problem, we divide z1, z2 and 

w in Table 2 by 10,000 and obtain z'1, z'2 and w', respectively. 

For example, in unit g1, loss w = 656,548 divided by 10,000 

results in w' = 65.6548. 

 

Table 4. Estimated Flood Losses in the Gap Units by GWR 

Unit gi Loss  w  Unit gi Loss  w  

4 2,500,897 53 1,829,942 

16 2,678,546 77 2,042,115 

32 6,217,089 86 2,562,986 

40 4,827,113 101 2,340,886 

Note: w-Flood loss (RMB Yuan) 

 

Using GWR to process z'1, z'2, z3 and w', we obtain a re- 

gression function shown in Equation (31): 

 

1 2 3'   419.628 1774.305 ' 975.237 ' 145.3W z z z      (31) 

 

Let w = 10000w'. Table 4 shows the estimates of the losses 

in the 8 gap units shown in Table 2. 

Comparing Tables 3 and 4, we cannot judge which of 

SLDR and GWR is superior. A comparison between the root 

mean squared error (RMSE) values, calculated by Equation (32), 

of SLDR and GWR gives an answer. The RMSE statistic is avail- 

able to evaluate the performance of an interpolation method: 

 

2

1  

1
 ) (

n

i i

i

RMSE w w
n 

   (32) 

 

where ii ww , are the observed and the estimated value at the 

sampling point i (i = 1, 2, …, n); n is the number of the size of 

the sample used for the estimation. In our case, w and w are the 

observed and predicted losses, respectively, and n = 100. For 

the 100 observed units in Table 2, Table 5 shows the observed 

loss w, predicted losses w by using GWR and SLDR, respectively, 

and their errors. 

The predicted values in Table 5 are quite different from 

the observed values. For example,
1(SLDR)w = 1,157,367 exceeds the 

observed value of 656548 by approximately 76%, and  
1(GWR)

w = 

2500897 exceeds that value by approximately 106%. We might 

think that the error between the observed value and predicted value 

is still obvious. It is true. However, in reality, it is quite practical 

when the estimated value is not less than half of the true value nor 

more than double the true value. For example, with high-precision 

data, the assessment result of death in Ludian MS6.5 earthquake, 

occurred in 2014, China, is has only reached the accuracy of 59.8% 

(An et al., 2015). Reducing the error from 106 to 76% (reducing the 

error by 28%) has clearly improved the estimation accuracy. Also, 

for some points, w (SLDR) are quite accurate, for example, w95 = 

5126319,  w 95(SLDR) = 5,130,228, the error is 3,909, only 0. 76%.  

When we change the measurement of the losses from RMB 

Yuan to million Yuan, the values in Table 5 decrease. For example, 

1,157,367 changes to approximately 1.16. In particular, we have: 

 

GWR SLDR

GWR

1177703 456
     

126.8
0.613

1177703
 

RMSE RMSE

RMSE


 
  

 

The relative error ρ = 0.613 between GWR and SLDR 

means that, to fill the gaps in Table 2, the information diffu- 

sion technique suggested in this article reduces the error by ap- 

proximately 60% compared with geographically weighted re- 

gression. This benefit indicates that SLDR is obviously supe- 

rior to GWR. 

 

7.2. Comparison with BP Network 

To demonstrate that the suggested method is more gen- 

eral and robust than an ANN, we compare it with BP network, 

shown in Figure 3, with three input nodes, nine hidden nodes 

and one output node, trained by a normalized sample. 

Since the output values of the sigmoid function for the BP 

network always fall in the interval [0, 1], we cannot directly train 

the BP network with the original sample X in Equation (24). 

Using Equation (33), we normalize (xi, 1, xi, 2, xi, 3, xi, 4) of X to 

be (x'i, 1, x'i, 2, x'i, 3, x'i, 4), i = 1, 2, ..., 100, which is used to train 

the BP network shown in Figure 3: 

 

,0 ,1 ,

,    
( )

, 1   , 2,  , 100; 1  , 2, 3   , 4 
j j i j j

i j

j j

c c x a
x i j
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L  (33) 
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 Table 5. Predicted Losses by Using GWR and SLDR and Their Errors 

