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ABSTRACT.  Currently, emergent computation (EC) is a relatively new approach for understanding ecosystem dynamics. Central to 
this approach is the idea that high-level ecosystem dynamics emerging from low-level interactions of individual agents. In an effort to 
further understand this dynamic new field, this paper will examine the conceptual background which researchers use to EC models 
and review the main classes of EC models: cellular automata, genetic algorithms, classifier systems, and neural networks. Finally, the 
paper will introduce and discuss the results of trials investigating the boundaries of Complex Organization and Bifurcation within 
Environmental Bounds (COBWEB) model. COBWEB obeys emergent computation characteristics and is a general simulation plat-
form developed to support a large number of independent agents, each encoded by a GA, in a 2-D environment with resources en-
coded by a cellular automaton. COBWEB displays non-linear behaviour and is characterized by five main attractors: predator-prey 
cycling between resources and a dominant agent, agent elimination, unlimited growth of agents, predator-prey cycling with no domi-
nant agent and unpredictability. 
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1. Introduction  

Human influence on earth has resulted in changes that 
are outpacing the rate of natural change at the local, regional 
and global scales (Harris, 2002). The prominence of global 
issues such as greenhouse gases, global warming, loss of 
biodiversity and alterations in global nutrient cycles has 
altered the way in which research supports the development 
of policy. Whereas policy-oriented research focused on 
problem solving and forecasting with known uncertainties, 
decisions now have to be made on adapting to the impacts 
of different scenarios that are generated with some unknown 
uncertainty for problems that have yet to occur (Moss et al., 
2001). A focus on scenarios, impacts and adaptation has 
forced many disciplines to evaluate their approaches to 
scientific inquiry and develop new methodologies to assess 
a new set of demands from the policy community. 

Most of the impacts of global change will be first ob-
served in ecosystems as they are integrators of water, energy, 
information and the interactions of many different species. 
The goal of this research is to assess how ecosystems might 
respond to environmental variation and change, how 
predictable is the response and how stable is the response. 
This goal is met by using an agent-based simulation based 
on emergent computation (EC). EC models offer a new ap-
proach in simulating the environment-species relationship. 

                                                        
  * Corresponding author: brad.bass@ec.gc.ca  

Early on, the quantification of the environment-species 
relationship was best described through predictive model-
ling. The development of computer simulations led to the 
simulations of multiple scenarios “more rigorously scientific, 
more informative and more useful ecology” (Deadman, 
1999; Guisan & Zimmermann, 2000). Not only were 
simulations cost-effective but they were immensely time- 
effective since many environmental management plans 
could be tested numerous times prior to lengthy field experi-
ments. Today, the field of environmental and ecological 
simulation modelling has expanded considerably. Currently, 
a wide variety of approaches are available to study different 
situations defined at different scales of time, space and com-
plexity (Villa & Constanza, 2000). 

The initial forays into ecological modelling had to 
avoid what Olson and Sequiera (1995b) called structure 
dominance. In ecosystems, it is the interaction between vari-
ous components that determines the complex dynamics of 
the system. Not surprisingly, preliminary proposals to study 
ecosystem dynamics through computer modelling were 
inadequate for understanding real systems (Taylor & Jeffer-
son, 1995). Simulation models were limited by the follow-
ing three shortcomings (Taylor & Jefferson, 1995). First, 
models derived from equations assumed a large population 
size, potentially ignoring the effects of small population 
effects such as genetic drift. Second, the number of 
computations that are necessary to model an organism’s 
behavior could be too complex to be completely captured by 
current mathematical tools or they could potentially reduce 
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the speed of the simulation. Finally, these models tended to 
perform poorly in simulating the non-linear system dynam-
ics, so often observed in nature. 

The discovery of chaos and semi-stability in simple 
population models (Byers et al., 1996; Bass, 1998) leant 
further evidence that conventional ecological models might 
not be simulating ecosystem dynamics and adaptation to 
environmental change. In particular, the discovery of semi- 
stable attractors suggested the potential for new emergent 
properties or sudden changes of state as ecosystems adapted 
to change. These types of changes could not be predicted 
and added a new degree of uncertainty to conventional mod-
els. 

The EC approach offers a different approach to conven-
tional ecological simulation. In this methodology, the over-
all system dynamics are the result of local interactions of 
independent agents whose behavioral response to its 
environment is completely encoded in a set of rules repre-
sented by an artificial intelligence (AI) engine. Thus each 
agent in the model makes its own decisions at every relevant 
time step based on its encoded strategy. Currently, EC has 
spawned into various fields varying from machine reasoning 
(Maxion, 1990) to ecology (Stone, 1990). However, within 
EC there are many subsets and a vast array of different 
simulation approaches. 

