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ABSTRACT. The water quality of a river can be considered a function of its surrounding landscape. Understanding the relationship be- 

tween landscape patterns and river water quality is essential for optimizing landscape patterns to reduce watershed pollution and has not 

yet been solved. A multiscale geographically weighted regression (MGWR) model was used to explore the associations between the 

landscape patterns and water quality. Our results showed that landscape metrics have varied relationships with the water quality across 

spatial scales in different seasons. The strongest independent influencing variable for NO3
–-N, NH4

+-N, and TN was tea gardens, residen- 

tial land, and varied seasonally, respectively. The impacts of the landscape metrics on the TP were relatively weak throughout the year 

at the watershed scale. The influence of landscape metrics on NO3
–-N was more significant during the flood season, whereas that on 

NH4
+-N was more notable during the non-flood season. Seasonal changes in the influencing landscape metrics of TN were not regular. 

Although landscape composition more significantly influenced water quality than configuration, the Shannon’s diversity index and patch 

density were important configuration indices that significantly impacted water quality. Therefore, with limited land availability, it is es- 

sential to optimize the landscape spatial configuration without changing the composition of the watershed to reduce the risk of river pol- 

lution. This study further indicated that the MGWR model can well quantify the effects of landscape pattern on water quality at the wa- 

tershed scale.  
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1. Introduction 

River water quality is an important and sensitive issue as 

it plays a vital role in both aquatic ecosystems and human 

health (Rasul et al., 2017). Recently, the loading of phospho- 

rus and nitrogen to rivers has intensified markedly (Tong et al., 

2017; Domangue and Mortazavi, 2018; Lin et al., 2022). Glob- 

al surface water quality deterioration has been attributed to both 

natural processes and anthropogenic activities (Rasul et al., 

2017; Huang et al., 2019). Rivers receive pollutants from ad- 

jacent landscapes (Shen et al., 2015). Landscape pattern  

changes, from natural to anthropogenically dominated land use 

types, directly and indirectly affect the hydrological, chemical, 

and biological processes of river ecosystems (Qiu et al., 2019; 

Wei et al., 2021). Thus, the water quality of a river can be con- 

sidered a function of its surrounding landscape and environ- 

ment owing to boundaries shared with land (Sharma et al., 

2016). In China, the wastewater treatment ratio had reach- 

ed >-90% by 2018; however, the overall water quality showed 

no notable improvements (Qu et al., 2019). Diffuse non-point  
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source (NPS) pollution offsets decreases in the point sources 

pollution (Tong et al., 2017; Yan et al., 2022). Over the past 40 

years in China, the contributions of NPS pollutants to total wa- 

ter pollution has reached 81% for nitrogen and 89% for phos- 

phorus (Zou et al., 2020). 

Landscape ecology emphasizes the interactions between 

spatial patterns and ecological processes (Forman, 1995). Land– 

water interactions are important and complex landscape pro- 

cesses (Turner and Gardner, 2015). The link between landscape 

patterns and river water pollution is a typical pattern-process 

relationship (Shen et al., 2014). Understanding the effects of 

landscape patterns on water quality has been an important ob- 

jective of landscape ecological studies since the mid-1980s 

(Turner and Gardner, 2015). Landscape patterns consist of both 

the structural composition and spatial configuration of land- 

scape patches (Bell, 2001). Landscape composition is often 

identified as the most important parameter impacting water 

quality; and it is more related to water quality parameters than 

to configuration (Uuemaa et al., 2007; Gu et al., 2019). Howev- 

er, some studies have shown that landscape configuration has a 

stronger ability than landscape composition to explain varia- 

tions in water quality (Ding et al., 2016; Clément et al., 2017; 

Wu and Lu, 2019). Although the effects of landscape config- 

uration on nutrient transport have been widely demonstrated, 

results vary significantly among different studies and regions  
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(Giri and Qiu, 2016; Sun et al., 2018; Shehab et al., 2021). For 

example, Clément et al. (2017) reported that landscape diversi- 

ty and forest edge density were the most important configura- 

tion metrics for regulating water quality in agricultural water- 

sheds in Eastern Canada; however, Wu and Lu (2019) showed 

that the largest patch index had the strongest ability to explain 

the variance in water quality in agricultural watershed in South- 

eastern China. The relative importance of spatial configuration 

(vs. composition) for estimating or managing nutrient loads in 

rivers remains unresolved (Turner and Gardner, 2015). Opti- 

mizing watershed landscape patterns to reduce nutrient loss 

remains a critical objective for improving river water quality 

(Carey et al., 2013; Eryiğit et al., 2022). 

The methods used in most of the studies to explain the re- 

lationship between landscape pattern and river water quality 

are traditional global statistical methods, such as multiple re- 

gression (Uuemaa et al., 2007; Liu et al., 2021), Pearson corre- 

lation analysis (Wang et al., 2013), cluster analysis (Shehab et 

al., 2021), and redundancy analysis (Shen et al., 2015; Wu and 

Lu, 2019). The advantage of these traditional global statistical 

methods is their simplicity and robustness for estimating the 

overall association for the entire study area; however, the spa- 

tial variation of local relationships has been hidden (Tu, 2011). 

Geographic information systems (GIS) have recently been 

combined with statistical methods to better understand the rela- 

tionships between landscape pattern and water quality (Pratt 

and Chang, 2012; Clément et al., 2017; Gu et al., 2019). Geo- 

graphically weighted regression (GWR) is a newly developed 

local model used to explore the potential spatial non-stationarity 

of relationships among variables (Fotheringham et al., 2002). 

GWR models can explain local variations by incorporating spa- 

tial coordinates into traditional regression models and weight- 

ing all neighboring observations using a distance decay func- 

tion based on the law of geography, that is, items close to each 

other are more likely to be related than items far apart (Tu and 

Xia, 2008). GWR captures local variations by assigning greater 

weights to closer observations than to farther away observa- 

tions (Pratt and Chang, 2012). Therefore, GWR provides an in- 

tuitive tool for exploring spatially varying relationships by 

examining the strength and direction of these relationships 

across space (Cupido et al., 2020). However, GWR models pro- 

duce a single optimized bandwidth for all variables which as- 

sumes that all the factors affect water quality at the same spatial 

scale. This is a questionable assumption given that different 

processes may affect water quality at different spatial scales 

(Fotheringham et al., 2019). The multiscale GWR (MGWR) is 

an extension of the GWR that relaxes the implicit assumption 

within the basic GWR that all relationships operate at the same 

scale (Fotheringham et al., 2017). MGWR allows the condi- 

tional relationships between the response and each independent 

variable to vary at different spatial scales, representing a signif- 

icant advance in non-Bayesian regression modeling with spa- 

tial data (Fotheringham et al., 2017). Although the better per- 

formance of the MGWR in exploring the spatially varying rela- 

tionships of variables has been demonstrated for datasets such 

as socio-demographic characteristics and geolocated instances 

of Airbnb rental properties (Oshan et al., 2019; Li and Fother- 

ingham, 2020), few studies have examined the spatial varia- 

tions in relationships between landscape pattern and water 

quality. Therefore, identifying the performance of MGWR is 

important for exploring the spatial relationships between land- 

scape pattern and water quality to optimize landscape pattern 

and protect water quality. 

