Supplementary Materials

How Landscape Patterns Affect River Water Quality Spatially and Temporally: A Multiscale Geographically Weighted Regression Approach

X. Li^{1, 2*}, J. Zhang^{1, 2}, W. Yu^{1, 2}, L. Liu^{1, 2}, W. Wang³, Z. Cui³, W. Wang^{1, 2}, R. Wang^{1, 2}, Y. Li^{1, 2}

¹ State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China ² College of forestry and biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China ³ Elion Resources Group Co., Beijing 100026, China

Figure S1. Spatial variations in the water quality parameters in the upper reaches of the West Tiaoxi River. (a) ~ (d), (e) ~ (h), (i) ~ (l) and (m) ~ (p) shows the concentrations of NH_4^+ -N, NO_3^- -N, TN and TP in June, September and December 2020 and March 2021, respectively.

Figure S2. Spatial variations in the local R² values for NO₃⁻-N in different months in the MGWR model.

Figure S3. Spatial variations in the Local R² values for NH₄⁺-N in different months in the MGWR model.

Figure S4. Spatial variations in the Local R^2 for TN in different months in the MGWR model.

Figure S5. Spatial variations in the local R² for TP in different months in the MGWR model.