These approaches are reviewed beginning with the con-
ceptual framework on which EC models are built and the 
main categories of artificial intelligence: cellular automata, 
genetic algorithms, classifier systems, and neural nets. The 
review will be followed by a description of the Complex 
Organization and Bifurcation Within Environmental Bounds 
(COBWEB) software. The COBWEB software is an EC 
model and is used to simulate the system response to differ-
ent changes within a variable environment. 

2. Conceptual Background of Emergent 
Computation Models 

Olson and Sequeira (1995a) define an emergent com-
puter system as 
“A system composed of independent agents, which behave 
according to explicit instructions. The system exhibits im-
plicit spatial and/or temporal patterns that arise as a result of 
interactions between these subcomponents and/or between 
them and their environment. The patterns are apparent at a 
higher level than the agents, and are not explicitly coded in 
their specifications.” 

The key factor in EC is that the local interactions of 
agents cause the development of observed patterns and are 
important in determining the properties of the system. 
Consequently, these models allow for a bottom-up effect not 
a top-down effect. In other words, the properties of the sys-
tem emerge from the interaction between all of the compo-
nents. The resulting system properties are not deducible 
from any one agent, but in fact emerge over time. This phe-

nomenon of “emergence” is central to ecology and to the 
field of EC. 

The nonlinearities that result from interaction between 
agents and between agents and the environment is achieved 
with EC by simulating general as opposed to specific sys-
tems, although models such as COBWEB can be con-
structed around specific environments and applications. EC 
models also tend to be non-equilibrium models, which are 
more realistic for simulating the behavior of any complex 
systems. These models allow for pockets of order and disor-
der to coexist in space and multiple attractors over time. 

Model building requires trade-offs between generality, 
reality and precision (Nijkamp & van der Bergh, 1997), and 
only two of these properties could be included into any 
model (Guisan & Zimmermann, 2000). Empirical or statisti-
cal models are centered on precision and reality as they are 
used to condense experimental observations not to explain 
the underlying functions and mechanism. Analytical models 
are centered on generality and precision and are used to 
predict responses within a simplified environment. The last 
model group, centered on reality and generality, are 
mechanistic or causal models and incorporate EC models to 
some extent. These models are also used to predict, on the 
basis of real cause-effect relationships, but it is the theoreti-
cal validity of the response that is the main objective. 

EC models also tend to focus on resource and direct 
gradients as opposed to indirect gradients. Resource gradi-
ents refer to matter and energy consumed by living organ-
isms (e.g., nutrients). Direct gradients are those natural fac-
tors that organisms do not consume but are important for 
their survival (e.g., pH). Indirect gradients are environ-
mental factors with no direct importance on an organism’s 
survival (e.g., elevation). The effect of indirect gradients 
will often supersede the effect of different combinations of 
resource and direct gradients. However, indirect gradient 
modelling has limited applicability due to the varying mix-
tures of direct and resource gradients in most regions. More-
over, using direct and resource gradients results in a more 
general model. EC models that incorporate an environment 
focus on resource gradients, but indirect gradients can be 
incorporated to some extent through energy requirements 
for movement and barriers in the environment. 

Ecological models are also concerned with the de-
scribed niche of the organism and are either focused on the 
fundamental or the realized niches (Guisan & Zimmermann, 
2000). The fundamental niche combines the physiological 
performance and ecosystem restraints while the realized 
niche includes biotic interactions and competitive exclusion. 
Models incorporating the fundamental niche tend to simu-
late the realized response while static models based on 
empirical data are used to predict the realized niche. EC 
models incorporate the fundamental niche and tend to better 
suited than empirical models in simulating responses to 
changing environmental situations. 
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3. Classes of Emergent Computation 

The first and earliest EC research was with John von 
Neumann’s work on self-reproducing automata (Kier & 
Cheng, 2000). In the 1940s, von Neumann formulated 
conditions for self-replication in a system with the compu- 
tational abilities of a full Turing machine (Olson & Sequeira, 
1995b). He used a large number of agents, each with 29 
possible states and treated pieces of data like biological cells 
(Taylor & Jefferson, 1995). Just as external factors affect 
biological cells, the cells in the von Neumann model 
changed their state in response to the state of surrounding 
cells (Crutchfield & Mitchell, 1995). 

Von Neumann’s research led to the development of 
Cellular Automata (CA). A CA is a dynamic computational 
system that is discrete in space, time and state (Kier & 
Cheng, 2000). The rules governing the system-wide behav-
ior of automata emerge on a grid based on a set of rules for 
each individual grid cell. CA track the progress of 
ever-changing events and have been applied to various 
fields of research including gas phenomenon and biological 
systems (Kier & Cheng, 2000). The rules that the automata 
are governed by can be extremely simple yet result in quite 
complex system dynamics (Kier & Cheng, 2000). The work 
of Garder in 1970 with his CA model known as LIFE is a 
typical example of simplistic rules encoded by individual 
agents (Olson & Sequeira, 1995a). In LIFE, the rules en-
coded by the cellular automata were straightforward 
IF-THEN situations (e.g., IF a certain situation arose, THEN 
the automata would react in a particular way). 