No. Observed w GWR Prediction
( )GWRw  GWR Error SLDR Prediction

( )SLDRw  SLDR Error 

1 656,548 2,500,897 -1,844,349 1,157,367 -500,819 

2 2,476,669 2,678,546 -201,877 2,741,901 -265,232 

3 6,755,590 6,217,089 538,501 6,771,059 -15,469 

… … … … … … 

94 1,211,300 1,130,927 80,373 1,270,269 -58,969 

95 5,126,319 3,699,460 1,426,859 5,130,228 -3,909 

96 6,516,619 6,072,786 443,832 6,980,360 -463,741 

97 4,047,061 3,516,832 530,229 4,060,035 -12,974 

98 7,496,821 7,565,254 -68,432 7,544,761 -47,940 

99 62,251 2,666,348 -2,604,097 219,693 -157,442 

100 3,441,624 3,624,081 -182,457 4,099,178 -657,554 

  RMSEGWR = 1177703 RMSESLDR = 456126.8 

  Note: w100 is not the loss in unit g100, but is the loss in unit g108 in Table 2 because there are 8 gap units. 

 

where
    

,
1 100

max { }i j
i

jb x
 

 , 
    

,
1 100

min { }i j
i

ja x
 

 , cj,0 = 0.1 and cj,1 = 0.8 are 

employed to compress x'i, j into a smaller interval than [0, 1] so 

as not to include the points 0 and 1. 

Let the momentum rate be η = 0.9 and the learning rate be 

α = 0.7. After 23273 iterations, the normalized system error is 

0.0009. More iterations show that it is impossible to signi- 

ficantly reduce the error. With the sample, we also trained a BP 

network with three hidden layers, however the error was also 

not significantly reduced. 

Using the parameters in Equation (33), we normalize the 

background data of the gap units in Table 2 to be the inputs of 

the trained BP network for estimating the flood losses in the 

units. We inverse the results from the trained network into the 

primary universe by: 

 

,4 4 4 4,0

,4 4

4,1

( )
    

i

i

x b a c
x a

c

  
   (34) 

 

Finally, using the trained BP network, we obtain Table 6 

to make Table 2 complete. The RMSE and relative error of the 

BP network are: 

 

RMSEBP = 678225.1 

 

BP SLDR

BP

678 225.1 45 6126.8
0.327

678 225.
     

1
 

RMSE RMSE

RMSE


 
  

 

This means that, to fill the gaps in Table 2, SLDR reduces 

the error by approximately 33% compared with BP network.

  

Table 6. Estimated Flood Losses in the Gap Units by the BP 

Network 

Unit gi Loss  w  Unit gi Loss  w  

4 1,468,647 53 2,505,539 

16 1,599,238 77 8,650,776 

32 2,582,922 86 3,650,178 

40 6,552,073 101 1,401,586 

Note: w-Flood loss (RMB Yuan) 

Loss w

Population z1      GDP z2          Exposure z3  
 

Figure 3. The architecture of a BP network trained by a 

sample consisting of observations obtained from observed 

units. It is a topology 3-9-1 BP network. 

 

7.3. Q-Q Plots 

In addition to using RMSE to judge the accuracy of a sta- 

tistical prediction method, a quantile-quantile (Q-Q) plot shows 

a match between the estimated values and the expected (theo- 

retical) values in detail through the reference line y = x. 

As a probability plotting technique, a Q-Q plot is primar- 

ily suggested for testing whether a dataset follows a normal 

distribution (Stine, 2016), where n ordered sample values play 

the role of the sample quantiles and form the points of a Q-Q 

plot with theoretical quantiles of a normal distribution. In ge- 

neral, a Q-Q plot is a graphical technique for determining if two 

data sets come from populations with a common distribution. 

More generally, any pair of data can be in a Q-Q plot to show the 

difference between the two components through the reference 

line. 

Let the loss w of a gap unit, obtained by using a nonlinear 

function with the background data and superimposed random 
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interference, be a target value. Let w  be an estimated value ob- 

tained by using statistical prediction SLDR, GWR and the BP 

network. Table 7 lists the sorted target values and correspond- 

ing estimated values of the 8 gap units in Table 2, the sorting is 

in ascending order according to the target values. Figure 4 

shows the Q-Q points of the 8 gap units. 

 

Table 7. Sorted Target Values and Corresponding Estimated 

Vaues by SLDR, GWR and BP Network 

Target Value w  
(SLDR)

w   (GWR)w   
(BP)

w  Unit gi 

303,708 1,044,825 2,340,886 1,401,586 101 

1,015,227 3,250,729 6,217,089 2,582,922 32 

1,825,431 2,266,178 2,500,897 1,468,647 4 

2,776,973 1,226,910 2,678,546 1,599,238 16 

3,212,392 2,230,053 2,562,986 3,650,178 86 

3,600,762 3,355,138 1,829,942 2,505,539 53 

3,665,050 5,101,474 2,042,115 8,650,776 77 

9,092,449 7,437,407 4,827,113 6,552,073 40 

 

 
 

Figure 4. Q-Q plot to show the differences between the target 

values and estimated values of flood losses in the 8 gap units 

through the reference line y = x. The SLDR plot is near the 

line. 

