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ABSTRACT. Understanding the characteristics contributing to enhancing flood resilience is a matter of urgency in managing urban 

areas, especially for developing countries, given the challenges imposed by climate change, social growth and urbanization. Identify- 

ing resilience metrics remains challenging, mainly because the concept is relatively new, methodological approaches are almost absent, 

and many types of resilience-related data are still unavailable. A number of indices for flood resilience have been introduced in the lit- 

erature, typically based on clustering algorithms that allow complex behaviors to be mapped to specific levels of resilience. Con- 

sequently, the qualitative aspects of such indices are highly sensitive to the availability, quality and heterogeneity of data. Historically, 

this assessment has often been performed using rather simple algorithms such as Principal Components Analysis (PCA). Whilst they 

allow reliable resilience metrics in some areas, their use in a complex urban system such as the northern coastal area in Morocco is 

arguable. In the present study, we introduce an advanced Machine Learning (ML) method, namely the Self-Organizing Map (SOM), to 

build a Flood Resilience Index (FRI). Compared to classical methodologies, this present technique allows an improved assimilation of 

the complex relationship between data representing the social, economic and physical status of the area and resilience level. The 

success of this approach is mainly due to the ability of SOM to deal with complex, heterogeneous and sparse datasets. The results 

demonstrate great potential for such algorithms to shed light on systems that are too complex for classical techniques. 
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1. Introduction  

Adaptation to climate change is a significant challenge that 

local governments and communities need to address to achieve 

local and regional development goals (Schipper and Pelling, 

2006). According to the Intergovernmental Panel on Climate 

Change (IPCC), the risks associated with global warming are 

going to increase during the future (IPCC, 2022). Therefore, 

greater populations will be affected by water and climate-related 

disasters. Indeed, several studies have shown that these events 

are more likely to increase in the future under the impact of cli- 

mate change (Krausmann et al., 2008; Kellens et al., 2013; Qasim 

et al., 2016), which is predicted to lead to considerable economic 

losses and tremendous social stress (Masozera et al., 2007). 

As reported by Centre for Research on the Epidemiology 

of Disasters (CRED, 2022), floods dominated 375 annual cata- 

strophic event for 2001 ~ 2020, with 223 occurrences. Because 
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of the resulting impact of extreme weather events and rapid 

urbanization, floods remain one of the most devastating natural 

hazards worldwide (Lamond et al., 2015; Kotzee and Reyers, 

2016), affecting a greater proportion of the population than any 

other type of climate disaster, particularly in Africa (Keating et 

al., 2014). In addition, population growth is likely to put more 

stress on urban cities (DESA, 2014). Consequently, communi- 

ties, stakeholders and urban decision-makers need to review 

their management to cope with different challenges resulting 

from the combined impacts of climate change, social growth 

and urbanization. 

Historically, the management of climate-driven hazards 

has mainly focused on standard mitigation measures through 

excessive construction such as physical barriers, retention ba- 

sins, early warning systems (Alfieri et al., 2016), and the retreat 

or relocation of settlements (Macintosh, 2013). Previous work 

has considered those measures as traditional resistant strategies, 

responsive with a short-term focus to make the community re- 

active to a natural disaster so that the losses are kept to a mini- 

mum (De Bruijn, 2004; Papadopoulos et al., 2017). Whilst 

being necessary for adaptation purposes, they remain insuffi- 

cient to reduce losses. Resilience to climate-related disasters 

can also be improved through the adaptation of policies and 
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laws, public awareness raising, training and education (IPCC, 

2012). The ideas mentioned above have led to rising practition- 

ers and researcher’s interest in investigating how to improve ur- 

ban resilience (Rus et al., 2018). Therefore, the resilience con- 

cept has gained a broad interest as the primary goal of adap- 

tation plans and policies. 

Several previous works have been dedicated to defining 

resilience and measurement processes (Carpenter, 2002; Folke 

et al., 2002; Klein et al., 2003; Walker et al., 2004; Brand and 

Jax, 2007; Marshall and Marshall, 2007; Norris et al., 2008; 

Cutter et al., 2010; Hung et al., 2016; Sharifi and Yamagata, 

2016a; Asadzadeh et al., 2017). Generally, these studies demon- 

strate that resilience should be addressed based on two differ- 

ent perspectives: socio-environmental and engineering (Rus et 

al., 2018). Resilience metrics should, therefore, incorporate both 

these approaches. In the first approach, resilience is identified 

as the needed actions allowing the urban system to recover from a 

disaster in a small fraction of time. While from an engineering 

perspective, resilience is mainly based on the needed infra- 

structures to be settled before a hazardous event. 