Rivers are embedded in spatially heterogeneous land- 

scapes (Wang et al., 2014). River networks are hierarchically 

nested systems in which a large river forms via the environ- 

ment(s) of its small low-order streams (Ding et al., 2016; 

Vrebos et al., 2017). Larger scale features constrain the devel- 

opment of smaller units, such that the resulting physical pat- 

terns across both spatial and temporal scales strongly influence 

river water quality (Wang et al., 2014; Zhou et al., 2021). Sub-

watersheds have been widely used to study the influence of 

landscape patterns on river water quality. Previous studies have 

shown that river water quality is more sensitive to landscape 

variables at the sub-watershed scale than at the reach and ripar- 

ian corridor scales in the Tiaoxi river watershed (Cui et al., 

2018). Therefore, we considered the river networks and land- 

scape patches as a structural whole to evaluate the integrated 

effects of landscape patterns at the sub-watershed scale. The 

objectives of this study were to (1) quantify the relationship 

between landscape patterns and water quality and (2) reveal the 

spatial variations in the effects of landscape patterns on water 

quality across spatial and temporal scales. This study quantified 

the landscape determinants of river water quality on the water- 

shed scale to provide spatially explicit information about NPS 

pollution drivers and help scale up intervention pathways to 

identify localities at high risk of NPS pollution. The results of 

this study can provide effective and clear spatial guidelines for 

local governments to optimize landscape pattern and formulate 

NPS pollution mitigation strategies across the Taihu Lake Ba- 

sin and other intensively managed watersheds. 

2. Materials and Methods 

2.1. Study Area 

Lake Taihu, the third largest freshwater lake in China (Fig- 

ure 1), is located in the lower reaches of the Yangtze River Del- 

ta in eastern China, with a basin area of 36,900 km2. The Taihu 

Lake Basin has the highest population density and GDP per 

capita in China (Xu et al., 2021). Rapid industrialization and 

urbanization as well as excessive fertilizer use have dramati- 

cally changed landscape patterns, resulting in the discharge of 

high nutrient loads into the river network around the lake. As a 

result, the Taihu Lake Basin has become the most seriously pol- 

luted area in China (Lin et al., 2017). Since the 1990s, TN and 

TP concentrations have increased six- to seven-fold (Yu et al., 

2007). Despite intensive efforts to restore aquatic ecosystems, 

the water quality in Lake Taihu remains far from the expected 

level (Wang et al., 2019; Liu et al., 2020). Currently, point 

source pollution has been effectively controlled and NPS pollu- 

tion has become a major concern (Qin et al., 2019). 

Pollutants are commonly transferred to lakes through river 

inflow; therefore, upstream rivers are the main source of pollut- 
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Figure 1. The location of the study area in (a) China, (b) the West Tiaoxi watershed in the Taihu Lake basin, and (c) the river 

system and DEM of the West Tiaoxi watershed. 

 

ants to the lake. The West Tiaoxi River, located on the south- 

west edge of Taihu Lake, is one of the largest rivers flowing 

into Lake Taihu, accounting for 27% of the lake’s total mean 

annual recharge and has a maximum length of 150 km (Figure 

1). The river originates in the Tianmu Mountains, which are at 

an elevation of 1,578 m, with an annual average discharge of 

15.0 × 108 m3 a−1. The West Tiaoxi River watershed, with an 

area of 3,654 km2, is located in a humid subtropical zone and 

has a typical East Asian monsoon climate, with an average an- 

nual temperature of approximately 15.7 °C. The multi-year av- 

erage precipitation is approximately 1,450 mm, with nearly 

75% of the rainfall occurring from April to September, and the 

annual evaporation is approximately 1,300 mm. Based on local 

rainfall and river hydrological characteristics, June through 

September was considered the flood season and December 

through March was the non-flood season. The topography of 

the watershed includes hills (80%) and plains (20%). The ter- 

rain of the watershed in the south is high, whereas the landscape 

in the north is low and flat, with an altitude between 0 and 5 m.  

The West Tiaoxi River watershed is one of the most dense- 

ly populated and intensive crop production areas in the Taihu 

Lake Basin. Natural and planted forests dominate the upper 

reaches. Tea gardens are the most popular planted vegetation 

type for cash crops and are intensively managed for the produc- 

tion of green tea and other commercial products. More specif-

ically, “White Tea” originates from this area, with Anji County 

within this watershed being known as the “White Tea Capital” 

in China (Su et al., 2017). With rapid economic development, 

many forests and traditional grain crops have been converted 

to higher-benefit cash crops such as tea gardens (Su et al., 

2017). Fertilizer overuse is an important measure for increasing 

cash crop yields in this area. With higher population density 

and well-developed agricultural activity, areas of serious and 

heavy N losses (≥ 46.4 kg ha−1 yr−1) and P losses (≥ 12.0 kg 

ha−1 yr−1) accounted for 11% and 12% of the entire watershed, 

respectively (Wang et al., 2018). The degradation of water 

quality due to agricultural NPS pollution has become one of the 

most urgent issues in watersheds. Thus, this watershed pro- 

vides an optimal case for characterizing changes in landscape 

patterns in relation to river water quality. Therefore, this study 

used the West Tiaoxi River watershed to quantify the temporal 

and spatial relationships between landscape patterns and river 

pollution processes by embedding static patterns into dynamic 

processes from a landscape ecology perspective. 

 

2.2. Land Use Categorization 

The land use map of the study area was obtained from re- 

mote sensing data from Landsat images in 2020, with a pixel 

size of 30 × 30 m, and GF-2 images with a pixel size of 3.24 × 

3.24 m, in 2019 and 2020. The object-oriented classification 

method was applied to interpret the GF-2 images, whereas an 

unsupervised classification method was used to identify the 

Landsat images. Landscape types were classified into seven 

broad categories: farmland, tea garden, forest land, grassland, 

residential land, traffic land, and waterbody areas. Reference 

sites adjacent to the water sampling sites were identified for 
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accuracy assessments based on field surveys; the overall ac- 

curacy of the classification was approximately 91.5%. 