8. More Simulation Results 

To substantiate the special case arguments based on Table 2, 

we need more numerical results to compare SLDR, GWR and 

the BP network with respect to the accuracy and validity of a 

statistical prediction by using a sample with noise. In this sec- 

tion, we give more simulation results. The simulation experi- 

ments are done by the following five steps. 

 

Step 1: Generating random numbers  

Running program MVN (Uebersax, 2006), we can easily 

generate random multivariate normal numbers. To a set of pa- 

rameters serving for a probability distribution, different seed 

number will generate different set of random numbers. A simu- 

lation conclusion is believable if and only if it is based on many 

simulations with different pure random seed numbers. 

Step 2: Modelling theoretical value of flood loss and super- 

imposing random interference 

Employing Equation (35) to model a theoretical flood loss, 

and Equation (36) to superimpose random interference to make 

the loss more realistic, we have a sample X in Equation (37).  

 

3
1 2

30
0 59 [1 exp( ] )

7

z
w . z z


    (35) 

 

    w w    (36) 

 

  1 2 3  , , , |   1, 2, ,i i i iX z z z w i n    (37) 

 

where z1, z2 and z3 are to simulate population, per-capita and 

relative exposure, respectively, randomly generated by using 

program MVN. w’ and  are theoretical loss and random in- 

terference, respectively.  is also randomly generated by pro- 

gram MVN. The subscript i in observation (z1i, z2i, z3i, wi) is to 

index the sequence number of a sample point. n is sample size 

determined by the researcher to simulate. The meaning of X in 

Equation (37) is same as the meaning of X in Equation (10), how- 

ever the new expression is more targeted for this section.  

 

Step 3: Taking training sample and validation data 

Let the main part of X be a training sample and the other 

part of X be validation data. 

 

Step 4: Calculating RMSE and RMSFE 

Training SLDR, GWR and BP network by using above 

training sample, we have the RMSE of each model. Then, em- 

ploying above validation data, we have the root mean squared 

forecasting error (RMSFE) of each model. 

 

Step 5: Calculating average of simulation results and com- 

paring them 

Repeating above four steps with different seed numbers, 

we calculate the average of simulation results. Comparing av- 

erage RMSE and RMSFE, we can compare the accuracy and 

validity of the three models, with respect to the sample X. Let 

A and B be two model trained by above training sample. When 

RMSEA > RMSFEA, model A is invalid to learning the given 

sample. When A and B are valid, if RMSEA < RMSEB, A is more 

accurate than B.  

To simple expression, in this section, we use million RMB 

Yuan as the unit of flood loss w in the sample point to replace 

RMB Yuan in Table 2. According to our experience of flood 

disasters occurred in China, we use parameters in Table 8 to 

simulate a three-dimensional normal distribution with respect 

to population z1, per-capita z2 and relative exposure z3. 

Randomly selecting a seed number, such as 175, to run pro- 

gram MVN with parameters in Table 8 we generate a pseudo- 

random sample Z with 140 three-dimension points. Randomly 

selecting another seed number, such as 76453, to run program 
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MVN with mean µ = 0 and standard deviation σ = 100, we 

generate a pseudo-random sample V with 140 one-dimension 

points to be random interference.  

 

Table 8. Parameters of A Three-Dimensional Normal 

Distribution for Simulation Experiments 

Random 

Variable 
Mean 

Standard 

Deviation 

Covariance Matrix 

z1 z2 z3 

z1 2,000 600 1 -0.042 0.598 

z2 3,100 1,000 -0.042  1 -0.174 

z3 0.800 0.200 0.598 -0.174 1 

 

Employing Equation (35) to the data of Z and employing 

Equation (36) with random interference V by point and point, we 

have a sample X’ with 140 four-dimension points. From X’, we 

select the first 108 points whose all components are non- 

negative and z3 ≤ 1 to form a set X shown in Equation (36) with 

background data z1, z2, z3 and loss w on 108 geographic units in 

a flood disaster area. A part of the X generated with seed 

number 175 and 76,453 is shown in Table 9. Any interested 

reader can check if the data are really generated by MVN with 

the two seed numbers.  