Generally, when quantifying the resilience of an urban com- 

plex system, numerous data are used. Most of the time, these data 

are sparse and heterogeneous, which means that the available 

data are neither of the same type (numerical, categorical) nor the 

same nature. In fact, they are very dependent on the nature of the 

socio-economical activities happening in the region. Composite 

indicators are often used to quantify resilience towards a specific 

disaster (Cutter et al., 2014). During the last few years, many in- 

dicators have been constructed to assess resilience and compare 

their levels within a particular geographical area (Sharifi and Ya- 

magata, 2016b; Asadzadeh et al., 2017). 

For example, Cutter et al. (2010) defined a community re- 

silience index based on indicators that act as a baseline. Estab- 

lishing the baseline allows monitoring resilience in time and 

space. Magis (2010) has shown that such indicators are particu- 

larly useful to assess the social sustainability of a complex ur- 

ban system. However, a method’s ability to provide an accurate 

insight into the resilience level towards a specific disaster relies 

on the accuracy of the data obtained (Sherrieb et al., 2010). In 

addition, Joerin et al. (2014) introduced a climate disaster resil- 

ience index, which allows the assessment of an urban system’s 

sensitivity towards climate disasters from different perspectives 

(economical, institutional, natural, physical, and social). This 

index has been further adapted for communities (Peacock et al., 

2010) and localities (Hung et al., 2016). Particular indicators 

have also been developed in the specific case of flood resil- 

ience, such as the Integrated Flood Resilience Index (FResI) 

(Bertilsson et al., 2019), Composite Resilience Indices (CRI) 

(Qasim et al., 2016), and Flood Resilience Index (FRI) (Kotzee 

and Reyers, 2016; Chen and Leandro, 2019). The Composite 

indicator approach has proven to be tangible, providing a syn- 

thetic measurement of a complex, multi-dimensional, and mean- 

ingful phenomena through the aggregation of multiple individ- 

ual indicators (Marana et al., 2019). 

Despite these advances, previous studies have also high- 

lighted the challenges associated with data quality and availa- 

bility constraints (Cai et al., 2018; Moghadas et al., 2019). The 

computation of these composites requires the aggregation of 

several heterogeneous data. Calculating resilience metrics means 

mapping non-linear behaviour between observed phenomenon 

(social, physical, and economical) measured by data and a re- 

silience level. This is mainly achieved using clustering algo- 

rithms. To date, only the classical Principal Component Analysis 

(PCA) method has been used in the literature (Kotzee and Reyers, 

2016). Advanced Machine Learning (ML) techniques are still 

lacking to enhance the complex relationship between the FRI 

and the different data, although a few studies have highlighted 

the opportunity behind machine learning applications to identify 

better predictors of resilience (Knippenberg et al., 2019; Soden 

et al., 2019).  

Moreover, there is a lack of resilience measurement tools 

developed by local authorities and organizations in developing 

countries (Sharifi, 2016), and very few of these tools have been 

implemented in an operational context. Cutter (2019) has iden- 

tified a gap in studies comparing the measurement tools and 

indices developed to operationalize the resilience.  

This study represents one of the first attempts to introduce 

an advanced ML method to estimate the FRI. Here, the Self Or- 

ganizing Map (SOM) is used to measure the resilience to floods in 

the spatialized form. A comparison between this method and the 

classical (PCA) is also be presented. 

The Kohonen SOM is a special kind of artificial neural net- 

work (ANN) based on competitive learning, and it has not been 

used in the field of disaster risk management. Moreover, SOM 

has been introduced as a computational data analysis method 

that produces nonlinear mappings of data to lower dimensions 

(Kohonen et al., 1997). In this study, the SOM method is used 

as a clustering algorithm, producing clusters of selected vari- 

ables that are aggregated into a composite index.  

The present study focuses on a site in Morocco, and thus 

regards the different challenges towards regional development. 

Previous work in Morocco has identified this Mediterranean 

country as a hotspot for climate change (Born et al., 2008; Dri- 

ouech et al., 2009; Ouhamdouch and Bahir, 2017). Although 

there is evident variability in the different simulations of Re- 

gional Climate Models (RCM) over this area to assess the in- 

tensity of the impact, all simulations predict that Morocco will 

experience an increase in temperature and a decrease in precip- 

itation (Driouech et al., 2010). Thus, the region is very vulner- 

able to climate change impacts (Schilling et al., 2012), such as 

severe impacts on agriculture (Rochdane et al., 2014), water 

resources (Bahir et al., 2020), and natural hazards (Satta et al., 

2016; Satour et al., 2021). Because of the ubiquitous uncertain- 

ties in future climate scenarios, quantifying this impact remains 

a challenging issue. 