The next type of EC is based on genetic algorithms 
(GA). Central to the growth of this field is the concept of 
evolution by natural selection (Mitchell & Forrest, 1995). 
GAs are computational models of evolution and grew 
principally through the work of John Holland (Mitchell & 
Forrest, 1995). They consist of bit strings of 0’s and 1’s that 
encode an agent’s solution to a particular problem (Crutch-
field & Mitchell, 1995). The bit strings act as search algo-
rithms that evolve solutions to optimization problems and 
pass the most suitable solutions to the next generation 
(Crutchfield & Mitchell, 1995). A GA simulation mimics 
biological natural selection. The artificial environment will 
select the agents with fitter bit strings, or “genes” to produce 
more offspring. 

In various models, three situations can arise when 
agents produce offspring by using genetic operators. The 
first scenario is crossover between two bit strings that 
resembles sexual recombination. As in natural systems, this 
crossover introduces variability into the system and is often 
programmed to be more probabilistically favored. The 
second situation is that mutation could change 0’s into 1’s or 
vice versa. Mutations are beneficial in a model as it can 
retain or regenerate strategies that are lost by the probability 
of the artificial environment. This re-emergence is analo-
gous to the function of biodiversity (Bass et al., 2002). Fi-
nally, although rarely implemented nowadays, inversion 
could reverse small sections of the bit string to change the 

order of the 0’s and 1’s (Mitchell & Forrest, 1995). 
The advantage of using GAs over conventional search 

algorithms is that the GA search is parallel (Olson & Se-
queira, 1995a); a population of solutions is tested simultane-
ously increasing the probability to finding the best, although 
not necessarily the most optimal solution. GAs have been 
applied in economic models, machine leaning, social system 
models and ecological models (Mitchell & Forrest, 1995). 
Although recent research with GAs resembles Holland’s 
original work, there are notable divergences, and the term 
evolutionary computation has been introduced recently to 
encapsulate the various different members (Mitchell & 
Forrest, 1995). 

A prominent example of an EC model using GA is Hol-
land’s model, Echo (Mitchell & Forrest, 1995). Echo is an 
ecological system model simulating agent-agent and agent- 
environment interactions to determine high level system 
phenomenon (e.g., flow of resources, cooperation). Each 
agent’s genome encodes all of the instructions, which the 
agent follows to interact with other agents and the artificial 
environment. In addition, Mitchell and Forrest (1995) 
pointed to four key advances Echo contributed to the field 
of GA. They are: 
1)  the explicit encoding of resources into the system, 
2)  the possibility that an agent’s fitness is a function of 

geographical location, 
3)  the possibility of various types of agent interactions, 

and 
4)  that fitness is endogenous to the model. 

In addition to its normal functions, GAs can also be 
combined with a CA to form another EC field of research 
often referred to as Artificial Life (ALife) (Crutchfield & 
Mitchell, 1995). Spearheaded in the 1980s by Chris Langton, 
the ALife field is extremely broad and has been used to 
study various subjects from the origins of life to 
nanotechnology (Olson & Sequeira, 1995b). Despite its 
broad usage, different models within the field are linked by 
the concept of emergence focusing on patterns such as 
self-sustaining loops, food webs, and cooperation (Downing, 
1998) and are used in the study of evolution, and social 
structures and behaviour (Olson & Sequeira, 1995b). An 
example of an ALife simulation is Booth’s GECKO pro-
gram. In this model, based on biological interactions, plants 
are able to convert resources to carbohydrates (Downing, 
1998).  

The third class of EC is the classifier system, which can 
be considered an advancement of the GA subtype. In sim-
plest terms, a classifier can be thought of as one super agent 
combining several different GAs. Subsequently, a bidding 
process is required for the selection of the strategy that the 
super agent will use at any given time, and classifier sys-
tems also require a performance system and credit assign-
ment system (Westerdale, 2001). Eventually, those strategies 
that are not used are discarded. 

Classifier systems are composed of three layers; the 
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lowest being the performance system. This first system re-
fers to the agent interaction with the environment and the 
bidding of the various strategies within the super agent to be 
the strategy that the super agent chooses to follow at that 
time step. (Westerdale, 2001; Olson & Sequeira, 1995a). 
Next the credit assignment system, the second layer, uses a 
bucketbrigade algorithm to assess the strength of the classi-
fier, based on the agent’s previous experiences (Olson & 
Sequeira, 1995a). The classifier with the greatest strength is 
interpreted as having the best fitness and consequently will 
be chosen as the classifier of choice. Finally, the highest 
level of the classifier system is the genetic algorithm that, 
over time, will delete those classifiers with low strength and 
replace them by applying genetic operators to modify high 
strength classifiers to yield processes such as mutation or 
cross-over (Westerdale, 2001; Olson & Sequeira, 1995a). 
Because of these properties, classifier systems are often 
used in complex environments that present new situations 
periodically over time. 