 

2.3. Quantification of Landscape Patterns 

Because many landscape metrics are based on statistics for 

patch perimeter and area and are thus highly correlated, redun- 

dancy among them is virtually unavoidable (Li et al., 2005). 

Consequently, the metrics chosen for environmental studies 

should be independent of each other (Chen et al., 2019). To 

minimize the correlation between the selected landscape met- 

rics, the bivariate correlation analysis principle was applied for 

the selection of landscape metrics. Bivariate correlation is a 

measure of how well two variables are associated. It is a useful 

measure of the relationships between landscape metrics be- 

cause landscape metrics that show high levels of correlation are 

often calculated from the similar data sources. A total of 11 

representative and effective landscape metrics with a relatively 

stable ability to explain the river water environment at the class 

and landscape levels were selected for further analysis. The 

percentage of the landscape area (PLAND) was calculated at 

the class level for different land use categories to quantify the 

landscape composition and 10 metrics were calculated at the 

landscape level to represent the landscape configuration from 

different aspects, including the patch density (PD), largest 

patch index (LPI), edge density (ED), landscape shape index 

(LSI), perimeter area fractal dimension (PAFRAC), aggrega- 

tion index (AI), interspersion and juxtaposition index (IJI), 

contagion index (CONTAG), landscape division index (DIVI- 

SION), and Shannon’s diversity index (SHDI). These metrics 

at both the class and landscape levels were computed using the 

widely used FRAG-STATS 4.2 software package (McGarigal 

et al., 2012). Three indicators were selected to describe the 

topographic information of the watershed: average slope  

(SLOPE), height difference (HD), and hypsometric integral 

(HI). All landscape metrics were calculated at the sub-water- 

shed scale. 

 

2.4. Water Sampling and Analysis 

Based on river characteristics, impacts of tributaries, ag- 

ricultural intensity, and urbanization level, 62 sampling sites 

were selected along the West Tiaoxi River (Figure 2a). Each 

sampling site was specified as the outlet of the delineated in- 

dependent sub-watershed. Water samples were collected at 3-

month intervals from June 2020 to March 2021 at all sampling 

sites, except for March 2020 owing to the COVID-19 pandem- 

ic. The sampling period was selected to ensure the presence of 

base flow conditions, which were assumed if there were at least 

five consecutive days of no significant rain (< 10 mm over 48 

h) (Ding et al., 2016).  

Nitrogen is the most important recent pollutant in the 

Tiaoxi River. The mean TN concentration reached 2.99 mg/L 

in 2019 in the East Tiaoxi River, which exceeded the Class V 

surface water quality standard (Yu et al., 2022). Ammonium 

nitrogen (NH4
+-N), nitrate nitrogen (NO3

−-N), TN, and TP were 

selected to represent nutrient pollutants based on their im- 

portance inhuman and aquatic ecosystems. These four water 

quality parameters were measured using a continuous flow 

analyzer (CFA, Skalar Analytical B.V., Breda, Netherlands) in 

the laboratory. 

 

2.5. Spatial Analysis 

2.5.1. Sub-Watershed Delineations 

To determine the association between landscape patterns 

and water quality at each monitoring site, a sub-watershed scale 

was selected (Figure 2a). Sub-watershed boundaries, represent- 

ing the areas that drain into each water sampling site, were 

delineated using the hydrological model in ArcGIS based on 

the digital elevation model (DEM, 30 m resolution). Each sam- 

pling site was specified as the outlet point of a delineated sub-

watershed. Thus, the water quality of a sampling site represents 

the water quality of its drainage area, that is, the corresponding 

sub-watershed. 

 

2.5.2. Spatial Statistics 

In exploring the spatially varying relationships between 

water quality and landscape pattern, some studies have com- 

pared the performance of OLS and GWR (Tu and Xia, 2008; 

Pratt and Chang, 2012); however, the advantages of MGWR 

over GWR and OLS have not yet been tested. Therefore, these 

three spatial statistical models were selected to compare their 

performance in exploring the relationship between landscape 

patterns and river water quality. 

 

2.5.2.1. Ordinary Least Squares (OLS) 

The OLS model can be expressed as follows: 

 

0 1

n

i i i ii
y x  

=
= + +  (1) 

 

where yi is the dependent variable, xi is the independent varia- 

ble, β0 is the intercept, βi is the coefficient, εi is the thermal error 

term, and n is the number of independent variables. 

 

2.5.2.2. Geographically Weighted Regression (GWR) 

The GWR model can be expressed as follows: 

 

( ) ( )0 1
, ,

n

j j j i j j ij ji
y u v u v x  

=
= + +  (2) 

 

where j represents the location, (uj, vj) are the coordinates for 

each location, β0(uj, vj) is the intercept for location j, βi(uj, vj) is 

the local regression coefficient for independent variable xi at 

location j, εj is the random error term, and n is the number of 

independent variables.  

The Gaussian function was used to determine the weight 

while the minimizing corrected Akaike information criterion 

(AICc) was used to determine the optimal bandwidth (Foth- 

eringham et al., 2002). The adjusted R2 values, local coeffi- 

cient, local R2 values, and local residuals for each regression 

sampling site were generated to provide a clear visualization of 

the spatial variations in the relationships between the land- 

scape patterns and water quality, as well as the model perfor- 

mance. 
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Figure 2. Distribution of (a) sub-watersheds and sampling sites and (b) landscape type map of the upper reaches of  

the West Tiaoxi River. 

 

Table 1. Descriptive Statistics of Landscape Metrics at 

Landscape Level of 62 Sub-Watersheds 

Landscape 

metrics 

Min. Max. Mean Std. Skew-

ness 

Kurt-

osis 

PD (n/km2) 13.38 79.19 37.27 13.91 0.89 1.19 

LPI (%) 7.28 97.33 41.97 23.52 1.06 0.26 

ED (m/ha) 48.52 277.3 155.86 48.90 0.19 −0.04 

LSI 3.33 50.13 19.4 8.30 0.88 2.27 

PAFRAC 1.17 1.40 1.25 0.04 0.69 0.53 

CONTAG (%) 56.48 95.40 78.49 9.62 −0.41 −0.67 

IJI (%) 56.8 83.12 70.37 6.70 0.023 −0.83 

DIVISION (%) 0.05 0.97 0.71 0.24 −1.54 1.43 

SHDI 0.13 1.63 0.77 0.36 0.40 −0.66 

AI (%) 98.61 99.74 99.21 0.24 −0.15 −0.12 

 

2.5.2.3. Multiscale Geographically Weighted Regression 

(MGWR) 

The MGWR model can be formulated as follows (Foth- 

eringham et al., 2017; Oshan et al., 2019): 

 

( )
0

,
n

j bwi j j ij ji
y u v x 

=
= +  (3) 

 

where bwi in βbwi is the bandwidth used for the calibration of 

the ith conditional relationship. MGWR produces a separate 

optimized bandwidth for each relationship in the model, and 

the separate bandwidths have an intuitive interpretation in 

terms of geographical scale (Fotheringham et al., 2017). Small- 

er bandwidths indicate more local processes, whereas larger 

bandwidths indicate more regional processes. 