For example, Tramblay et al. (2012) studied the impact of 

climate change on extreme precipitation. The authors highlight- 

ed that assessing the expected occurrence of such an event is 

challenging in northern Morocco. Consequently, it is difficult 
to accurately predict the impacts on future flood events in this 

area (Fink and Knippertz, 2003).  

Increasing resilience against flooding is of utmost impor- 

tance to achieve sustainability of urban systems (Snoussi et al.,  
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Table 1. Indicators Set for the Measurement of Resilience to Floods 

Variables Description, effect on resilience & justification 

Children under 14 years of age 

Elderly 

Special needs 

% Population: Elder, children and population with physical or mental disability, have constraints of 

mobility during floods and evacuation process (Qasim et al., 2016; kotzee and Reyers, 2016; Hung et al., 

2016).  

Illiteracy % Person who has never learned to read: can make the emergency and public awareness processes 

challenging. 

Schooling age  % School age Population (7~12 years): Children are vulnerable individuals. The access to education 

increases understanding of skills to prepare and protect from floods (Brilly and Polic, 2005). 

Unemployment 

 

% Population with employment It reduces poverty and increases economic capacity Qasim et al., 2016; 

Cutter et al., 2010). However, an unemployed citizen is in front with his disability to recover or rebuild 

their damage. Balica, 2012). 

Houshold density The proportion of household members per the total sector surface. 

It expresses the exposure of the population to floods and negatively influences the resilience (Balica and 

Wright, 2010). 

Wall materials 

Flooring material 

Roofing materials 

Numbers of houses made of reinforced concrete, bricks with mortar will be more resilient to floods than 

mud houses (Qasim et al., 2016). 

Housing age % of housing units built before 50 years or under than ten years (Cutter et al., 2010). It is an indice of place 

attachment (kotzee and Reyers, 2016). 

House state: ownership 

House state: co-owner 

House state: tenancy  

 % of houses ownership statute (revealing the economic stability of the population). 

 

 

Electricity accessibility 

Water infrastructure 

% of Population connected to public distribution network: Public infrastructure (Hung et al., 2016). 

Television 

Mobile phoe 

Internet 

% of Population having communication capacity (kotzee and Reyers, 2016). 

Elevation  Averaged elevation (m) (Hung et al., 2016). 

 

Table 2. Principal Components Extracted to Build FRI 

Components 

Extraction sum of squared loadings Rotation sum of squared loadings 

Total 

(eigenvalue) 

% of 

variance 

Cumulative 

% 

Total 

(eigenvalue) 

% of 

variance 

Cumulative 

% 

1 5.903 28.111 28.111 4.663 22.206 22.206 

2 3.598 17.132 45.243 3.366 16.030 38.236 

3 2.533 12.061 57.304 3.149 14.995 53.231 

4 1.628 7.753 65.057 2.220 10.571 63.802 

5 1.148 5.468 70.526 1.298 6.183 69.985 

6 1.052 5.011 75.536 1.166 5.551 75.536 

Kaiser-Meyer-Olkin measure of sampling adequacy                                        0.795 

Bartlett’s test of sphericity                                           χ2 = 1819.319     d.l.l = 210        p < 0.0001 

 

2008). Morocco has engaged in several projects to mitigate cli- 
mate change, especially impacts from flooding. For example, a 
current project aims to decrease the impact of flooding in the 
northern Moroccan region by transferring the excess water to 
the arid southern region. While this project may help to reduce 
the negative impact of climate change (flooding in the North 
and water stress in the South), its viability remains unclear re- 
garding climate change (El Moçayd et al., 2020). 

Furthermore, the increase in urban population is another 
key-challenge that the communities need to tackle to meet the 
region’s development goals. Furthermore, the increase in urban 
population is another key challenge to tackle in order to meet 
region’s development goals. In Morocco, urban population is  

expected to increase in the coming few years (HCP, 2018), ur- 

ban population is expected to increase in the coming few years. 

Therefore, it is now critical to evaluate FRI’s in the Moroccan 

region that could be implemented in the operational context. 

These algorithms need to consider the complex nature of the 

available data and examine the spatial distribution of the resil- 

ience index, regarding their importance (Satour et al., 2021).  

The study makes a comparative analysis of PCA and SOM 

methods highlighting the differences between them, in the Flood 

Resilience measurement process, while showing the usefulness 

of these procedures for identifying recommendations revealed 

from identifying flood resilience determinants in the study area. 
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Figure 1. Map of the study area showing its location in North 

of Morocco, and three municipalities of Fnideq, M’diq and 

Martil. 

2. Overview of the Study Area 

Fnideq, M’diq and Martil (FMM) municipalities are lo- 

cated within the metropolitan area of Tangier-Tetouan. Over a 

length of 44 km extending on the coastal edge, FMM munici- 

palities are situated in two low sandy regions separated by the 

rocky cape of Capo Negro (Niazi, 2007), and are downstream 

from three watersheds: Fnideq, Smir and Martil-Alila (Figure 

1). The urban coastal area is highly developed, putting pressure 

on the ecosystems (Snoussi et al., 2010). The socio-economic 

activities are mainly driven by seasonal tourism, whilst the in- 

dustrial sector remains minor. The area has faced many hazard- 

ous floods since 1980 (ABHL, 2016), where14-flooded areas 

are localized at FMM. From 2000 until 2010, historical records 

show that floods have occurred in the area almost annually 

(Pateau, 2014). For example, in December 2000, Martil munic- 

ipality experienced the most intense flood in the last 60 years 

(3500 m3/s, 150 Mm3), causing eight deaths and injuries and 

considerable material damage (Ministry of Equipment, Trans- 

port, Logistics and Water, 2017). The frequency of hazardous 

event in this area is likely to increase in the future (Satta et al., 

2016). 

3. Data  

Data were collected at the local level from the last 2014 

Census of Morocco (RGPH, 2014) as well as government pub- 

lications, municipal planning documents and an online RGPH 

2014 database. Table 1 summarizes the available data and de- 

scribes the continuous variables used in this study. Classifica- 

tion and Visualization were undertaken using Geographic In- 

formation System (GIS) tools. Our Maps were created using 

the Free and Open Source QGIS. 

4. Methodology: Resilience Assessment Based on 

PCA and SOM 

4.1. Construction of the Index Composite: FRI  

A useful tool for policymaking and public communication 

is the composite indicator, which has increasingly been used to 

convey information (Gallopin, 1996; Cutter et al., 2010). Nev- 

ertheless, the use of this indicator to measure resilience is rela- 

tively recent (Prior and Hagmann, 2014). The application of a 

weighting system through a set of selected variables has been 

suggested to construct composite indices using data collected 

from surveys and databases (Vyas and Kumaranayake, 2006). 

In this study, among the existing weighting techniques, we in- 

vestigate the use of two methods: PCA and SOM.  

 

4.2. Flood Resilience Assessment Based on Principal 

Component Analysis  

PCA is a statistical technique employed to cluster the vari- 

ables according to their correlation. It can be used to encom- 

pass a high number of variables highly correlated into new, sta- 

tistically independent components that best explain the varia- 

tion in the data (Kaźmierczak and Cavan, 2011). Basically, PCA 

uses the correlation matrix to transform sequentially the origin- 

nal variables into latent variables (components). The new vari- 

ables are achieved by maximizing the variance of a linear com- 

bination of the original variables. For this purpose, a certain num- 

ber of latent components with maximum variability are retained 

to represent the data. The obtained components are aggregated 

to compute the composite index (Nardo et al., 2005). 

Furthermore, the new axes are ordered in terms of the per- 

cent of the amount of variation from the total they account for 

(Table 2). The Kaiser’s varimax rotation method is used for the 

computation of the eigenvalue decomposition of a data covari- 

ance matrix.  

A study by Gómez-Limón and Riesgo (2008) shows that 

the process to calculate the index FRI is based on the extracted 

principal components. The authors suggest using a weighted ag- 

gregation of indicators wkj and Iki (the normalized indicator k 

achieved by ward i) for k = 1, …, n, to determine the compo- 

nents IRIji of the intermediate resilience indicator IRIj that cor- 

respond to each principal component. The same formulations 

were also employed in this study to calculate IRIji and W. The 

components IRIi of the index composite FRI can then be calcu- 

lated as a weighted aggregation of the intermediate resilience 

indicators:  
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==  (1) 

 

where FRIi is the value of the composite indicator for the ward 

i and αj is the weight applied to the intermediate sustainability 

indicator IRIji. These weights are calculated as follows: 
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j j

jj

eignvalue

eignvalue


=

=

=
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 (2) 

 

The result corresponding to the index scores shows that 

obtained values can be negative or positive. The normalization 

using min-max is used to standardize the index scores.  

 

4.3. Flood Resilience Assessement Based on Self-Orgnizing 

Map  

The SOM (Kohonen neural network) is the closest of all 

artificial neural network architectures and learning schemes to 

the biological neuronal network (Kohonen et al., 1997). The 

self-organizing map has one single layer of neurons usually ar- 

ranged in a two-dimensional plane, and the number of neurons 

in the input layer is equal to the dimension of the input space 

(En-Naimani et al., 2016). A defined architecture means that 

each neuron has a finite number of neurons as nearest neigh- 

bours and are usually arranged in squares, which means that 

each neuron has four nearest neighbours (Joudar et al., 2019).  

Generally, there are two major classes of learning: super- 

vised learning and unsupervised learning. In our case, the mod- 

el falls within the unsupervised learning class. The input data is 

a dimensional vector X = {x1, x2, …, xn}, with xi
 = {x1

i, x2
i, …, x3

i}, 

where n is the sample size and d is the input dimension.  

As a first step, each neuron is associated with a reference 

vector wj = (w1
j, w2

j, …, w3
j), j = 1, …, N, belongs to input 

space. The goal is to find the best weights W* that represent the 

training data X. 

The second step, each xi at a time t is compared with all wj 

to find the reference vector wk that satisfies a minimum dis- 

tance or maximum similarity criterion. Although several mea- 

sures are possible, the Euclidean distance is the most com- 

monly used: 

 

1
argminN i j

j
k x w

=
= −  (3) 

 

The best-matching unit (BMU = k) and neurons within its 

neighborhood are then activated and modified: 

 

( ) ( ) ( ),
1j j i j

k j
w t w t t x w+ = + −  (4) 

 

One of the main parameters influencing the training pro- 

cess is the neighborhood function (βk,j(t)), which defines a 

distance-weighted model for adjusting neuron vectors. It is de- 

fined by the following relation: 

 

( )
( )
,

, 2
exp

2

k j

k j

k

d
t

t




 −
=   

 

 (5) 

 

This latter is dependent on both the distance (dk,j) between 

the BMU and the respective neuron j, and on the time step 

reached in the overall training process (t). Using a Gaussian 

model, this function involves a kernel width (σ) which is not a 

fixed parameter.  

The correlations are first estimated using SOM between 

the considered variables, in order to compare the FRIs. For this 

purpose, the data X are considered as realizations d times of 

each variable X1, …, Xn, i.e., X = {xq
j}, i = 1, …, n; q = 1, …, d. 

Moreover, we consider the set of weights associated to map as: 

W = {wq
j}, i = 1, …, N; q = 1, …, d. With N << n, meaning that 

the number of neurons considered in the map is very small 

compared to the number of elements in the database. 

Moreover, the SOM algorithm can be used to calculate 

FRI based on the optimal weights W1* = (w1*, w2*, …, wN*) 

associated to N neurons. Each neuron corresponds to an inter- 

mediate resilience indicator (IRIj), computed iteratively using 

the following formula: 

 

( ) ( ) ( ) ( ),
1j j i j

k j
IRI t IRI t t I IRI t+ = + −  (6) 

 

As a result, after the convergence of the algorithm the vec- 

tor ( )1 2
,  ,  ,  j j j

j d
IRI IRI IRI IRI   =  represents the intermedi- 

ate resilience indicator values (IRIj
*). Where wq

j* is the interme- 

diate resilience indicator for the neuron j and the ward i. The 

weights wi
j of each associated vector wj are normalized: 

 

1

k N

i j jik
FRI IRI

=

=
=  (7) 

 

where FRIi is the value of the composite indicator for the ward 

i and βj is the weight applied to the intermediate sustainability 

indicator j. These weights are calculated and normalized as 

follows: 

 

    var    

   var

j

j

total number of associated iables winning by neurone

total number of iables
 = (8) 

5. Results and Discussion  

5.1. Principal Component Scores and Clustering with 

SOM 

Six principal components explain 75% of the total vari- 

ance. Table 2 provides the factor loadings for the linear trans- 

formation of the original variables to the components. The ro- 

tated factor loading can be used to analyze the components’  
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Table 3. Rotated Components Matrix from PCA (Factor Loadings)  

  Components 

 Comp1 Comp2 Comp3 Comp4 Comp5 Comp6 

Illiteracy –0.825           

Schooling age 7 ~ 12 years old 0.567           

Flooring materials –0.792           

Electricity 0.603           

Television 0.826           

Mobile Phone 0.733           

Internet 0.794           

Walling materials bricks with mortar   0.905         

Flooring materials   –0.887         

Roofing materials    0.865         

Children under 14 years of age     –0.654       

Elderly     0.744       

Special need     0.622       

Unemployment      0.662       

House Age > 10 years      –0.829       

House Age < 50 years      0.638       

Owner, co-owner       –0.917     

Tenant       0.850     

Water accessibility        0.462     

Household density         0.878   

Elevation           0.861 

Extraction method: Principal Component Analysis.  

Rotation method: Varimax with kaiser normalization. 

 

meaning and specify the variables that affect them. 

From these results, only four principal components were re- 

tained, explaining 75% of the total variation in the data (Figure 

2). These components correspond to the eigenvalues of PCA. The 

variance accounting for each of these six components are respec- 

tively 28.11, 17.13, 12.06, 7.75, 5.46 and 5.05% (Figure 2). 

 

 
 

Figure 2. Scree plot of percentage of explained components. 

 

Most of the PCA variables contribute highly to the con- 

struction of the first and the second components. They also con- 

tribute lightly to construct components 3 and 4 (Table 3). Vari- 

ables of illiteracy, flooring materials, electricity and communi- 

cation devices (television, mobile phone, and internet) scored 

highly in component 1 (Table 3). Based on the predominance 

of public services variables in component 1, this was classified 

as an economic resilience component. Variables loaded highly 

in component 2 include walling materials (A) and (B), and roof- 

ing materials. Component 2 was classified as the building ma- 

terials component (Table 3).  

 

 

Figure 3. A representation of the 4 clusters with the number 

of variables contained in each cluster. 

 

The elderly population, a person with a particular need, 

house age 10 years and 50 years, loaded highly in component 3. 

With a high negative loading of house age 10 years and children 

under 14 years. Based on these variables, component 3 was clas- 

sified as social. Component 4 had only three variables: owner 
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and co-owner, tenant statutes, and water accessibility. The hou- 

sehold density and the elevation are loading respecttively to 

components 5 and 6. 

The SOM will project the original data points into a hexago- 

nal topology “output space”. The SOM divided data from 21 

different sectors into four clusters (Figure 3). 

Variables of illiteracy, unemployment, child under 14 years 

and roofing materials scored on the first neuron. Based on the 

predominance of social variables in component 1, it was clas- 

sified as a social neuron.  

Variables loaded highly in neuron 2 include the Elderly pop- 

ulation, people with special needs, building density, roofing and 

flooring materials, house ages, internet and elevation. Neuron 2 

was classified as the physical resilience neuron (Figure 3). 

The third neuron included scho0ling 7 ~ 12 years, walling 

materials, electricity, water, television and mobile phone. 

Based on these variables, neuron 3 was classified as economic 

resilience neuron. Neuron 4 had only the tenancy variable 

(Figure 3). 

 

 

Figure 4. Spatial distribution of flood resilience index (FRI) 

values and their related ward ranking for the Martil, M’diq 

and Fnide municipalities. a): FRI calculated using PCA, and 

b) FRI calculated using SOM approach. 

 

Figure 5. Spatial distribution of disaggregated components of 

the flood resilience index calculated using PCA: showing (a) 

economic resilience, (b) physical resilience, and (c) social 

resilience. 

 
 

Figure 6. Spatial distribution of disaggregated neurons of the 

flood resilience index calculated using SOM: Neuron1 (a): 

social; Neuron 2, (b): physical; Neuron 3, (c): economic; 

Neuron 4, and (d): Tenancy variable. 

 

5.2. Comparative Analysis of PCA and SOM to Build FRIs 

The composite index and spatial analysis have proven to 

help summarize and present a complex array of variables linked 

to resilience. The two different flood resilience mapping, PCA 

and SOM, are presented in Figures 4a and 4b.  

The estimated FRI values were classified into different re- 

silience classes using the quantiles classification method. Using 

the two methods (PCA and SOM), the FRI scores are represented 

with their spatial distribution using Geographic Information Sys- 

tems (GIS). The two FRI estimated were superimposed of 126 

RGHP 2014 sector of control boundaries throughout the study 

area. The estimated values were classified into five levels (from 

very low to very high; at 20% intervals) and then compared in  
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Table 4. t-tests for Global Comparison between FRI-PCA and FRI-SOM 

PCA – SOM  

Comparison 

Paired differences     

Mean Std. deviation  Std. error mean  t d.f p-value 

FRI_PCA - FRI_SOM 0.010 0.018 0.002 6.569 124 0.000 

 

Figure 4. 

The flood resilience index distribution demonstrates the 

large variability across the study area (Figure 4). FRI mapping re- 

sults show a similarity in the two FRI assessment schemes (PCA 

and SOM) (Figures 4a and 4b), with slight differences observed 

for the means and standard deviations calculated in the two cases 

(PCA approach: mean 1 = 0.491 and sdv 1 = 0.034; SOM ap- 

proach with a mean 2 = 0.501 and sdv 2 = 0.043). Moreover, 

SOM and PCA do not lead to the same clustering structure in 

the final results. SOM affected the two isolated variables with 

PCA: “elevation” and “household density” to the second cluster. 

These differences illustrate the possible presence of non-linearity 

in the data, which is not captured by PCA. Thus, SOM is suitable 

to detect the non-linearity between variables. A general over- 

view of the graphical results (Figures 4a and 4b) over the whole 

region shows that the high flood resilience scores were found in 

the three municipalities’ central urban zone: Martil, M’diq and 

Fnideq. The moderate flood resilience was observed in the out- 

er sectors. In contrast, the lesser levels were observed in the 

peri-urban areas. They were seemingly localized in the same 

sectors. There are some exceptions highlighted, in the west of 

Fnideq, Kabila beach, Smir lagoon, M’diq center, sector sur- 

rounding Alia River and Diza district. Theses sectors could be 

the possible outliers in the dataset. 

To further the comparison, a disaggregation into PCA com- 

ponents and neurons for SOM allows the determination of the 

major flood resilience drivers (Kotzee and Reyers, 2016) (Fig- 

ures 5 and 6). 

 

5.3. FRI Desegregated into Its PCA Components  

When the index FRI is disaggregated into its six compo- 

nents, the significant determinant parameters of flood resilience 

become clear (Kotzee and Reyers, 2016) (Figure 5). 

For PCA, to further explore the geographic trends in the 

data, the intermediate resilience indicator (IRI) scores for the 

four retained components are displayed using a GIS tool. Based 

on standard deviations from the mean value, those components 

helped emphasize sectors that rank high or low in terms of their 

flood resilience. 

Using GIS, we seek here to represent the spatial distribu- 

tion of the four disaggregated components of the index across 

the study area are represented. 

The distribution of economic resilience (Figure 5a) shows 

the highest scores are only in some sectors in the main towns of 

the three municipalities: Martil, M’diq and Fnideq. Average 

scores were found in sectors adjoining the central urban sec- 

tors. The lowest was found in the central area and developing 

sectors in term of economic resilience (Figure 5a). 

The distribution of physical resilience (Figure 5b) shows 

few highest scores are within the wards, including the main cit- 

ies of the respective municipalities. The moderate scores were 

found in the outer sectors bordering the municipalities of Martil, 

M’diq and Fnideq. The low scores were found in the outer sec- 

tors and developing areas as in the west of Fnideq.  

In term of social resilience (Figure 5c), highest scores were 

measured within and around city centres. The lowest scores 

were highlighted around Martil city centre, with average scores 

on the whole surface of M’diq and Fnideq cities.  

Component 4 (Figure 5d) had only three variables: owner 

and co-owner, tenant statutes, and water accessibility. The distri- 

bution of component 4 shows relatively high scores predomi- 

nant in the three municipalities and low scores in Diza district 

in Martil, and the less developing sectors in the central area. 

 

5.4. FRI Desegregated into Its Neurons 

Following the same process of desegregation, to explore 

flood resilience using SOM, FRI is disaggregated into the four 

neurons. Into the first neuron (Figure 6a), the highest scores 

were found over large surfaces of the whole study area. How- 

ever, Fnideq and M’diq centres have moderate scores. Lowest 

flood resilience was found in urban sectors situated on Martil 

coastal area.  

Figure 6b shows that the lowest FRI scores are within ur- 

ban wards of the three municipalities, while the highest scores 

were found within Martil centre and in the outer sectors border- 

ing M’diq and Fnideq city centres. 

In terms of the third and the last neuron, the highest scores 

were found within the center urban wards, while the lowest 

scores were prevailing at large surfaces of the whole study area 

(Figure 6c). 

The disaggregation step revealed many differences be- 

tween the results of FRI calculated through PCA, FRI and 

SOM. Therefore, a t-test (Table 4) is calculated to highlight 

significant differences between the means in the output of the 

two methods: PCA and SOM. 

 

5.5. Paired Sample t-test (PCA-FRI, SOM-FRI) and 

Robustness Check 

Both methods have confirmed their applicability in evalu- 

ating and measuring flood resilience. To test and assess the 

reli- ability of PCA and SOM method taking into account the 

results of the FRI_PCA and FRI_SOM obtained over the whole 

study area (126 sectors), a comparison analysis is established 

be- tween the proposed methods using paired sample t-tests for 

equality of means. Table 4 shows the results of these tests. 

There is a significant difference (p-value = 0.0000 < 0.05 and t 

= 6.569) between two FRI measurements calculated by the two 

methods. The t-test justifies the main differences already high- 
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lighted in the same sectors in term of economic, physical and 

social resilience.  

In order to assess the PCA or SOM methods’ accuracy in 

making relevant results, an examination of the results reliabili- 

ty is developed based on the validation step. The external valid- 

ity is applied since the risk and vulnerability oriented studies 

(Niazi, 2007; Snoussi et al., 2010; Nejjari, 2014; Satta et al., 

2016) are available in the study area, analyzing the strongly 

related phenomenon, external validity is applied. 

The FRI-SOM method findings mention that central wards 

of urban cities (Diza sector, Martil Alila, central wards in 

Fnideq and M’diq) requires high-level attention in terms of 

physical and social resilience, which is not the case with the 

FRI-PCA method suggesting moderate attention. 

The FRI calculated with SOM provides consistent results 

visualizing, much more easily, the sectors presenting the outli- 

ers in the dataset: the low flood resilience scores in Diza district 

in Martil. This was expected as it located in a highly hazardous 

flooded area and locked between the riverbed and a dead-arm. 

This ward contains informal settlements, characterized by illit- 

eracy, unemployment, and insalubrious houses (Le Tellier, 

2006). These characteristics contribute to their low flood re- 

silience level. 

Nevertheless, the highest similarities revealed between the 

two FRI calculated are valid. The lowest resilient sites calcu- 

lated with SOM and PCA (Martil-Alila plain, Smir Lagoon and 

Restinga beach) are notably highly vulnerable to flash floods 

and sea-level rise impacts (Niazi, 2007; Snoussi et al., 2010; 

Satta et al., 2016). 

Nevertheless, the two indices support the idea that areas 

with higher vulnerability levels examined have lower resilience 

levels (Hung et al., 2016; Scherzer et al., 2019). 

6. Conclusion  

In the present study, the potential of Machine Learning 

tools to evaluate resilience in a complex urban system has been 

highlighted. The two clustering methods used in this study 

(PCA and SOM) enabled the examination of the critical factors 

that drive flood resilience. This information was essential in 

understanding the resilience level to floods in the whole area 

and its spatial distribution. Both methods provided insights on 

the geographic distribution of FRI across Fnideq, M’diq and 

Martil municipalities. Both PCA and SOM have proven to be 

simple to apply. However, the t-test and a robustness check 

showed that only SOM was able to provide tangible recom- 

mendations reliably. PCA may provide some less irrelevant in- 

formation, with 6 principal components retained, in our case, 

explaining less than 80% of the total variance.  

The ability of SOM to reduce the dimensionality of data, 

to deal with non-linear and heterogeneous data were the main 

determining factors for this performance. Therefore, SOM is 

an efficient neural network method to deal with the resilience 

assessment based on information from high dimensional data. 

These results highlighted the importance of the robustness 

check step, to be sure if the composite index calculated reflects 

the reality. In addition, such algorithms are highly dependable 

on the used data. The most significant challenge in this study 

was related to the accessibility and quality of data. In conclu- 

sion, integrating climatic data (flood data or flood simulation 

data) are suggested for future improvements. Moreover, using 

an index-based resilience measurement requires the interven- 

tion of a time dimension because of the dynamism of our urban 

systems. Another challenge was the external validation step 

based on the opposite relationship between risk and resilience. 

Resilience is locational and context-specific. Thus, the local 

stockholders can clearly benefit from using Machine Learning 

techniques to inform their development decisions. 
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