Krebs and Bossel (1997) used a classifier system to 
simulate the learning of a single animat (artificial animals) 
in different environments. The animats exist as single organ-
isms in an ecological context and are encoded by classifiers 
to link perception with suitable action. They gain energy 
through consuming food and lose it for movement, colli-
sions and learning. The animats learned to survive by 
recognizing scenarios and acting appropriately to increase 
long-term fitness. After training the animats, Krebs and 
Bossel (1997) then placed them in a different environment 
to measure their development. 

The last category of EC to be reviewed is a neural net. 
This EC model is a complex array of layers designed to 
resemble the neural pathways in the brain (Long et al., 
1998). Similar to GAs and classifier systems, the neural 
network works in parallel and due to its overall construction, 
it is most often used in pattern-recognition and classification 
devices (Olson & Sequeira, 1995a). It incorporates the basic 
principles of neuron in the brain has the capability to “learn” 
from experience. Some of the benefits to using neural nets 
in ecological simulations are that neural nets tend to be 
flexible and can respond to new stimuli. A downfall to using 
neural nets is the need to balance the time needed for a 
simulation and the size of the network (Long et al., 1998). 

Currently, there are two types of popular neural nets. 
The first is the well-known multi-layer feed-forward neural 
network (a.k.a. using backpropagation algorithms (BPN)) 
while the second to be discussed is self-organizing and are 
formulated using adaptive resonance theory (ART) (a.k.a. 
using Kohonen self-organizing mapping) (Foody, 1999). 
The second is closer to an EC model. 

The self-organizing neural network takes into account 
the greater complexity of neural functions, circumvents the 
need for supervised learning, and incorporates competition 
and associative learning. The generic set-up of an ART net is 
very different to the BPN and allows grouping of similar 
objects. To begin, a self-organizing/self-learning neural net-

work consists of only 2 layers, the input layer and the output 
layer (Lek & Guegan, 1999). The input layer represents the 
input features and the output layer represents the categories. 

The external stimuli are received by a node in the input 
layer, which sends a bottom-up weighted signal to the out-
put layer. Subsequently, the bottom-up signal is comple-
mented by top-down signals to prevent coding instabilities 
that may arise when the same stimuli is presented to the 
input nodes constantly. The purpose of the top-down signals 
is to reference the bottom-up signal to previously learned 
categorizations. If the input resembles a particular category 
with high strength, the input is classified with that node. It 
in turn will inhibit the other nodes from categorizing the 
signal. The adaptability of the system comes from its 
capability to change classifications with time and exposure 
to stimuli. 

Foody (1999) tested the abilities of a self-organizing 
feature map neural network to be used for ecological 
classification and ordering samples. Using vegetative survey 
data and the unsupervised neural network, he found that his 
model was in general agreement with observations. Al-
though further validation is required, his findings support 
the drive to use self-learning systems in ecological model-
ling. 

4. Complex Organization and Bifurcation within 
Environment Bounds (COBWEB) 

4.1 The COBWEB Architecture 
COBWEB is a general simulation platform used to 

study agent adaptation to a wide variety of environmental 
conditions. Similar to the Echo model, each agent is en-
coded by a GA. COBWEB’s GAs are made up of a random 
sequence of 0s and 1s that determine the agent’s strategy as 
well as an additional 2-bit memory for storing environ-
mental information. The platform supports multiple hetero- 
geneous agents in the same grid. This heterogeneity allows 
for competition and physical interactions between the va- 
rious agents. 

In the initial version of COBWEB, the agents move 
around the grid, consume energy, expend energy, replicate, 
die and possibly anticipate the future through its use of 
memory. As soon as enough energy is accumulated, the 
agent replicates. In addition, the agent cannot see past one 
square and its interactions are limited to collisions with 
other agents, immovable rocks and food resources. Conse-
quently, differences between parent and offspring in this 
first version arise solely through mutation. 

The novelty in COBWEB is its construction; it is an 
object-oriented program and the agents possess memory. 
The object-oriented structure allows for a separation be-
tween the GA of the agents and the other parts of the pro-
gram. Thus it is possible to replace the GA with a neural net 
or a classifier system. This also allows for the creation of 
different types of agents with different properties in addition 
to their genetic code. 
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The memory allows the agent to incorporate nongenetic 
information into its sequence of 1’s and 0’s allowing it to go 
beyond its genetics. This is accomplished by giving 
additional input and output bits not essential for agent sur-
vival. At the beginning of the simulation both input and 
output bits are set to zero but the extra output bit is moved 
to the extra input bit at each time step, essentially allowing 
the agent to send memos of its last action to itself at each 
time step. In a broader context, this acts as a prediction 
mechanism and allows the agent to alter its future behavior. 
The additional data also produces a Turing complete GA 
that is anticipatory in nature (Bass et al., 2002). 

The agents move around the grid, consume energy, ex-
pend energy, replicate, die and possibly anticipate the future 
through its use of memory. As soon as enough energy is 
accumulated, the agent replicates. In addition, the agent 
cannot see past one square and its interactions are limited to 
collisions with other agents, immovable rocks and food re-
sources.1 

The agents exist on a two-dimensional grid that con-
tains rocks and resources. The grid’s boundaries are hard or 
can be turned off so that agents can pass through a boundary 
and emerge on the other side of the grid, a wrapping effect. 
Resources are dropped randomly into one grid square of the 
environment at each time step but the spread of the food is 
controlled by a non-deterministic cellular automaton. Any 
resource that is not consumed by an agent is able to grow to 
adjacent grid squares at a rate determined by the experi-
menter prior to the beginning of the simulation. Since the 
location of the resources is constantly changing, the 
environment is in a constant state of flux, and can be used to 
simulate environmental variability. 

COBWEB has 18 variables that the experimenter is 
able to alter. In extremely broad terms, the variables can be 
separated into four main categories. The first category deals 
with physical characteristics of the grid (e.g., dimensions of 
the grid, hard boundary/environment wraps on itself, num-
ber of stones and the number of agents). The second cate-
gory deals with characteristics of the resources (e.g., initial 
amount of resources, the rate of resource growth, energy 
obtained from resources and the probability of a new re-
source growing in an empty space). The third category deals 
with the energy requirements and expenditures of the agents 
(e.g., initial energy at birth, energy required to breed, step, 
step into a rock, and to turn). Lastly, the fourth category 
deals with miscellaneous aspects of the agent characteristics 
(e.g., mutation rate and agent memory). The output of the 
simulation is the number of grids occupied by food, the 
number of agents, the average agent energy and the total 
agent energy. 

                                                        
1In the most recent version of COBWEB, the agents also have a 
communication buffer to store information from other agents and 
both buffers can be varied in size. In addition to communication, 
the agents can also engage in sexual reproduction with each other. 

The constraint on the agents in COBWEB is energy, 
which determines if and when an agent replicates. Those 
agents that do not have strategies that select for sufficient 
accumulation of energy will, therefore, be removed from the 
simulation. Thus, those strategies that are left by the system 
are a system-wide response to anticipated future events. 
Despite the apparently simple construction of the program, 
COBWEB exhibits non-linear behaviour, semi-stability and 
multiple attractors. 

By far the most common attractor is a predator-prey cy-
cling between a dominant agent, representing one particular 
strategy, and resources. However, other attractors include 
elimination of all agents, unlimited growth of agents, preda-
tor-prey cycling with no dominant agent and unpredictabil-
ity. The emergence of the first three attractors can be pre-
dicted with approximately 10-20% uncertainty from a spe-
cific range of initial parameter values whereas the emer-
gence of the fourth and fifth attractors cannot be predicted 
from the initial parameter settings. The fifth attractor is 
characterized by bifurcation points, where the system trajec-
tory can be vastly different from one simulation to the next 
without any parameter changes. 

COBWEB is visual, and there are multiple attractors in 
space although these have not been classified. However, 
visual observation has detected that pockets of local spatial 
clusters emerge with a relative stability for several hundred 
time steps and then dissipate. In some instances the patterns 
of agents are closely tied to the location of resources and 
may reflect adaptation to the environment, but this will re-
quire further testing. 

 
4.2 Methodology 

COBWEB is used to assess how a system responds to 
environmental change and variation. Variation is modelled 
with the CA. Environmental change is introduced through 
changing a select set of parameters. The methodology con-
sisted of varying the selected parameters individually and in 
combination. During each simulation, the following con- 
ditions were held constant: the dimensions of the environ-
ment, no hard boundaries (an agent hitting a wall emerges 
on the other side of the grid) and agent memory was turned 
on. 

High, low and intermediate values were chosen to act 
as reference guides during the systematic increase and de-
crease of other parameters. The high and low values were 
chosen by arbitrarily estimating extreme limits, which could 
theoretically be observed in a simple environment. The 
intermediate values were chosen if the values displayed the 
common predator-prey fluctuations observed in the majority 
of runs and were between the high and low values. 
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During various trials, the intermediate values were the 
default values while the each parameter was altered between 
the low and high values at a regular interval. Two 
experimental phases were developed, representing different 
initial conditions (Tables 1 and 2), to investigate the tempo-
ral effect of altering each parameter individually on three 
outcomes: agent population, energy and resource availability. 
The increase, no change or decrease of the long-term agent 
population and average agent energy for each run were com-
pared to assess the effect of each environmental change on 
each outcome. In addition, other experiments were con-
ducted to test the temporal effect of altering multiple 
parameters at the same time. Each simulation lasted for 
3000 time steps unless all the agents die prematurely. 