Because the data of X are randomly generated, we use the 

first 100 points to form a training sample, denoted as X (a, b), 

and other 8 points to form a validation set T (a, b), where a, b 

are seed numbers for randomly generating background data Z 

and interference V, respectively, i.e.: 

 

1 2 3 (175, 76453) = {( , , , ) | 1, 2, ,100}

= {(3259, 3465, 0 53, 4 0523), (3533, 2533, 0 73, 6 5950),

, (2403,1943, 0 86,1 9627)}

i i i iX z z z w i =    

. . . .

. . X

L

L  

 

1 2 3 (175, 76453) = {( , , , ) | 1, 2, , 8}

= {(1669, 3154, 0.53,3.5032), (674, 3551, 0.65, 0.2018),

, (3354,1436, 0.73, 3.3601)}

j j j jT z z z w j =     

X

L

L  

 

Training SLDR model composed of Equations. (13) ~ (23) 

by X (175, 76453), we have RMSESLDR = 0.3861. Using the 

trained SLDR to validation set T (175, 76453), we have testing 

error RMSFESLDR = 1.0973. Similarly, dealing with X (175, 76453) 

and T (175, 76453) by GWR and BP network, we have their 

RMSE and RMSFE shown in the third row of Table 10.  

Randomly selecting another 9 groups of seed numbers and 

dealing with the samples and validation sets generated with the 

seed numbers, we have their RMSEs and testing errors shown in 

4 ~ 12 rows of Table 10.  

The averages in Table 10 could verify the performance of 

the studied models. It is interesting to note that: 

 

RMSEGWR = 1.1973 > 1.0480 = RMSFEGWR. 

 

It means that the error of a GWR after training with a sam- 

ple is greater than the error without training. This is equivalent to 

saying that a tourist has travelled around Europe but not Africa, 

however the tourist’s description of Africa is more precise than 

Europe. This is obviously very ridiculous. In other words, validity 

of GWR for filling gaps caused by incomplete is doubtful. The 

reason is the linear assumption in GWR model. Because  

 

RMSESLDR = 0.3972 < 0.6904 = RMSEBP,  

 

RMSFESLDR = 1.2562 < 1.5095 = RMSFEBP, 

 

The results of 10 simulations show that SLDR is more 

accurate than BP network for filling the gaps. The reason is that 

the BP network does not converge when there is a random 

interference in the training sample.  

The reason why the normal diffusion function used in SLDR is 

reasonable is that an information diffusion, as a simple process 

(without the aid of an intermediary) and without birth-death (in 

a seal system where the sum of information is kept 1), would 

obey the normal law, similarly as a molecule diffusion through 

a small unit (Huang and Shi, 2002). 

There are many kinds of populations from that samples are 

drawn. They have performance between two shapes: the 

normal distribution and exponential distribution. The former is 

a symmetry curve; the latter is a monotone decreasing curve. In 

other words, if a mode is advantage for both of the normal 

distribution and exponential distribution, we can say that the 

model is absolutely advantage. Therefore, it is enough to sim- 

ulate the two distributions. For our case, normal distribution is 

more reasonable to randomly model population, per-capita GDP, 

relative exposure and random interference.  

The parameters of the normal distributions used in simu- 

lation experiment affect the values of RMSE and RMSFE. How- 

ever, for the three statistical models used in our research, even 

we change the parameters, the conclusions based on simula- 

tion results in Table 10 will not change. In other words, the 

conclusions have general significance. Of course, for the infor- 

mation diffusion model SLDR, there is a lot of room for im- 

provement in both the form of the diffusion function in Equa- 

tion (13) and the diffusion coefficient in Equation (2). 

9. Conclusions 

Whether it is the study of the static phenomena on the earth 

surface, such as land use, or the study of dynamic phenomena, 

such as changes of natural disasters, people often encounter the 

problem of lack data on some geographic units. From the inverse 

distance weighted interpolation to geographically weighted re- 

gression (GWR), many models have been suggested to predict 

the lack data, however these models are not universal due to sub- 

ject to continuous assumption or statistical forms. In theory, arti- 

ficial neural networks, such as the back propagation neural net- 

work (BP network) which can be used to statistically predict 

lack data, are universal. However, the accuracy of BP network 

is not high when training sample is randomly interfered, due to 

convergence problem. 

In this article, we develop an information diffusion tech- 

nique, called self-learning discrete regression (SLDR), to infer 
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Table 9. Background Data z Randomly Generated with Seed Number 175 and Loss w with Random Interference 

No. z1 z2 z3 Theoretical Loss Random Interference w 

1 3,259 3,465 0.5300 5.9632 -1.9110 4.0523 

2 3,533 2,533 0.7300 5.0512 1.5438 6.5950 

… … … … … … … 

100 2,403 1,943 0.8600 2.6868 -0.7241 1.9627 

101 1,669 3,154 0.5300 2.7812 0.7220 3.5032 

102 674 3,551 0.6500 1.3266 -1.1248 0.2018 

… … … … … … … 

108 3,354 1,436 0.7300 2.7142 0.6458 3.3601 

Note: z1 - Population; z2 - Per-capita GDP (RMB Yuan); z3 - Relative exposure; w - Flood loss (million RMB Yuan); Random interference data are generated 

with seed number 76453 

 

Table 10. Results of 10 Simulations by SLDR, GWR and BP Network 

Seed No. SLDR GWR BP 

Sample Interference RMSE RMSFE RMSE RMSFE RMSE RMSFE 

175    76,453       0.3861 1.0973 1.1887 1.1953 0.6859 1.1367 

374    61,473       0.4050 1.1164 1.1401 0.9235 0.6652 0.9801 

6,423    4,863       0.4581 1.1094 1.2469 0.9315 0.9493 1.9815 

6,503    624,352       0.4459 1.7739 1.3506 1.5853 0.7144 3.2710 

9,126    6,453       0.4005 1.5569 1.0489 0.7874 0.6939 1.0386 

35,267 48,329 0.4824 0.8509 1.3514 0.9792 0.6399 1.8307 

37,091    543       0.2818 1.1211 1.1438 1.0803 0.5807 1.3851 

86,754    573       0.3154 1.6627 1.2014 1.0974 0.6989 1.4153 

291,347    9,861       0.4717 0.9290 1.1474 0.8141 0.6429 0.7206 

679,341    397,454       0.3252 1.3441 1.1535 1.0855 0.6330 1.3353 

 Average 0.3972 1.2562 1.1973 1.0480 0.6904 1.5095 

Note: SLDR - Self-Learning Discrete Regression; GWR - Geographically Weighted Regression; BP - Back Propagation Neural Network; RMSE - Root 

Mean Squared Error; RMSFE - Root Mean Squared Forecasting Error 

 

lack data. Since the author suggested the information dissem- 

ination technology 30 years ago, it can be used only in proba- 

bility space. This article first develops it for geographic space. 

In this study, the geographic units that lack necessary data are 

called gap units. The units with necessary data are called ob- 

served units. The principle of SLDR is that, with the aid of 

background data on all units as the media, the model diffuses 

the information of observed units to gap units, and then infers 

lack data. 

A virtual case based on China’s flood experience is stud- ied, 

where flood losses of the gap units are inferred by using a re- 

lationship matrix with background data: population, per-capita 

GDP and relative exposure of the unit to flood. The result shows 

that the suggested model is a universal approximation. To this 

case, a comparison shows that SLDR is obviously superior to 

GWR. The new technique reduces the error by approximately 

60%. It is also superior to BP network, reducing the error by 

approximately 33%.  

To substantiate the special case arguments, ten simulation 

experiments are done with pure random seed numbers. The 

statistical average results show that (1) the validity of GWR for 

filling gaps caused by incomplete is doubtful; (2) SLDR is more 

accurate than BP network for filling the gaps. The validity of GWR 

is questionable due to its linear assumptions. The low accura- 

cy of BP is due to that the model does not converge when there 

is a random interference in the training sample. 

Geospatial information diffusion for filling gaps with the in- 

formation of observed units is a new approach to supplementing 

incomplete spatial data to make the data complete. Information 

diffusion in probability space is an unconstrained diffusion. How- 

ever, geospatial information diffusion in geographyical space is 

restricted by background data. SLDR using multiple normal dif- 

fusion is simply one option. In particular, if we can replace the re- 

lative exposure with coordinates, rivers, and terrain data, the sug- 

gested method is expected to be more effective. 

In addition to the ability of the information diffusion tech- 

niques recognizing nonlinear systems with random interfer- 

ence, another reason for higher accuracy is that the techniques 

have the ability to optimally process small samples. Usually, if 

the type of a population from which a 1-dimensional sample is 

drawn is unknown, we need least 30 sample points for esti- 

mating the probability distribution of the population more ac- 

curately. Therefore, the support of a binary regression model 

requires a sample with a size of 900 (i.e., 30  30) if we do not 

know the type of input-output function that corresponds to the 

sample. When the sample size is small, the accuracy of SLDR 

is naturally higher than that of GWR and BP network.  
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