The OLS and GWR analyses, as well as all mapping and 

GIS analyses, were performed using ArcGIS 10.4 while the 

MGWR analyses were conducted using the MGWR 2.2 soft- 

ware package. 

 

2.5.2.4. Selection of Independent Variables 

To examine potential multicollinearity among the inde- 

pendent variables, we calculated the variance inflation factor 

(VIF) for all variables. Before constructing the OLS, GWR, 

and MGWR regression models, the optimal combination of all 

candidate independent variables for each water quality param- 

eter was selected via exploratory regression analysis based on 

the following conditions: (1) the VIFs of all independent var- 

iables in the combination were < 7.5, which indicates that col- 

linearity had no adverse effects on the results; (2) the minimum 

adjusted R2 value of the combination was > 0.5; (3) the number 

of independent variables in the combination did not exceed 5; 

and (4) an optimal combination of independent variables had 

the highest R2 and smallest AICc. The selected independent 

variable combinations for each water quality parameter were 

then used to run the OLS, GWR, and MGWR models. 

3. Result and Analysis 

3.1. Landscape Pattern Characteristics 

The study region covers an area of 2,607.8 km2 (Figure 

2b). Forests are the most dominant landscape type, covering 

61.7% of the total area, with bamboo forest and arbor forest 

being the main components. Farmland and tea gardens ac- 

count for 17.86 and 5.72% of the total area, respectively. Farm- 

land is mainly distributed along both sides of the river, and tea 

garden is mainly distributed on the hillsides in the middle and 

lower reaches of the watershed. Residential land area accounts 

for 7.24% of the total area and water bodies cover 3.67% of the 

total area. The descriptive statistics of the landscape metrics at 

landscape level of the 62 sub-watersheds are listed in Table 1. 

High value of ED, LSI, and PAFRAC showed that the land- 

scape was highly fragmented, with highly complex patch 

shapes. The high LPI value indicated that human activity sig- 

nificantly disturbed the landscape in the middle and down- 

stream areas. The high CONTAG value (78.5%) showed the 

existence of landscape types with high connectivity, that is, 

forest land in the mountainous area and farmland in the plains. 

The IJI and AI were 70.37 and 99.21%, respectively, indicating 

that different landscape patches were close to each other and 
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had a high degree of aggregation across the entire study area. 

 

3.2. Temporal-Spatial Dynamics of River Water Quality  

Table 2 lists the descriptive statistics of the water quality 

parameters at 62 monitoring sites. The coefficient of variation 

(CV) showed that the variations in NO3
–_N and TN were rela- 

tively small, while variations in NH4
+-N and TP were high, 

with CV values > 100%. A comparison of four months of water 

quality parameters showed that the N content during the flood 

season was notably lower than that in the non-flood season, 

while the seasonal variation in TP was small. To evaluate the 

water quality of the watershed, we refer to the environmental 

quality standard for surface water (GB 3838-2002), which uses 

the mean value of a water quality parameter at all monitoring 

sites. The NH4
+-N concentration was at a low level; during the 

flood season, it almost remained in Class I standard while it 

was Class II during the non-flood season. The TN concentra- 

tion was very high, with the pollution level far exceeding the 

Class Ⅴ standard throughout the year, with NO3
–-N being the 

largest source of TN. The concentrations and fluctuation range 

of N pollutants were significantly higher during the non-flood 

season than during the flood season. The TP concentration re- 

mained in the Class II standard during the entire monitoring 

period, with no significant seasonal differences. Therefore, N 

pollution is a serious problem in the West Tiaoxi River. 

The spatial variations in the water quality parameters (Fig- 

ure S1) showed that the NH4
+-N concentration at most monitor- 

ing sites was < 0.2 mg/L, with only a few monitoring sites lo- 

cated in urban areas or adjacent to dense residential areas 

reaching > 0.6 mg/L. The NO3
–-N concentrations were general- 

ly high, with most being > 4 mg/L at the monitoring sites. The 

NO3
–-N concentration was < 2 mg/L in the upstream head water 

area. The distribution pattern of TN was similar to that of NO3
–

-N. TN concentration increased spatially from upstream to 

downstream. In most agricultural planting areas, the TN con- 

centrations exceeded 4 mg/L, even exceeding 6 mg/L in tea 

planting areas. TP concentration in the study area was generally 

low. Sampling sites with TP concentrations of < 0.1 ml/L ac- 

counted for > 85% of the total sampling sites. Some monitoring 

sites with high TP concentrations are scattered only in urban 

areas and towns with high population densities. 

 

3.3. Spatial Relationships between Water Quality and 

Landscape Pattern 

3.3.1. Spatial Regression Model Selection 

 The goodness-of-fit of the three regression models was 

evaluated to search for a reasonable model that could charac- 

terize the effects of landscape patterns on river water quality 

(Table 3). The AICc values of the MGWR model for most wa- 

ter quality parameters in different months were smaller than 

those of the GWR and OLS models, showing that the goodness-

of-fit of the MGWR model was higher than that of the GWR 

and OLS models. Additionally, the adjusted R2 of MGWR is 

generally higher than that of the GWR and OLS models, in- 

dicating that more variations in water quality were explained 

by landscape variables in the MGWR model. At the same time, 

almost all RSS values in the MGWR model were the smallest 

among the three regression models, indicating that regression 

results closer to the real values could be obtained with fewer 

independent variables (Shabrina et al., 2020). The scale at 

which each landscape metric impacts a water quality parameter 

may vary across all independent variables; variations in the re- 

lationships may differ at a local scale or regional scale or may 

not vary with location (Fotheringham et al., 2019). Therefore, 

the MGWR model was selected for further analyses. The ad- 

justed R2 showed that the percentage of variance in the water 

 

Table 2. Descriptive Statistics for Water Quality Parameters at the Sampling Sites in the Upper Reaches of the West Tiaoxi River 

Water quality 

index 

Month Min. 

(mg/L) 

Max. 

(mg/L) 

Mean 

(mg/L) 

Std. CV (%) Environmental quality standards for surface 

water GB 3838-2002 (mg/L) 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

NH4
+-N Jun. 0.02 1.20 0.13 0.19 142 ≤ 0.15 ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 2.0 

Sep. 0.01 3.40 0.20 0.46 228 

Dec. 0.05 4.35 0.41 0.58 141 

Mar. 0.04 3.95 0.27 0.51 185 

NO3
--N Jun. 0.25 7.73 1.64 1.65 101  

Sep. 0.08 4.39 1.17 0.96 82 

Dec. 0.82 4.89 2.09 0.93 45 

Mar. 0.38 4.87 2.02 0.93 46 

TN Jun. 0.95 9.75 2.59 1.88 73 ≤ 0.20 ≤ 0.5 ≤ 1.0 ≤ 1.5 ≤ 2.0 

Sep. 0.76 6.36 2.35 1.13 48 

Dec. 1.32 7.62 3.11 1.23 40 

Mar. 1.53 10.10 3.90 2.06 53 

TP Jun. 0.012 0.20 0.05 0.04 81 ≤ 0.02 ≤ 0.1 ≤ 0.2 ≤ 0.3 ≤ 0.4 

Sep. 0.00 0.63 0.09 0.14 160 

Dec. 0.00 0.92 0.07 0.13 161 

Mar. 0.01 0.69 0.07 0.12 167 
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Table 3. Evaluation of Goodness of Fit for the OLS, GWR, and MGWR Models 

Water quality 

parameters 

Month Akaiker’s information criterion 

(AICc) 

Adjusted R2 Residual sum of squares  

(RSS) 

Number of effective 

parameters 

OLS GWR MGWR OLS GWR MGWR OLS GWR MGWR GWR MGWR 

NH4
+-N Jun. −159.8 −155.5 −156.3 0.89 0.88 0.89 0.22 0.22 0.21 8.11 6.95 

Sep. −1.0 2.1 1.3 0.76 0.76 0.77 2.87 2.66 2.54 9.56 8.69 

Dec. 46.0 40.3 39.1 0.69 0.74 0.75 5.88 4.35 4.36 12.91 10.11 

Mar. −32.0 −37.9 −41.5 0.88 0.90 0.91 1.67 1.22 1.18 13.15 10.36 

NO3
--N Jun. 99.9 100.2 100.5 0.90 0.91 0.91 15.22 13.93 13.89 7.62 6.46 

Sep. 118.4 114.5 113.9 0.63 0.66 0.68 19.69 16.29 15.16 9.64 9.33 

Dec. 125.5 118.4 109.6 0.56 0.63 0.70 21.20 16.77 13.16 10.30 10.8 

Mar. 127.4 122.7 119.3 0.55 0.60 0.62 21.84 17.96 16.90 10.27 8.87 

TN Jun. 116.3 117.0 117.2 0.91 0.91 0.91 19.05 17.26 17.35 9.08 7.56 

Sep. 138.0 137.0 136.0 0.62 0.64 0.65 28.10 24.18 20.14 11.00 10.06 

Dec. 160.0 156.7 158.3 0.56 0.59 0.59 38.40 32.77 33.42 9.07 7.73 

Mar. 134.2 111.8 105.1 0.90 0.94 0.94 24.41 13.03 11.89 14.16 11.36 

TP Jun. −314.5 −329.6 −328 0.79 0.87 0.85 0.02 0.01 0.01 20.08 10.75 

Sep. −80.6 −81.6 −82.4 0.19 0.23 0.24 0.89 0.82 0.80 5.00 4.12 

Dec. −143.2 −142.8 −142.1 0.72 0.73 0.74 0.28 0.24 0.23 11.22 10.41 

Mar. −127.8 −123.7 −122.3 0.52 0.51 0.50 0.37 0.36 0.36 9.01 7.67 

 

quality parameters explained by the landscape pattern in the 

MGWR model was the highest for NH4
+-N, followed by NO3

–

-N, TN, and TP. 

 

3.3.2. Spatial Changes in Local Coefficient and R2 Values for 

NO3
–-N 

The spatial changes in the local coefficients of the varia- 

bles for NO3
–-N in the MGWR model (Figure 3) showed that 

the NO3
–-N concentration was mainly affected by the percent- 

age of tea garden areas (Tea%), SHDI, and SLOPE throughout 

the year, as well as PD in the flood season and the percentages 

of residential land areas (Res%) and traffic land areas (Tra%) 

in the non-flood season. In the non-flood season, tea% had the 

most significant influence on NO3
–-N in June, with a local 

coefficient > 1.0 in the entire watershed, but no significant in- 

fluence in September. In the non-flood season, the influence of 

Tea% on NO3
–-N remained strong in upstream areas but de- 

creased in the middle and downstream areas, indicating that tea 

plantations in mountainous upstream areas were the main 

source of NO3
–-N. The effects of the SHDI on NO3

–-N showed 

a uniform distribution throughout the watershed, with small 

spatial heterogeneity. Res% was positively correlated with 

NO3
–-N while Tra% was negatively correlated with NO3

–-N 

only in the non-flood season. Both correlations showed no sig- 

nificant spatial differences throughout the entire watershed. 

The PD showed a significant negative correlation with NO3
–-N 

with small spatial differences during the flood season. 

The number of metrics that could be used to explain NO3
–

-N and the variation range in the local coefficients were higher 

in the non-flood season than in the flood season, indicating that 

the process of NO3
–-N inflow to rivers was more complex and 

affected by more factors in the non-flood season than in the 

flood season and the spatial heterogeneity of the impacts of the 

landscape metrics on NO3
–-N was more notable during the non-

flood season than during the flood season.  

The local R2 values for the spatial variation in NO3
–-N 

(Figure S2) showed that the percentage of variation in NO3
–-N 

explained by the MGWR models in June was the highest, 

reaching > 80% in the entire watershed; in the other three 

months, it was also as high as 55 ~ 70%. The explained percent- 

age of variation in NO3
–-N in all models was relatively stable 

with small spatial heterogeneity, indicating that the selected 

independent variables could fully explain the variation in NO3
–

-N at the watershed scale. 

 

3.3.3. Spatial Changes in Local Coefficients and Local R2 for 

NH4
+-N 

The spatial changes in the local coefficients for NH4
+-N 

showed that NH4
+-N is mainly influenced by the landscape 

composition, such as Res%, Tra%, and the percentage of wa- 

terbody areas (Wat%), during the flood season and landscape 

configuration metrics, such as SHDI, during the non-flood sea- 

son (Figure 4). The influence of Res% on NH4
+-N was the most 

significant, particularly in the middle and downstream areas 

with high proportions of residential land. The influence of 

Tra% on NH4
+-N was notable in the flood season; the degree of 

influence was relatively stable throughout the entire watershed 

and the spatial differentiation was not obvious. The impact of 

the SHDI on NH4
+-N mainly occurred during the non-flood 

season, presenting a negative correlation. The highest local 

coefficient of the landscape variables affecting the concentra- 

tions of NH4
+-N is 0.38, indicating that the relationship be- 

tween the NH4
+-N and individual landscape metrics was weak. 

The spatial change in the local coefficient of each independent 

variable was small. 

The spatial variations in the local R2 for NH4
+-N in the 

MGWR model (Figure S3) were similar to those of the local 

coefficient. The percentage of variation in NH4
+-N explained 

by the landscape pattern was very high (> 80%) in June across 

the entire watershed. In the other months, high local R2 values  
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Figure 3. Spatial variations in the local coefficients of the explanatory variables for NO3
–-N in different months in the MGWR 

model. Note: Tea%, percentage of tea garden areas; Res%, percentage of residential land areas; Tra%, percentage of traffic land 

areas. 

 

occurred in the middle and downstream areas, where highly 

managed landscape types such as tea garden, farmland and 

residential land were distributed concentrated and continuously 

along rivers (Figure 2(b)), covering more than 70% of this area. 

 

3.3.4. Spatial Changes in Local Coefficients and Local R2 for 

TN 

Figure 5 shows the local coefficients of the MGWR mod- 

els for TN in different months. Tea% was the most important 

impact variable for TN in March and June, with local coeffi- 

cients > 1.2 in the entire watershed without notable spatial dif- 

ferentiation, showing a strong correlation with TN at the wa- 

tershed scale. The percentage of forest land areas (For%) 

showed a significant negative correlation with TN in Septem- 

ber and December, with notable spatial heterogeneity. Res%, 

as an explanatory variable of TN, contributed to all seasons 

with small spatial changes; its influence was significantly high- 

er in the non-flood season than in the flood season. PD had a 

negative correlation with TN in March and June; the local co- 

efficient was higher in the downstream area than in the up- 

stream areas, indicating that fragmented landscape patches re-  

duced TN in the river. The components of TN were dominated 

by NO3
–-N and NH4

+-N in the study area. As the sources, in- 

fluencing factors, and seasonal dynamics of NO3
–-N and NH4

+-

N were significantly different, the seasonal changes in the main 

influencing variables of TN were not uniform.  

Among the explanatory variables of TN, the number of 

landscape composition metrics was significantly greater than 

that of the landscape configuration metrics, indicating that the 

landscape composition of the study area is of greater impor- 

tance to the river water quality than the landscape configura- 

tion. The landscape configuration affecting the change in TN 

over different seasons had different metrics. The number of 

explanatory variables and the spatial variation in the local co- 

efficients for TN in the non-flood season were greater than that 

in the flood season. These results were consistent with those 

obtained for NO3
–-N. 

The percentage of variation in TN explained by indepen- 

dent variables was high in March and June, reaching > 80% in 

the entire watershed with small spatial changes, and medium in 

September and December, spatially increasing from the upper 

mountainous area to the downstream area (Figure S4).
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Figure 4. Spatial variations in the local coefficients of the explanatory variables for NH4
+-N in different months in the MGWR 

model. Note: Res%, percentage of residential land areas; Tea%, percentage of tea garden areas; Tra%, percentage of traffic land 

areas; Gra%, percentage of grassland areas; and Wat%, percentage of waterbody areas. 

 

3.3.5. Spatial Changes in Local Coefficients and Local R2 for 

TP 

The highest local coefficient value of all of the indepen- 

dent variables for TP in different seasons in the MGWR model 

was only 0.14 (Figure 6), indicating that the impact of the in- 

dividual landscape metric on TP was relatively weak through- 

out the year at the watershed scale. The impacts of the land- 

scape component metrics (Tra% and Res%) on the TP were 

more evident than those of the landscape configuration and to- 

pography metrics. The MGWR model again showed that TP 

was mainly affected by construction land, such as traffic and 

residential lands, while the impact of agricultural production, 

such as tea planting, on TP was not obvious. Although the local 

coefficients of the landscape configuration metrics and topog- 

raphy for TP were low, they still showed that these metrics had 

slight impacts on the TP, where the influencing metrics varied 

monthly. Additionally, the impacts of the independent vari- 

ables on TP were higher in the non-flood seasons than in the 

flood season. 

The percentage of variation in TP explained by the inde- 

pendent variables varied significantly in time and space (Fig- 

ure S5). Temporally, the percentage explained in June was the 

highest (all > 60%), whereas it was the lowest in September (all 

< 50%). Spatially, the percentage explained by the independent 

variables in all months gradually increased from upstream to 

downstream. Owing to the low TP content in the upstream area 

(Figure S1), the relationship between TP concentration and 

landscape variables was weak. 

4. Discussion 

4.1. Impacts of Landscape Composition on Water Quality 

Changes in the output and migration of pollutants by var- 

ious types of landscape patches usually reflect the impacts of 

landscape patterns on river water quality (Shen et al., 2014). 

The results of the MGWR model showed that the combina- 

tions of landscape metrics could explain > 70% of the average 

spatial variations in the water quality parameters in different 

seasons. The direction of the effects (positive or negative) of 

the same explanatory variable on the river water quality was 

consistent during different seasons, but the dominant influenc- 

ing variables on the water quality showed significant seasonal 
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Figure 5. Spatial variations in the local coefficients of the explanatory variables for TN in different months in the MGWR model. 

Note: Res%, percentage of residential land areas; Tea%, percentage of tea garden areas; Tra%, percentage of traffic land areas; 

Far%, percentage of farmland areas; For%, percentage of forest land areas; Gra%, percentage of grassland areas 

 

differences. Both the number of landscape variables dominat- 

ing the changes in the water quality and the variation range in 

the local coefficient in the non-flood season were greater than 

that in the flood season. This reconfirmed that the migration 

processes of pollutants inflow into rivers in the non-flood sea- 

son were more complex with higher spatial heterogeneity and 

were affected by more factors than that in the flood season. 

In this study, landscape composition had the most signif- 

icant influence on water quality, as also illustrated in other 

studies (Clément et al., 2017). Composition (amount) is a more 

fundamental metric than configuration (adjacency) because a 

change in any other pattern metric cannot be interpreted reli- 

ably without accounting for changes in the amount (Riitters, 

2019). Different land uses affect the type and output of pollut- 

ants transported by surface and subsurface runoff (Shen et al., 

2014), as well as affecting nutrient migration processes through 

the type and coverage of vegetation (Yong and Chen, 2002). 

The MGWR results showed that tea garden was the most im- 

portant source of NO3
–-N and TN pollution in the river while 

residential and traffic land significantly affected the NH4
+-N 

and TP contents. NO3
–-N was responsible for most TN in river 

water in the study area, which was also demonstrated by Liang 

et al. (2013) using a stable isotope tracer technique. Spatially, 

the concentrations of NO3
–-N and TN in our study area in- 

creased significantly from upstream to downstream, which was 

similar to the change in the proportion of tea garden and farm- 

land, indicating that the agricultural landscape was the main 

source of NO3
–-N and TN in the river. The concentrations of 

NH4
+-N and TP in the rivers were at low level in the entire wa- 

tershed, which conformed to the Grade II water quality stan- 

dards. Monitoring sites with high values were located in the 

sub-watersheds with densely populated townships or large vil- 

lages, indicating that the concentrated and regular distribution 

of impervious surfaces in- creased the loading of NH4
+-N and 

TP, which was consistent with other studies in highly devel- 

oped watersheds (Zhang et al., 2021). 

The landscape transition matrix of the study area from 

2000 to 2020 (Table 4) showed that the tea garden area in- 

creased dramatically from 63.17 km2 in 2000 to 149.17 km2 in 

2020 at the cost of high-quality farmland and forests. About 

63.57% (94.82 km2) of the tea garden in 2020 was converted 

from forest land and another 20.44% (30.49 km2) came from 
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Figure 6. Spatial variations in the local coefficients of the explanatory variables for TP in different months in the MGWR model. 

Note: Res%, percentage of residential land areas; Tra%, percentage of traffic land areas; Far%, percentage of farmland areas; 

Gra%, percentage of grassland areas; and Wat%, percentage of waterbody areas. 

 

Table 4. The Landscape Transition Matrix in the Upper Reaches of the West Tiaoxi River Watershed from 2000 to 2020 (km2) 

  2000 

  Residential 

land 

Farmland Forest land Grassland Traffic land Tea garden Waterbody Total 

2020 Residential land 27.35 121.50 26.83 4.37 0.59 5.88 2.48 188.99 

Farmland 24.72 334.66 77.06 7.17 1.21 10.73 10.21 465.77 

Forest land 19.60 201.56 1319.26 32.15 2.13 27.55 9.73 1611.99 

Grassland 2.30 18.06 19.39 2.83 0.07 2.44 0.45 45.53 

Traffic land 1.09 9.72 3.12 0.23 36.39 0.78 0.26 51.59 

Tea garden  3.37 30.49 94.82 4.62 0.09 15.46 0.32 149.17 

Waterbody 1.07 16.08 8.91 0.59 0.08 0.33 67.71 94.76 

Total 79.50 732.08 1549.38 51.96 40.56 63.17 91.16 2607.80 

Note: The row presents the data of 2020, the column presents the data of 2000. 

 

farmland. To increase tea yield, the average application rate of 

fertilizer in tea garden was > 2,000 kg/ha. Studies have shown 

that when applying fertilizers at rates of 2,700 kg/ha in tea 

plantations, tea plants utilize only 18.3% of the applied N and 

5.5% of the applied P (Chen and Lin, 2016). Compared with 

the fertilization of tea garden, the average fertilizer applica- 

tion rate of farmland was 475 kg/ha in this region and the 

utilization rate of the dominant crops, such as paddy rice, was 

46.4% (Liang et al., 2019). Thus, the expanding area, high 

fertilization rate, and low utilization rate of tea garden have 

resulted in a large amount of overused fertilizers flowing into 

the river via runoff from tea garden. Additionally, tea planta- 

tions destroy the soil NO3
–-N retention by increasing NO3

–-N 

production rates and decreasing microbial NO3
–-N immobili- 
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zation, resulting in high NO3
–-N production (Zhu et al., 2014). 

Consequently, tea gardens are the largest source of NO3
–-N and 

TN in this watershed. Therefore, the tea garden, as a special 

land use model in this study, was separated from farmland as a 

separate landscape type. Owing to the critical influences of tea 

garden on river water quality, the separation of tea garden from 

farmland significantly weakened the influence of farmland on 

water quality in this watershed. Consequently, the relationship 

between farmland and water quality was weak in this study. 

This explained why our results were inconsistent with those of 

other similar regions. For example, Wu and Lu (2019) showed 

that farmland was the most important cause of watershed water 

quality degradation in the same province of eastern China. 

The results of the MGWR model showed that forest land 

had the most significant impact on TN, especially in Septem- 

ber and December. The area of forest land was relatively sta- 

ble over the last 20 years (Table 4). Many studies have shown 

that forest land can improve the river water quality by ab- 

sorbing and intercepting nutrients (Carey et al., 2013; Ding et 

al., 2017; Casquin et al., 2021). However, more than 70% of 

forest lands were located upstream of 80% of the tea garden 

and farmland in this study area (Yu et al., 2022). Topograph- 

ically, most of the forest land in the study area could not infil- 

trate, intercept, deposit, or absorb pollutants from downstream 

“source” landscapes, thus diminishing the function of forests as 

“sink” landscapes (Yu et al., 2022). Therefore, the positive im- 

pact of forests on water quality could be because of the fact that 

they reduced the proportion of tea garden and farmland at the 

entire watershed scale, as opposed to purifying water quality 

(Wang et al., 2013).  

Residential land was positively correlated with all water 

quality parameters during every season in the study area; it was 

also the dominant explanatory variable of NH4
+-N and TP, with 

small seasonal differences. The area of residential land ex-

panded rapidly in the study area, increased from 79.50 km2 in 

2000 to 188.99 km2 in 2020 at the expense of farmland (Table 

4). Although the wastewater discharge from densely populated 

residential land in urban area was well treated, the collection 

and treatment of domestic sewage in the rural areas remains 

insufficient (Huang et al., 2021). The increase in rural residen- 

tial land has led to an increase in NPS pollution from untreated 

domestic sewage and household garbage. Additionally, there is 

a large number of scattered small-scale poultry breeding ac- 

tivities at the household scale in rural residential areas, causing 

an increase in NH4
+-N and TP concentrations (Yu et al., 2022). 

Therefore, pollutants discharge from rural residential land con- 

tributed significantly to NH4
+-N and TP concentrations. 

 

4.2. Impacts of Landscape Configuration on Watershed 

Water Quality 

There were variations in landscape configuration as well 

as in landscape composition. Landscape configuration mea- 

sures the spatial arrangement, position, and geometric com- 

plexity of patches (Turner and Gardner, 2015). The spatial con- 

figuration of patches can interfere with nutrient exchange be- 

tween neighboring patches and influence the efficiency of eco- 

logical fluxes (Forman, 1995). However, there is still no defi- 

nite conclusion on the seasonal response of water quality to 

landscape configuration, which is closely related to the domi- 

nant landscape type and seasonal changes in rainfall in a spe- 

cific watershed (Shi et al., 2017; Wu and Lu, 2019). In this 

study, the SHDI and PD are important landscape configuration 

indices that significantly impact water quality.  

The SHDI was significantly positively correlated with 

NO3
–-N throughout the year, but negatively correlated with 

NH4
+-N only in the non-flood season. The SHDI increased as 

the number of different patch types increased and/or the pro- 

portional distribution of the area among the patch types be- 

came more equitable (McGarigal et al., 2012). In the West 

Tiaoxi watershed, the SHDI increased owing to landscape 

patches of farmland, tea garden, forest land, and residential 

land that were mosaiced into each other and distributed evenly, 

where increases in intensively managed tea garden and farm- 

land occurred at the cost of forest land reclamation. As a re- 

sult, the SHDI had a negative impact on NO3
–-N and TN. This 

result agrees with previously reported positive relationships 

between the SHDI and NO3
–-N and TN in areas such as South 

Korea (Lee et al., 2009), the Three Gorges Reservoir Area of 

China (Zhang et al., 2019), and the Ave River Basin in the 

northern region of Portugal (Fernandes et al., 2021). The SHDI 

value increases along with the amount of different fragment 

classes or proportional fragment distribution (Shehab et al., 

2021). The negative impacts of landscape diversity within wa- 

tersheds are primarily related to agricultural landscapes with 

high development intensity, such as cash crop land and farm- 

land. Meanwhile, the increase in the SHDI was partly due to 

the balanced distribution between residential land patches and 

the reduction in its aggregation, which decreased the proportion 

of residential land in the sub-watersheds. Consequently, higher 

SHDI may reduce NH4
+-N losses from residential land during 

the non-flood season. During the flood season, with the dilution 

of river NH4
+-N via large amounts of storm runoff, the impact 

of the SHDI on NH4
+-N was largely offset. This is inconsistent 

with the positive correlation between SHDI and water quality 

in previous studies (Shehab et al., 2021). This inconsistency 

could be because the content of NH4
+-N was low in the West 

Tiaoxi watershed (Table 2 and Figure S1) and the main source 

of NH4
+-N was residential land (Figure 4). Therefore, the high 

SHDI due to fragmentation and the decreased proportion of 

residential land could reduce the concentration of NH4
+-N in 

the study area. The contradictory effect of SHDI is related to 

the nature of the dominant landscape type that affects water 

quality parameters (Clément et al., 2017). 

Landscape fragmentation reduced NO3
–-N and TN pollu- 

tion, but aggravated TP pollution in this study. Previous stud- 

ies generally identified that more fragmented landscapes had 

higher risks of nutrient loss (Lee et al., 2009; Shi et al., 2017; 

Shehab et al., 2021). However, some studies have reported op- 

posite results (Shen et al., 2015). Our results showed that NO3
–

-N mainly comes from tea garden and farmland with runoff 

during the flood season. Large unfragmented patches of tea 

garden and farmland requires high application rates of fertil- 

izers. Thus, the decreasing effect of highly fragmented land- 

scape on NO3
–-N could be partly attributed to the low pollutant 
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load from less tea garden and farmland area. Another potential 

reason is that nutrient-enriched runoff from highly fragmented 

tea garden and farmland patches during the flood season can be 

easily intercepted in the migration process into rivers (Liu et 

al., 2021) because the complex boundaries of highly fragment- 

ed patches could promote the “sink” effect of landscape on 

nutrients (Clément et al., 2017). The impact of the individual 

landscape metric on TP was relatively weak (local coefficients 

of the explanatory variables for TP ≤ 0.14) (Figure 6) because 

of the low TP concentration in the West Tiaoxi watershed. 

In general, the spatial configuration of the landscape had 

significant impacts on river water quality in this study, which 

agrees with the results of other studies (Uuemaa et al., 2007; 

Shen et al. 2015; Ding et al., 2016; Giri and Qiu, 2016; Clément 

et al., 2017; Shehab et al., 2021). This suggests that it might be 

possible to improve water quality by optimizing the landscape 

configuration without altering the landscape composition of the 

study area. However, the relationship between landscape pat- 

tern and water quality is complex and dynamic and is subject 

to continual change as a result of economic development, land 

use planning, and human activities (Turner and Gardner, 2015; 

Giri and Qiu, 2016). Trade-offs between landscape pattern and 

water quality for different conditions should be carefully ex- 

amined and avoid “one size fits all”. Landscape management 

and planning strategies should be constantly revised and 

evolved within the context of adaptive management to improve 

river water quality practices. 

5. Conclusions 

This study investigated the seasonal-spatial variations in 

river water quality and their relationships with landscape pat- 

terns in an intensive agricultural watershed in Southeastern 

China. Tea garden, as a special cash crop landscape type, is 

more intensively managed for economic benefits than tradi- 

tional farmland. The TN concentration was at a high level with 

NO3
–-N being the largest contributor. The concentrations of 

NH4
+-N and TP were relatively low. The water quality in the 

study area displayed evident spatial and temporal variations. 

The results revealed that MGWR, which differentiates both 

spatial heterogeneity and local processes, showed the highest 

performance in estimating the relationship between landscape 

pattern and water quality in comparison with GWR and OLS. 

The variations in N parameters can be well explained by land- 

scape composition and configuration. However, the impacts of 

the landscape pattern on TP were relatively weak throughout 

the year at the watershed scale. Landscape composition had a 

more significant influence than landscape configuration on 

water quality. The expansion and heavy fertilization of tea gar- 

den have dramatically degraded water quality. The impacts of 

configuration metrics were heterogeneous with respect to sea- 

sonal variations in different pollutants. The SHDI and PD are 

important landscape configuration indices that significantly 

affect the water quality. This study suggests that river water 

quality can be improved by optimizing spatial configurations 

without changing the landscape composition of a watershed. 

However, trade-offs between the landscape pattern and river 

water quality for different seasons should be carefully exam- 

ined to minimize the negative effects of the landscape pattern 

and avoid “one size fits all” measures. Our study provided key 

insights into the heterogeneous seasonal effects of landscape 

patterns on water quality, with a considerable contribution to 

the sustainable spatial planning and management of river sys- 

tem for more targeted NPS pollution mitigation strategies in 

intensive agricultural areas at the watershed scale. The pro- 

posed methodology provides a replicable approach that could 

provide valuable spatial information for policy suggestions and 

decision criteria both theoretically and methodologically. 
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