 
4.3 Results and Discussion 
4.3.1 Manipulation of Individual Parameters 

In both Phases, various parameters were altered indi- 
vidually while the other parameters remained at their default 
values. The most common characteristic of all experiments 
was a dramatic decrease in the number of agents at 200 time 
steps. Once the grid was cleared of vast numbers of agents, 
the survivors moved more frequently and for longer dis-
tances. In addition, after the significant agent mortality, the 
system exhibited simple, repetitious, upward and downward 
fluctuations in population and resources characteristic of the 
first attractor. In the vast majority of cases, certain agents 
were consistently present, occasionally dominating the grid 
for short periods. Long-term stability in agent population is 
representative of the first attractor, while a collapse or crash 
of the agent population is the second attractor, indicated by 
an agent population of zero in Table 3. 

The results of varying the individual parameters on the 
long-term agent population and the average agent energy are 
presented in Table 3. The results that are presented are 

representative of a large number of simulations. The two 
phases reveal many similarities and some startling differ-
ences. Overall, a higher number of initial agents was a 
disadvantage in terms of long-term agent population, aver-
age energy and long-term stability. For example, the second 
attractor, represented by a zero for agent population, 
emerged several times during Phase I but not during Phase 
II. However, the third attractor, continual increase in popula-
tion emerged twice in Phase II. 

The results in Table 3 indicate that there are parameter 
settings that often lead to the emergence of the second and 
third attractors. A continuously increasing agent population 
in some Phase II runs could lead to a third attractor, or the 
population could stabilize. This could not be predicted. 
There are also some clear indications of adaptation in Table 
3. For example, in Phase II, when the energy from resources 
increased, the average energy per agent decreased. Visually, 
the agents remained in one spot for long periods of time, 
usually a strategy that leads to death. However, with the 
additional energy, the agents could afford to reduce the 
search for resources, and the system could allow for strate-
gies that normally would be detrimental to long-term sur-
vival. The mutation rate may be more favorable to agent 
population than indicated in Table 3. A subsequent run indi-
cated that at agent populations between 300 and 400, a 
mutation of rate of 0.65 is most favorable. 

 
4.3.2. Manipulation of Multiple Parameters 

In the second stage of experimentation several variables 
were altered at the same time (Table 4). Following these 
tests, two different sets of variables were altered in opposite 
directions to assess the impact. During this section, the 14 
possible variables were divided into related groups. In the 
first alteration all the initial parameters (i.e. number of 
stones, agents and resources) were raised to their high val-

 
Table 1. High, Intermediate and Low Values Used as Reference Vales during PHASE 1 

PHASE 1 
Values 

# 
Stones 

# 
Agents 

Resource 
amount 

Resource 
Rate 

Resource 
Growth

Mutation 
Rate 

Initial 
Energy

Food 
Energy

Breed 
Energy

Step 
Energy

Step Rock 
Energy 

Turn 
Energy 

Turn Right 
Energy 

Turn Left 
Energy 

High 1000 2000 3000 2 1 2 2000 200 200 100 100 100 50 50 

Intermediate 300 1000 1000 1 0.5 0.05 1000 200 10 5 5 5 2.5 2.5 

Low 1 2 5 0.5 0.5 0.03 2 2 1 1 1 1 0.5 0.5 

 
 
Table 2. High, Intermediate and Low Values Used as Reference Values during PHASE 2 

PHASE 2 
Values 

# 
Stones 

# 
Agents 

Resource 
amount 

Rate of 
Resource 
Growth 

Prob. of 
new 
Resources 

Mutation 
Rate 

Initial 
Energy

Energy 
from 
Resources

Breed 
Energy

Step 
Energy 

Step 
Rock 
Energy 

Turn 
Energy 

Turn 
Right 
Energy

Turn 
Left 
Energy

High 2000 1000 2000 3 2 1 3000 500 100 30 30 30 15 15 

Intermediate 1000 100 500 1 1 0.01 2000 100 50 10 10 10 5 5 

Low 10 10 20 0.2 0.2 0.01 30 3 0.2 0.5 0.5 0.5 0.25 0.25 
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ues. In the second alteration the resource parameters (i.e. 
resource growth rate and the probability of new growth) 
were raised and lowered to their extreme values. In the third 
alteration the energy parameters (i.e. energy at birth and 
from resources and energy required to breed, step, step into 
a rock, turn, turn right and turn left) were raised and lowered 
to their extreme values. 

Interesting trends emerged when the groups of parame-
ters were altered in opposite directions for the Phase I & II 
settings. The alternating experiments in Phase I indicated 
that the system could survive, but the agent population was 
low, if the resource parameters were sufficiently high or if 
the energy requirements and energy expended was suffi-
ciently low. In Phase II, the second attractor emerged, when 
all of the resource parameters were set to their low values. 
However, the emergence of the third attractor is predictable 
when the energy parameters are set to their low values. The 
last experiment suggests that the energy parameters hold 
more weight in determining the course and outcome of runs 
as opposed to the initial parameters. 

 

4.3.3. Unlimited Growth and the Limits of Prediction 
A third set of experiments was conducted to investigate 

the attractors leading to unlimited growth and unpredictable 
results. The parameter settings in Table 5 represent two runs 
with seemingly unlimited growth. The runs were set to 
10,000 time steps instead of the usual 3,000 time and the 
third attractor eventually lead to a system collapse due to 

overpopulation. There were no free spaces to accommodate 
birth of new agents. The system literally collapsed as this 
situation forced a closure of the program. 

 

Table 4. The Effects of Altering Multiple Parameters 

 PHASE I PHASE II 
Parameter # 

Agents 
Avg. 
Agent 
Energy 

# 
Agents

Avg. 
Agent 
Energy

Initial Parameters High 90-0 540 450 120 
 Low 90 550 275 1300 

Resource Parameters High 180 550 800 1300 
 Low 40-0 530 0  

Energy Parameters High Survival 530 275 1670 
 Low Low-0  Fills up 

grid 
 

Alternating Directions     

Initial Parameters High 
Resource Parameters Low 

Low - 0  0  

Energy Parameters High 
Resource Parameters Low 

Low - 0  0  

Initial Parameters Low 
Resource Parameters High

Survival 530 800 1325 

Initial Parameters Low 
Energy Parameters High 

Low - 0  225 1750 

 

  
     Table 3. Effects of Individual Parameter Manipulation 

 PHASE I   PHASE II   
 Parameter # Agents Avg. Agent Energy Parameter # Agents Avg. Agent Energy

# Stones 300-600 80-90 540 10 440 1300 
 ≥ 700 0  2000 325 1175 
Resource Growth 
Rate 0.5 0  0.5 325 1200 

 1.0 80 530 3.0 525 1300 
 2.0 170 550    
Mutation Rate 0-0.06 80-90 540 0.25 1300 1000 
 0.07 0  0.75 100 1000 
Initial Energy 0-800 0  30 110 275 
 1000 90 540 3000 400 1875 
 2000 140 540    
Energy from 
Resources 2-100 0  50 350-400 1270 

 200 80-90 540 500 350-400 1090 
Step Energy 0-2 260-270 540 0.5 450 1340 
 2-4 130-140 540 10.0 350-400 1200 
 5 80-90 540 30.0 350-400 1200 
 >5 0     
Turn Energy 0 Increasing  0.5 Increasing 1240 
 5 80-90 670 10-30 300-450 1240 
 20 50 540    
 30 0 560    
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Table 6 shows one example of a set of parameters 
where program was on a bifurcation point leading to an un-
predictable outcome. For the particular set of parameters 
used in this discussion, there were two possible outcomes 
that could occur. The first was system survival without any 
agent dominating the grid (the fourth attractor) while the 
other possible result was system death. The agents survived 
only 50% of the time. However, it should be noted that alter-
ing certain parameters in small increments nudged the sys-
tem to either the first or second attractor. For example, when 
the initial energy was altered to 300, ten consecutive runs 
produced death. On the other hand, when initial energy was 
raised to 800, ten consecutive runs produced system survival. 
These findings are indicative of a fifth attractor that appears 
to conform to the behavioral properties of a chaotic attrac-
tor. 

 
4.3.4. The Effect of varying grid size 

The effect of grid size was tested by replicating the runs 
where the step energy parameter was altered between its 
high and low values but a 50 × 50 grid size was used in 
place of the usual 75 × 75 grid. In this initial analysis, the 
grid size does have an effect on the equilibrium agent num-
ber and average agent energy, which is expected given the 
smaller area of the environment. However, the general trend 
of increasing or decreasing average agent energy did not 
appear to be constant. Average agent energy tended to be 
higher than observed in the larger grid and no regular trend 
could be ascertained in the smaller grid. In addition, the 
smaller grid runs did not have the characteristic high rise 
and fall in agent population and average agent energy that 
were typical on the large grid, and even small fluctuations 
were observed only occasionally at the beginning of the run, 
within the first 200 time steps. 

 
4.3.5. Spatial Clustering 

In most simulations, agents with similar strategies tend 

to aggregate for fixed periods of time, and then the cluster 
dissipates. These clusters appear with a large, localized 
growth in resources. The increased availability of energy 
appears to fuel the growth of the cluster so that it is main- 
tained for a longer period of time. However, the timing of 
the clusters appears to be random and do not favor one strat-
egy over another 

There are six hypotheses to explain the spatial aggre- 
gations of agents: 
1. The rapid proliferation of a single agent in rich 

environmental conditions creates a cluster of similar 
agents. The agent’s strategy is not significant; any 
agent placed in similar conditions would cluster in the 
same manner. 

2. The grouping of similar organisms favors further clus-
tering of similar agents because it prevents other, mo-
bile, invading organisms from taking away the food in 
the area. 

3. Some combination of environmental factors in the area 
makes the region favorable for a particular type of 
agent strategy over the others, i.e. geographic isolation, 
large food growth, etc. Consequently, that particular 
strategy tends to be more abundant in that area. 

4. Barriers to mobility through a higher number of stones, 
agents or food or larger energy expenditures to move 
favored the aggregation of agents. In this case, the 
formation of spatial clusters appears to be a system 
adaptation to the barriers to mobility. 

5. A lower mutation rate can reduce the variety of agent 
strategies that survive in the long-term. Lower muta-
tion rates favor single-strategy clusters. A larger vari-
ety reduces the chance of one type of agent exhibiting 
clustering behavior since it is more likely that a differ-
ent type of agent will invade the cluster. 

6. Clustering behavior is enhanced when the energy re-
quired to breed is low, initial agent energy is high or 
energy from food resources is high. Conversely, if the 

 
 Table 5. Parameter Values Leading to Unlimited Growth Results, the Third Attractor 

Trial 
# 

# 
Stones 

# 
Agents 

Resource 
amount 

Rate of 
Resource 
Growth 

Prob. of 
new 
Resources 

Mutation 
Rate 

Initial 
Energy

Energy 
from 
Resources

Breed 
Energy

Step 
Energy 

Step 
Rock 
Energy 

Turn 
Energy 

Turn 
Right 
Energy

Turn 
Left 
Energy 

1 100 100 500 1 1 0.01 2000 100 50 10 10 0.5 0.25 0.25 

2 300 1000 1000 1 20 0.05 1000 200 10 5 5 5 2.5 2.5 

 
 Table 6. Parameter Values Leading to the Fourth and Fifth Attractors 

Trial 
# 

# 
Stones 

# 
Agents 

Resource 
amount 

Rate of 
Resource 
Growth 

Prob. of 
new 
Resources 

Mutation 
Rate 

Initial 
Energy

Energy 
from 
Resources

Breed 
Energy

Step 
Energy 

Step 
Rock 
Energy 

Turn 
Energy 

Turn 
Right 
Energy

Turn 
Left 
Energy 

1 300 50 15 0.05 1 0.15 400 50 10 20 10 5 5 5 
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energy required to breed and move is high and the 
other inputs are relatively too low, aggregation is less 
likely to occur. 

Note that these explanations are not mutually exclusive 
and any combination of these may occur. 

 
4.3.6. The Advantages of Memory and Communication 

The more recent versions of COBWEB allow for ag- 
ents with memory and communication. These characteristics 
are important in that they allow the agents to utilize 
information that is not genetic, and in the case of memory, 
create agents that are anticipatory in nature. An experiment 
was performed to test the impacts of memory and commu- 
nication. In tracking a single agent through different simula-
tions, it was found that it did make different decisions with 
memory and communication when faced with the same 
decision (Table 7). 

 
Table 7. The Impact of Memory and Communication on 
Movement 

Memory Communication 
with other Agents 

Facing Distance 
to Object 

Action 

Yes Yes south 3 step 

No Yes south 3 do nothing

Yes No south 3 do nothing

No No south 3 turn Right 

 
 

The presence of memory was examined from the 
perspective of longevity and the number of descendants. In 
both cases, over 10 simulations, an agent with memory lived 
longer only 50 % of the time (Figure 1) and where the im-
pact on the number of descendants was significant, it more 
often favored agents with memory (Figures 2 and 3). In 
many cases, the superior agents significantly outperformed 
their counterparts. The only explanation is that the environ-
ment developed in such a way as to highly favor either 
anticipatory agents or agents without memory. 

5. Conclusions 

COBWEB is a general simulation program where each 
agent is encoded by a genetic algorithm and the rate of re-
sources is controlled by a non-deterministic cellular auto- 
mata. During trials to test the boundaries of the program, 
COBWEB exhibited non-linear behavior as well as five 
main attractors. The first three attractors could be predicted 
from the initial parameter values with a relatively high prob-
ability (80-90%). The system trajectory of the fourth and 
fifth attractors could not be predicted from the initial 
parameter values. In fact, the fourth attractor often emerged 

when the system trajectory was characterized by a bifurca-
tion, i.e. the fifth attractor. When parameter values were 
found that caused the fifth attractor emerge, the system 
trajectory was very sensitive to minor changes in these 
parameter values. 

An interesting observation periodically found in COB-
WEB runs was the clustering of the agents. The clustering 
observed in COBWEB resembled the clustering often ob-
served in self-organized neural networks; thus, the cluster-
ing in COBWEB may be indicative of learning by the 
agents. