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ABSTRACT. In this study, the multi-level factorial analysis approach is employed to characterize the major impact factors on the perfor- 

mances of different data assimilation schemes. Four data assimilation methods, including EnKF and PF methods, and two integrated data 

assimilation methods are adopted for real-time hydrological prediction through a conceptual rainfall-runoff model in a catchment of Jing 

River. Different uncertainty scenarios for model inputs and outputs, as well as streamflow observations are tested through the multilevel 

factorial analysis to track the dominant impacts factors on the performances of data assimilation approaches. The multi-level factorial 

results suggest that, for different data assimilation schemes, the impacts from stochastic perturbations in model inputs, outputs and stream- 

flow observations are different and some of them may be statistically insignificant. But the impact for one factor is generally dependent 

upon the others and scenarios with extreme stochastic perturbations (low or high) may more likely result in a good performance for all 

data assimilation schemes. 
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1. Introduction 

In a hydrologic prediction context, model simulations or 

predictions are subject to various uncertainties stemming from 

model inputs (i.e., forcing data), model structures, and model 

parameters (Liu et al., 2012). Sequential data assimilation 

(SDA) techniques are widely used for explicitly dealing with 

various uncertainties and for optimally merging observations 

into uncertain model predictions (Reichle et al., 2002; Morad- 

khani et al., 2005a; Vrugt et al., 2005; Clark et al., 2008; Xie 

and Zhang, 2013). In SDA, the state variables, and parameters 

in a hydrologic model can be continuously updated when new 

measurements are available through sequential data assimila- 

tion techniques, and such a process can highly improve the mod- 

el predictions. The ensemble Kalman filter (EnKF) and particle 

filter (PF) methods are two of the most widely used sequential 

data assimilation schemes. The approaches of EnKF, PF and 

their variants have been widely used in hydrologic data assim- 

ilation (e.g., Moradkhani et al., 2005a, b; Parrish et al., 2012; 

Pathiraja et al., 2016a, b; Fan et al., 2015a, b; 2016; 2017a, b).  

For a data assimilation scheme (e.g., EnKF or PF), it has 

been demonstrated that its “optimality” depends critically on 

the reliability of error estimates for the inputs and the model it- 

self, as well as the proper consideration of interdependencies 

and interactions among the uncertain model components and/or 
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observations (Crow and Van Loon, 2006; Moradkhani et al., 

2006 a, b; Hong et al., 2006, Liu et al., 2012). Consequently, 

accounting for uncertainties in model inputs and predictions is 

crucial for providing reliable hydrological predictions. Some 

approaches have been developed to deal with uncertainties in 

model inputs, streamflow observations and model outputs, such 

as the stochastic perturbation method (Steiner, 1996; Crow and 

Van Loon, 2006; Pauwels and De Lannoy, 2006; Weerts and 

EI Serafy, 2006; Clark et al., 2008; Li, et., 2008; Komma et al., 

2008; Pan and Wood, 2009; Tan et al., 2011), conditional sim- 

ulation methods (Clark and Slater, 2006; Götzinger and Bárdos- 

sy, 2009), inverse methods (Vrugt et al., 2003), and multi-

model ensembles (e.g., Georgakakos et al., 2004). Among them 

the stochastic perturbation method is widely used, in which, un- 

certainties in model inputs, streamflow observations and model 

predictions are reflected through the addition of stochastic per- 

turbations based on order-of-magnitude considerations (Liu et 

al., 2012). Some research works have addressed the impacts of 

stochastic perturbations on the performance of data assimila- 

tion schemes. For instance, Moradkhani et al. (2005a) introduc- 

ed hyper-parameters to denote the proportionality between the 

variances in the Gaussian distribution noise and the magnitude 

of the variables and further analyzed the performance of EnKF 

under different combinations of the hyper-parameters. These 

stochastic perturbations may influence the performance of pre- 

diction accuracy in data assimilation process. However, few re- 

search works have been reported to characterize the main ef- 

fects of stochastic perturbations and their interactions on the 

performances for different data assimilation schemes. 

Consequently, this research aims to characterize the im- 
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pacts of random errors on the performance of different data as- 

similation schemes through a multi-level factorial analysis ap- 

proach. In detail, four data assimilation schemes are tested 

through a real case study in Jing River basin, including tradi- 

tional EnKF and PF, as well as two new integrated data assim- 

ilation schemes (i.e., the coupled EnKF and PF (CEnPF) and 

parallelized EnKF and PF (PEnPF)) proposed in our previous 

work (Fan et al., 2017a). Different stochastic perturbation sce- 

narios in forcing data, model predictions and observations are 

assumed. The multi-level factorial analysis is adopted to char- 

acterize the main and interactive effects of stochastic perturba- 

tions on the performances of different data assimilation schemes. 

2. Methods 

2.1. Data Assimilation Approaches 

There are a number of data assimilation approaches for un- 

certainty quantification and reduction in hydrologic prediction, 

in which ensemble Kalman filter (EnKF) and the particle filter 

(PF) are two of the most widely used sequential data assimila- 

tion schemes. The EnKF and its variants use the Monte Carlo 

method to approximate the error statistics, and then compute an 

approximate Kalman gain matrix for updating model and state 

variables. In comparison, the particle filter (PF) method also 

uses random samples (i.e., particles) to approximate the distri- 

butions of the model state, but instead of changing the particle 

values, the particle weights are updated forward by using se- 

quential Monte Carlo (SMC) simulation. 

Based on EnKF and PF, some integrated data assimilation 

approaches have been proposed, such as the coupled EnKF and 

PF (CEnPF) method and the parallelized EnKF and PF (PEn- 

PF) method proposed in Fan et al. (2017a). The CEnPF sequen- 

tially updates model parameters and states through Kalman up- 

date equations, and then corrects the updated states and para- 

meters again through PF procedure to eliminate abnormal or in- 

significant state and parameters and replace them by significant 

ones based on a sampling importance resampling procedure. 

The PEnPF approach simultaneously updates model states and 

parameters in parallel through EnKF and PF in each time step, 

and chooses the better estimates as the posterior distributions. 

Detailed procedures for EnKF, PF, CEnPF and PEnPF can be 

referred to relevant studies (Moradkhani et al., 2005a, b; Fan et 

al., 2017a; Li et al., 2010). 

 

2.2. Uncertainties in Sequential Data Assimilation 

Processes 

In data assimilation, stochastic perturbations are usually 

added into model inputs, streamflow observations and model 

predictions to account for their inherent uncertainties. Such 

perturbations are generally assumed to be proportional to the 

order-of-magnitude considerations. In such a process, the un- 

certainty is represented by adding perturbation or random error 

drawn from a predefined distribution with a mean value of zero 

and a variance being the order-of-magnitude considerations. 

For instance, the Gaussian random perturbations in forcing data 

and model predictions can be expressed as (Moradkhani et al., 

2005a): 

 

, ~ (0, )u

t t t tu u N     and u

t tu   (1) 

 

, ~ (0, )y

t t t t ty y N     and y

t ty   (2) 

 

where γ and ρ are the proportionality factor considered as hy- 

per-parameters. Some research works have been reported to 

consider the impacts of these proportionality factors (e.g., Mo- 

radkhani et al., 2005b, Leisenring and Moradkhani, 2012). How- 

ever, the interactions between these proportionality factors are 

not well explored. To address the above issue, a multi-level fac- 

torial analysis is proposed to explore the single and interactive 

effects of the proportionality factors in model prediction noise, 

forcing data noise and observation noise on the performances 

of different data assimilation schemes. 

 

 
 

Figure 1. The location of the studied catchment. 

 

2.3. Multi-level Factorial Analysis for Charactering 

Interactions among Uncertainty Components 

Factorial analysis is widely used for visualizing the single 

effects of factors with discrete values (or levels) and their inter- 

active effects on a response variable, in which a factorial design 

is employed to account for all combinations of the levels of fac- 

tors (Fan et al., 2020a, b, 2021). For example, consider a system 

model is subject to three factors A, B, and C, in which factor A 

has a level, factor B has b levels, and factor C has c levels. A 

complete experiment considering all levels of the three factors 
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with n replicates will have abcn observations, and the effect 

model for such a factorial experiment can be expressed as: 
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where μ denotes the overall mean effect; ηi, ξj, γk respectively 

denote the effect of factor A at the ith level, factor B at the jth 

level, and factor C at the kth level; (ηξ)ij, (ηγ)ik and (ξγ)jk indicate 

the interactions of factors A and B, factors A and C, and factors 

B and C, respectively; (ηξγ)ijk denotes the interaction among 

factors A, B, and C; εijkl means the random error component. 

According to Montgomery (2000), the treatment effects are de- 

fined from the overall mean, so we have
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0 . The statistical significance of each factor and the inter- 

actions between different factors can be characterized by the F 

statistic obtained as follows: 
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where nr means the factor of interest (r = 1, 2, …, q),
rnv indi- 

cates the number of levels of factor nr, r denotes the product of 

numbers of levels for all factors, and n means the number of re- 

plicates. ,
rnMS

1 2, ,... qn n nMS and eMS denote the mean squares of 

individual factors, interaction among factors and the error com- 

ponent, respectively. The sum of squares for single factors 

( ),
rnSS interactions between two factors

,( ),
u wn nSS interactions 

among three factors
, ,( ),

u w zn n nSS and the error component (
eSS ) 

can be calculated: 
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where yi, yij, and yijk denote the total of all observations under 

the ith level of one factor, the ijth interaction between two fac- 

tors, and the ijkth interaction among three factors, respectively; 

SST denotes the total sum of squares; y means the grand total of 

all observations. These statistics are collected in ANOVA that 

signifies a decomposition of the variance into contributing com- 

ponents and characterizes the differences between two or more 

means by analyzing variances from multiple sources (Wang et 

al., 2015; Fan et al., 2015a; Fu et al., 2021; Dong et al., 2021). 

In this study, a multi-level factorial design will be em- 

ployed to visualize the effects of stochastic perturbations in dif- 

ferent data assimilation schemes with multiple levels. In this 

factorial design, at every combination of stochastic perturba- 

tion level, an experimental run will be conducted, and this will 

lead to a total run of the product of the number of levels in each 

factor. To be more specific, a 3k factorial design is proposed for 

screening the effects of the proportionality factors in model 

prediction, observation and forcing data on the performances 

of different data assimilation approaches. The 3k factorial de- 

sign outperforms regular two-level designs in studying the ef- 

fects of several independent variables (factors) with multiple 

levels on a dependent variable (response), especially when a 

curvilinear relationship exists between the design factors and 

the response (Wang et al., 2015). 

3. Case Study 

3.1. Model and Site Description 

Once The case study of the catchment, located in the north 

part of the Jing River watershed presented in Figure 1, is em- 

ployed to reveal the impacts of random errors in forcing data, 

output measurements and model prediction on the performance 

of data assimilation schemes. The detailed description of the 

Jing River watershed and the used catchment is provided in Fan 

et al. (2017a). For the hydrologic model used in this study, the 

Hymod proposed by Moore (2007) is employed, which is a non- 

linear rainfall-runoff conceptual model which can be run in a 

minute/hour/daily time step. Five parameters are involved in 

this model and two inputs (i.e., precipitation and potential evap- 

otranspiration) are required to force this model.  

 

3.2. Stochastic Perturbation Scenarios 

To account for uncertainties in the forcing data, output 

measurements and model prediction, the random perturbation 

approach is used based on order-of-magnitude considerations. 

Three error scenarios for model inputs, streamflow observations 

and model predictions are considered to reveal the main and 

interactive impacts of stochastic perturbations on the perfor- 
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Figure 2. Pareto chart of standardized effects in terms of NSE (a) and RMSE (b) for EnKF. (1)Forcing Data(L) means the linear 

main effect from random error in forcing data; (2)Model Prediction(L) means the linear main effect of random error in model 

prediction; (3)Streamflow Observation(L) means the linear main effect from random error in streamflow prediction; Forcing 

Data(Q), Model Prediction(Q), Streamflow Observation(Q) denote the quadratic main effects for random errors in the three 

factors, respectively; 1Lby2L means the interaction of factors (1) and (2); 1Lby3L means the interaction of factors (1) and (3); 

2Lby3L means the interaction of factors (2) and (3). 

 

mances on hydrological predictions for different data assim- 

ilation schemes. In detail, proportionality factors are assumed 

to be 0.1, 0.2 and 0.3 to account for uncertainties in the forcing 

data, streamflow observations and model predictions. Moreover, 

Gaussian noise is adopted to reflect uncertainties in the poten- 

tial evapotranspiration, and streamflow observations, which can 

be expressed by Equation (1). Also, uncertainty in model pre- 

dictions is reflected by Gaussian noise as expressed by Equa- 

tion (2). Owing to the multiplicative nature of precipitation and 

only zero or positive values are possible, the precipitation data 

were log-normally varied with a heteroscedastic assumption 

(i.e., the variance estimate was scaled by the magnitude) as fol- 

lows (Leisenring and Moradkhani, 2012): 

 

2 2 2

ln ln[ / ( ) ]P t t P tP P P    (11) 

 

2 2

ln ln[( ) / 1]P P t tP P    (12) 

 
~

2

ln lnexp( / 2) ~ (0,1)i i i

t P P P PP w w N    (13) 

 

where

~
i

tP is the precipitation for sample i at time t, Pt is the 

measured precipitation at time t, γP is a variance scaling factor 

for precipitation data, which was assumed to be 0.1, 0.2 and 0.3. 

4. Results Analysis 

A 3k factorial analysis is proposed to explore the single and 

interactive effects of uncertain components in the forcing data, 

model predictions and streamflow observations on the perfor- 

mances of EnKF, PF, CEnPF and PEnPF. In detail, the propor- 

tionality factor values (i.e., 0.1, 0.2 and 0.3) are assumed to in- 

dicate the low, medium, and high levels of the uncertain com- 

ponents in forcing data, model predictions and streamflow ob- 

servations, leading to a 33 factorial design. The factorial design 

had a single replicate without the consideration of ‘‘noise”, in 

which, three and higher-way interactions were neglected, and 

their mean squares were thus combined to provide an internal 

estimate of error in the ANOVA (Wang et al., 2015). This is 

based on the sparsity-of-effects principle stating that a system 

is usually dominated by main effects and two-way interactions, 

and interactions involving three or more factors are rare and 

can thus be neglected (Montgomery, 2000). Consequently, there 

are total of 27 runs in this factorial design experiment, as shown 

in Table 1. This experiment is capable of making a clear test of 

main effects and two-way interactions of stochastic perturba- 

tions on different data assimilation schemes. A three-year time 

period (1979 ~ 1981) observations are adopted in the north part 

of Jing River basin to characterize the impacts of stochastic 

perturbations in inputs, observations and model predictions on 

the performance of different data assimilation schemes. 

 

4.1. Impacts of Stochastic Perturbations on EnKF 

Table 2 shows the performances of the EnKF approach un- 

der different combinations of stochastic perturbations in forc- 

ing data, model predictions and streamflow observations. In 

general, the EnKF provides satisfactory predictions under dif- 

ferent random error scenarios, with the NSE value ranging with- 

in [0.53, 0.70] and the RMSE value ranging within [9.80, 

12.27]. Table 3 shows the results of the ANOVA for the EnKF 

approach. In the ANOVA table, the terms with P-values being 

less than 0.05 are statistically significant, and vice versa when 

the P value is greater than 0.05. The results indicate that the ran- 

dom errors in streamflow observations and model predictions 

have significant main effects on the performance of EnKF, while 
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the random perturbations in forcing data are statistically insig- 

nificant in this case. Furthermore, the two-way interaction effect 

can be interpreted as half the difference between the linear ef- 

fect of one factor at the low and high levels of the other factors. 

The results in Table 3 reveal that the interaction between the 

random errors in model predictions and streamflow observation 

poses a significant impact on the performance of EnKF, while 

the other two interactions have minimal influence on EnKF, 

which may be due to the insignificant main effect of the random 

error in the forcing data. Three Pareto charts of standardized ef- 

fects are presented in Figure 2. The Pareto chart is a powerful 

tool for visualizing the individual and joint effects of all factors 

on model outputs. The rank is displayed by bars in a descending 

order. Thus, factor (3) (i.e., random error in streamflow obser- 

vations) is identified as the most significant factor for EnKF, 

followed by factor (2) which is the random error in model pre- 

diction. The symbol (L) represents linear effects. Moreover, the 

interaction between factors (2) and (3) is ranked as the third 

most significant factor. Factor (1) (i.e., random error in forcing 

data) is not as significant as the above two factors. These results 

are resonant with the conclusions drawn from the ANOVA table. 

 
Table 1. The 33 Fractional Factorial Design Matrix with 

Detailed Stochastic Perturbations 

Runs Forcing Data  
Model 

Predictions 

Streamflow 

Observations 

1 0.2 0.1 0.2 

2 0.2 0.1 0.1 

3 0.2 0.3 0.3 

4 0.1 0.2 0.2 

5 0.3 0.3 0.2 

6 0.3 0.1 0.1 

7 0.2 0.3 0.1 

8 0.3 0.3 0.3 

9 0.2 0.3 0.2 

10 0.3 0.2 0.2 

11 0.3 0.1 0.2 

12 0.2 0.2 0.2 

13 0.1 0.2 0.1 

14 0.1 0.1 0.2 

15 0.3 0.2 0.3 

16 0.1 0.1 0.1 

17 0.1 0.3 0.3 

18 0.2 0.2 0.3 

19 0.3 0.1 0.3 

20 0.2 0.1 0.3 

21 0.3 0.3 0.1 

22 0.1 0.2 0.3 

23 0.1 0.3 0.2 

24 0.2 0.2 0.1 

25 0.1 0.1 0.3 

26 0.3 0.2 0.1 

27 0.1 0.3 0.1 

 

To visualize the influence of the factors on the response 

and to compare the relative magnitude of the effects, Figures 

(3a) and (3b) present the main effects plot of the three factors 

at three chosen levels. This plot shows that the performance of 

EnKF changes remarkably, depending on the levels of the ran- 

dom errors in streamflow observations with the steepest line. 

This reveals that random errors in streamflow observations have 

the largest main effect on EnKF, with a decrease of NSE value 

from 0.68 to 0.62 and then to 0.56 across low, medium, and high 

levels of the random errors in streamflow observations. In com- 

parison, random errors in the forcing data has a smaller contri- 

bution to the performance of EnKF because its line is almost 

horizontal (parallel to the x-axis) in the main effects plot. Fig- 

ures (3c) and (3d) present the full interactions plot matrix with 

three factors at three random error levels for the performance 

of EnKF, in which each pair of factors provides two panels. 

Considering the right subplot in the second row of Figure (3c) 

as an example, this reveals that the change in the performance 

of EnKF differs across the three levels of the random error in 

model prediction, depending on the level of random error in 

streamflow observations, implying that an interaction between 

these two factors occurs and their effects are dependent upon 

each other. The best NSE value of 0.68 would be generated when 

the random error in streamflow observations is at its lowest lev- 

el and the random error in model predictions is at its medium 

level. The other subplots also indicate interactions among stream- 

flow observations vs. forcing data and model predictions vs. 

forcing data, but these interactions do not seem to be as strong 

as the interaction between streamflow observation vs. model 

prediction. 

Figure 4 shows the fitted response surfaces with contour 

plots of the interactions among the three factors. These plots 

show second-order (quadratic) effects on the performance of 

EnKF and provide a general idea on the performance of EnKF 

at various random error settings in forcing data, model predic- 

tions and streamflow observations. The 3D surfaces of stream- 

flow observations and model predictions show the most signifi- 

cant changes in NSE and RMSE values. Moreover, these two 

3D surfaces reveal a significant increasing trend of NSE towards 

the right side and a decreasing trend of RMSE in the same di- 

rection. This indicates that the performance of EnKF can be im- 

proved while reducing the random error in streamflow observa- 

tions, but at the same time the change of random error in model 

predictions does not have a significant influence.  

For this case study application, the random error in stream- 

flow observations poses the most significant impact on the per- 

formance of the EnKF, followed by the random error in model 

predictions, and the impact of random error in the forcing data 

is statistically insignificant. Interactions occur among the three 

factors but the interaction between random errors in streamflow 

observations and model predictions is most significant. More- 

over, the performance of the EnKF can be improved when the 

random error in streamflow observations is decreased. But the 

impact from model predictions is not significant when the ran- 

dom error in streamflow observations is at the lowest level. 

 

4.2. Impacts of Stochastic Perturbations on PF 

The NSE and RMSE values of PF under different combi- 

nations of stochastic perturbations in forcing data, model pre- 
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dictions and streamflow observations are also presented in Ta- 

ble 2. Compared with EnKF, the performance of PF usually dif- 

fers if the same random error scenario is employed. This may 

be due to the difference in parameter and state evolution mech- 

anism in EnKF and PF. In general, PF performs better than EnKF 

in several random error scenarios with the best NSE value 

reaching approximately 0.8. Table 4 shows the results of the 

ANOVA for PF. It can be concluded that random errors in the 

forcing data, model predictions and streamflow observations 

are statistically insignificant, since all the P-value are larger  

 

Table 2. Performance of Different Data Assimilation Schemes in the Factorial Design Experiment  

 EnKF PF CEnPF PEnPF 

Runs NSE RMSE NSE RMSE NSE RMSE NSE RMSE 

1 0.595 11.364 0.626 11.141 0.635 10.799 0.753 8.871 

2 0.677 10.150 0.590 11.412 0.624 10.959 0.814 7.703 

3 0.567 11.752 0.393 13.918 0.682 10.079 0.672 10.222 

4 0.607 11.192 0.666 10.251 0.654 10.512 0.767 8.624 

5 0.650 10.574 0.617 11.022 0.669 10.282 0.855 6.803 

6 0.687 9.998 0.636 10.653 0.645 10.642 0.829 7.392 

7 0.709 9.697 0.617 10.975 0.726 9.354 0.811 7.771 

8 0.618 11.036 0.703 9.729 0.651 10.555 0.837 7.206 

9 0.624 10.954 0.617 11.033 0.689 9.962 0.810 7.792 

10 0.616 11.075 0.616 11.001 0.662 10.388 0.822 7.546 

11 0.590 11.433 0.671 10.206 0.613 11.108 0.876 6.299 

12 0.609 11.164 0.621 10.990 0.630 10.872 0.801 7.962 

13 0.699 9.797 0.576 11.619 0.650 10.575 0.622 10.977 

14 0.591 11.429 0.561 11.826 0.633 10.823 0.786 8.265 

15 0.579 11.595 0.648 10.401 0.614 11.092 0.859 6.719 

16 0.681 10.090 0.685 9.958 0.707 9.673 0.742 9.068 

17 0.585 11.512 0.584 11.448 0.839 7.160 0.733 9.228 

18 0.555 11.920 0.518 12.398 0.613 11.118 0.537 12.153 

19 0.534 12.193 0.587 11.419 0.615 11.090 0.841 7.120 

20 0.519 12.387 0.797 8.057 0.638 10.753 0.453 13.215 

21 0.712 9.614 0.722 8.996 0.656 10.480 0.669 10.279 

22 0.572 11.687 0.509 12.511 0.648 10.599 0.741 9.083 

23 0.641 10.702 0.579 11.551 0.692 9.912 0.631 10.854 

24 0.685 10.025 0.681 9.983 0.663 10.374 0.694 9.876 

25 0.528 12.268 0.652 10.506 0.614 11.096 0.846 7.004 

26 0.689 9.961 0.588 11.854 0.644 10.664 0.848 6.974 

27 0.670 10.262 0.672 10.119 0.712 9.580 0.714 9.550 

 
Table 3. Results of ANOVA for EnKF 

NSE Degree of Freedom SS     MS  F P 

forcing data 2 0.0008717 0.000436 4.19 0.057 

model prediction 2 0.0066508 0.003325 32 0 

streamflow observation 2 0.0706461 0.035323 339.92 0 

forcing data*model prediction 4 0.0004217 0.000105 1.01 0.455 

forcing data*streamflow observation 4 0.0006558 0.000164 1.58 0.27 

model prediction* streamflow observation 4 0.0028379 0.00071 6.83 0.011 

Error 8 0.0008313 0.000104     

Total 26 0.0829153       

RMSE           

forcing data 2 0.17357 0.08678 3.56 0.078 

model prediction 2 1.30266 0.65133 26.73 0 

streamflow observation 2 15.08235 7.54118 309.5 0 

forcing data*model prediction 4 0.09335 0.02334 0.96 0.48 

forcing data*streamflow observation 4 0.12087 0.03022 1.24 0.367 

model prediction* streamflow observation 4 0.51814 0.12953 5.32 0.022 

Error 8 0.19493 0.02437     

Total 26 17.48586       
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Figure 3. Main and interactive effects for the stochastic perturbations on the performance of EnKF approach. Figures (9a) and 

(9b) indicate that the proportionality factor in streamflow observation poses the most significant impact on EnKF with a lower 

proportionality factor value leading to a better performance. The intersection of the three lines in Figures (9c) and (9d) indicate 

that interactive effects occur for two factors at three levels. The broken lines imply the nonlinear relationship between stochastic 

perturbations and model performance. 

 

 
 

Figure 4. Fitted response surfaces with contour plots for the interactions among the three stochastic perturbation factors for EnKF. 

 

than 0.5. Moreover, the interactions among the three factors 

(i.e., forcing data, model predictions and streamflow observa- 

tions) do not have significant impacts on the performance of 

PF, since their main effects are insignificant. Even though the 

random errors do not have noticeable impacts on the perfor- 

mance of PF in this case, their individual and joint effects can 

also be ranked by the Pareto chart, as shown in Figure 5. The 

impact rank for PF is generally different with the rank for EnKF, 

except that factor (3) (i.e., random error in streamflow observa- 

tions) is also identified as the most significant factor for PF. 

Particularly, all the effects for PF are statistically insignificant, 

while the first three effects for EnKF are statistically significant, 

as shown in Table 3. 

Figure 6 shows the visualization of the main effects of the 

three factors at three chosen levels and their interactions plot 

matrix. This reveals that the random error in streamflow obser- 

vation has the largest main effect on PF, which is the same for 

the performance of EnKF. Moreover, the random errors in forc- 
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Table 4. Results of ANOVA for PF 

NSE Degree of Freedom SS     MS  F P 

forcing data 2 0.00753 0.003765 0.43 0.667 

model prediction 2 0.009 0.0045 0.51 0.619 

streamflow observation 2 0.007897 0.003949 0.45 0.655 

forcing data*model prediction 4 0.02607 0.006517 0.74 0.592 

forcing data*streamflow observation 4 0.004996 0.001249 0.14 0.962 

model prediction* streamflow observation 4 0.025469 0.006367 0.72 0.602 

Error 8 0.070759 0.008845     

Total 26 0.151721       

RMSE           

forcing data 2 0.943 0.471 0.23 0.802 

model prediction 2 2.103 1.052 0.51 0.62 

streamflow observation 2 0.831 0.416 0.2 0.822 

forcing data*model prediction 4 4.417 1.104 0.53 0.716 

forcing data*streamflow observation 4 1.352 0.338 0.16 0.951 

model prediction* streamflow observation 4 5.234 1.308 0.63 0.654 

Error 8 16.596 2.074     

Total 26 31.475       

 

 
 

Figure 5. Pareto chart of standardized effects in terms of NSE (a) and RMSE (b) for PF. The random error in streamflow 

observation influences the performance of PF most significantly, followed by the interaction of factors (2) and (3). In general, the 

rank based on NSE is the same as the rank through RMSE for PF. However, all the above effects are statistically insignificant. 

 

ing data and model predictions have smaller contributions to 

the performance of PF than the random error in streamflow ob- 

servations. However, these two random errors seem to pose rel- 

atively more impacts on PF than those on the performance of 

EnKF as shown in Figures (3a) and (3b). Furthermore, Figure 

6 also indicates that the full interactions from the three factors 

on PF show a different pattern from those on EnKF, but interac- 

tions between these three factors occur and their effects are de- 

pendent upon each other. Figure 7 shows the fitted response 

surfaces with contour plots of the interactions of the three fac- 

tors on the performance of PF. These plots show quadratic ef- 

fects produced by the three selected factors. The 3D surfaces 

indicate that PF usually reaches better results in the corner or 

edge areas. Moreover, different combinations of random errors 

may lead to a similar performance of PF. These results suggest 

that extreme random error scenarios may be employed to im- 

prove the performance of PF in this case, and these scenarios  

have multiple options. 

In general, the impacts of the random errors on the perfor- 

mance of PF are different from those factors on the perfor- 

mance of EnKF. These impacts are statistically insignificant for 

the performance of PF in this case. Also, the detailed rank of 

these factors and their interaction plot matrix are generally dif- 

ferent from those for EnKF. The fitted response surfaces for the 

interactions for PF show different changing trends with the var- 

iation of random errors. All these differences may result from 

the different evolution mechanisms between PF and EnKF. 

 

4.3. Impacts of Stochastic Perturbations on CEnPF 

Table 2 presents the performances of CEnPF under differ- 

ent combinations of stochastic perturbations in forcing data, 

model predictions and streamflow observations. The results in- 

dicate that the performance of CEnPF is dependent upon these 
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stochastic perturbations. In general, the performance of CEnPF 

performs better than the traditional EnKF and PF approaches 

with the NSE value fluctuating within [0.614, 0.839], and the 

corresponding RMSE value varying within [7.16, 11.096]. Table 

5 shows the results of ANOVA for CEnPF. This table shows 

different conclusions from the ANOVA results for EnKF and 

PF. It can be concluded that random error in model predictions 

has a statistically significant impact on the performance of 

CEnPF, since the corresponding P-value is less than 0.05. The 

other two factors and all the interactions among the three fac- 

tors show statistically insignificant impacts. Figure 8 exhibits 

the individual and joint effects of the three factors ranked by 

the Pareto chart. The linear main effect of random error in mod- 

el predictions has the most significant impact on the performance 

  

 Table 5. Results of ANOVA for CEnPF 

NSE Degree of Freedom SS     MS  F P 

forcing data 2 0.008333 0.004166 2.68 0.129 

model prediction 2 0.023919 0.011959 7.69 0.014 

streamflow observation 2 0.001345 0.000673 0.43 0.663 

forcing data*model prediction 4 0.005253 0.001313 0.84 0.535 

forcing data*streamflow observation 4 0.003417 0.000854 0.55 0.706 

model prediction* streamflow observation 4 0.004826 0.001207 0.78 0.571 

Error 8 0.012449 0.001556     

Total 26 0.059542       

RMSE           

forcing data 2 2.3538 1.1769 2.51 0.143 

model prediction 2 6.3073 3.1536 6.72 0.019 

streamflow observation 2 0.3086 0.1543 0.33 0.729 

forcing data*model prediction 4 1.6699 0.4175 0.89 0.512 

forcing data*streamflow observation 4 1.146 0.2865 0.61 0.667 

model prediction* streamflow observation 4 1.4932 0.3733 0.8 0.56 

Error 8 3.7532 0.4691   

Total 26 17.032       

 

 
 

Figure 6. Main and interactive effects for the stochastic perturbations on the performance of the PF approach. Figures (12a) and 

(12b) indicate that the proportionality factor in streamflow observation poses the most significant impact on PF with a lower 

proportionality factor value leading to a better performance. The intersection of the three lines in Figures (12c) and (12d) indicate 

that interactive effects occur for two factors at three levels. The broken lines imply the nonlinear relationship between stochastic 

perturbations and model performance. 
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Figure 7. Fitted response surfaces with contour plots for the interactions among the three stochastic perturbation factors for PF. 

 

 
 

Figure 8. Pareto chart of standardized effects in terms of NSE (a) and RMSE (b) for CEnPF. The random error in model prediction 

(i.e., factor (2)) influences the performance of CEnPF most significantly, followed by random error in forcing data (i.e., factor (1)). 

The rank based on NSE is almost the same as the rank based on RMSE except some differences for minor impacts. However, only 

the first one (i.e., the randomness in model prediction) is statistically significant. 

 

of CEnPF, followed by the linear main effect from forcing data, 

and the quadratic effect of model predictions. The Pareto charts 

for NSE and RMSE are similar except for slight differences in 

the rank of some insignificant effects.  

Figure 9 presents the main effects plot for the three pro- 

portionality factors at three levels, and their interaction plot ma- 

trix. This can be helpful for visualizing the magnitudes of the 

main effects of factors and their interactions. In the main effects 

plots (i.e., Figures (9a) and (9b)), it can be concluded that the 

proportionality factor in the random error for model predictions 

has the greatest magnitude of the main effect upon the perfor- 

mance of CEnPF, and a higher proportionality factor will result 

in a better performance of CEnPF. Moreover, the random error 

in streamflow observations has the smallest contribution to the 

performance of CEnPF because its line is almost horizontal 

(parallel to the x-axis) in the main effects plot. These results are 

different from the main effect plots for EnKF and PF, in which 

the random error in streamflow observations has a largest con- 

tribution. Figures (9c) and (9d) present the full interactions plot 

matrix for the three proportionality factors at three levels, which 

show different characteristics from the interaction plots for 

EnKF and PF. However, the results indicate that interactive ef- 

fects occur among the three proportionality factors, suggesting 

that the effects of the three factors are dependent with each 

other. For instance, the interactive plot between forcing data 

and model predictions (the middle one in the first line in Figure 

(9c)) shows that the three lines of the forcing data increase as 

the proportionality factor in model predictions increases from 

0.1 to 0.3. At the same time the solid line, representing the low 

level of proportionality factor in forcing data, increases faster 

than the other two lines when the proportionality factor of mod- 

el predictions increases from 0.2 to 0.3, implying an interaction 

between this pair of factors. Figure 10 presents the fitted re- 

sponse surfaces with contour plots to reveal the interactions of 
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Figure 9. Main and interactive effects for the stochastic perturbations on the performance of CEnPF approach. Figures (14a) and 

(14b) indicate that the proportionality factor in model prediction poses the most significant impact on CEnPF with a higher 

proportionality factor value leading to a better performance. The intersection of the three lines in Figures (14c) and (14d) indicate 

that interactive effects occur for two factors at three levels. The broken lines imply the nonlinear relationship between stochastic 

perturbations and model performance. 
 

 
 

Figure 11. Pareto chart of standardized effects in terms of NSE (a) and RMSE (b) for PEnPF. The random error in forcing data 

(i.e., factor (1)) influences the performance of PEnPF most significantly, followed by the interaction of factor (1) and (3) (i.e., 

random error in streamflow observation), the quadratic effects of factors (1) and (3) (i.e., random error in streamflow observation), 

the linear effect of factors (3) and (2) (i.e., random error in model prediction), quadratic effect of interaction of factors (1) and (2), 

interaction of factor (1) and (3), linear main effect of factor (3), quadratic main effects of factors (3) and (1). 

 

the three factors on the performance of CEnPF. These plots sug- 

gest that better performance of CEnPF can be achieved in the 

corner areas, implying that low random error in forcing data, 

and high random error in model predictions and streamflow ob- 

servations may result in the best performances of CEnPF. 

For the proposed CEnPF approach, the case study also 

demonstrates its better performance in hydrologic data assimi-  

lation than traditional EnKF and PF methods. The impacts of 

random errors on CEnPF are different from those impacts of 

random errors on EnKF and PF. The random error in model pre- 

dictions has a statistically significant impact on the performance 

of CEnPF. However, interactions among the three factors occur 

for CEnPF, and extreme random error scenarios may be more 

likely to lead to a better performance of CEnPF, which is simi- 
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lar for the processes of EnKF and PF. 

 

4.4. Performance of PEnPF 

For the case study application, the performance of PEnPF 

has a wider fluctuation under different combinations of stochas- 

tic perturbations in forcing data, model predictions and stream- 

flow observations. As presented in Table 2, PEnPF can achieve 

good performances with the NSE value larger than 0.8 in many 

scenarios, but it may also produce unsatisfactory results with 

an NSE value of 0.46. It may be concluded that PEnPF has many 

chances to produce better hydrologic predictions than traditio- 

nal EnKF and PF. The ANOVA results for PEnPF are present- 

ed in Table 6. The results indicate that random errors in the forc- 

ing data have a statistically significant impact on the perfor- 

mance of PEnPF. Even though the impact from the random 

 
Table 6. Results of ANOVA for PenPF 

NSE Degree of Freedom SS     MS  F P 

forcing data 2 0.072791 0.036395 7.9 0.013 

model prediction 2 0.003958 0.001979 0.43 0.665 

streamflow observation 2 0.019033 0.009516 2.07 0.189 

forcing data*model prediction 4 0.03543 0.008858 1.92 0.2 

forcing data*streamflow observation 4 0.102592 0.025648 5.57 0.019 

model prediction* streamflow observation 4 0.010684 0.002671 0.58 0.686 

Error 8 0.036841 0.004605     

Total 26 0.28133       

RMSE           

forcing data 2 23.868 11.934 8.49 0.011 

model prediction 2 1.761 0.88 0.63 0.559 

streamflow observation 2 4.763 2.382 1.7 0.243 

forcing data*model prediction 4 9.704 2.426 1.73 0.237 

forcing data*streamflow observation 4 26.61 6.652 4.74 0.03 

model prediction* streamflow observation 4 2.027 0.507 0.36 0.83 

Error 8 11.239 1.405     

Total 26 79.972       

 

 
 

Figure 12. Main effects for the stochastic perturbations in forcing data, model prediction and streamflow observation on the 

performance of the PEnPF approach. For main effects, the random error in forcing data has the most significant impact (Figures 

(12a) and (12b)). The interaction plot matrix shows interactive effects occur among the three proportionality factors. 
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Figure 13. Fitted response surfaces with contour plots for the interactions among the three stochastic perturbation factors for PEnPF. 

 

error in streamflow observation is insignificant, the interaction 

between random errors in forcing data and streamflow obser- 

vation is statistically significant. Figure 11 shows the rank of 

the individual and joint effects of the three factors based on the 

Pareto chart. The linear main effect of the random error in forc- 

ing data is ranked as the most significant factor, followed by 

the interaction between random errors in forcing data and stream- 

flow observation. This conclusion is consistent with the ANOVA 

results. Moreover, the Pareto charts for NSE and RMSE are 

similar with each other except for slight differences in the rank 

for some insignificant effects.  

The main effect plots for the three factors and their inter- 

action plot matrix are shown in Figure 12. The results exhibit 

great differences from the main effect and interaction plots for 

EnKF, PF, and CEnPF. It can be visualized that the randomness 

in forcing data has the greatest effect upon the performance of 

PEnPF, with a higher proportionality factor leading to a better 

performance. Also, the full interactions plot matrix (Figures 

(11b) and (11c)) indicates that the three factors have interactive 

effects on PEnPF, which means that the magnitude of the ef- 

fects of the three factors is dependent upon each other. More- 

over, the fitted surfaces with the corresponding contour plots in 

Figure 13 indicate quadratic effects for the three factors. It is 

indicated that the proposed PEnPF may produce good predic- 

tions when the random errors in forcing data, model prediction, 

and streamflow observation are at their high level, low level 

and medium level, respectively.  

For the developed PEnPF approach, the case study demon- 

strates that it may have many chances to achieve a better perfor- 

mance than EnKF and PF due to its capability of choosing bet- 

ter posterior estimates from EnKF and PF for each time step. 

The multi-level factorial results indicate that random error in 

forcing data has the greatest impact, which is also statistically 

significant. Interactions occur among the three factors, in which 

the interaction between random errors in forcing data and stream- 

flow observation is statistically significant. 

5. Conclusions 

Sequential data assimilation (SDA) techniques have been 

widely used uncertainty quantification and reduction in hydro- 

logic prediction. In a data assimilation scheme, its performance 

is critically influenced by error estimates for the forcing data, 

output measurement, and model prediction. In this study, a 

multi-level factorial analysis approach has been employed to 

characterize the impacts of random error estimates on the per- 

formances of different data assimilation schemes. In detail, four 

data assimilation schemes was used, including EnKF and PF, 

as well as two integrated data assimilation approached (i.e., 

CEnPF and PEnPF). Different levels of the proportional factor 

in the random error perturbation were assumed, and then the 

individual and interactive effects were visualized by the multi-

level factorial analysis method.  

The impacts of random errors on the performance of a data 

assimilation scheme were tested by a conceptual model in a 

catchment in the Jing River basin in China. Three random error 

scenarios were assumed for the forcing data, streamflow obser- 

vations and model predictions, leading to a multi-level factorial 

analysis (i.e., 33 factorial analysis) framework. The results indi- 

cated that different stochastic perturbations in model inputs, out- 

puts and streamflow observations had different contributions 

on the selected data assimilation schemes, and some stochastic 

perturbations and their interactions may be statistically insig- 

nificant. But a data assimilation scheme may be more likely to 

achieve good performance when the proportionality factors in 

random errors are at their extreme levels (i.e., low or high levels). 

As an extension of the first paper, this study used a multi- 

level factorial analysis approach to characterize the impacts of 

random perturbations on the data assimilation process and to 

reveal the main and interactions of stochastic perturbations on 

different data assimilation schemes. Through this research, it 

can be found that (i) the new developed CEnPF and PEnPF ap- 

proaches in the first paper can provide more accurate predic- 

tions than EnKF and PF in most scenario combinations of ran- 

dom errors; (ii) for all selected data assimilation schemes, they 

are more likely to achieve good performances when the random 

errors are at their low or high levels. 
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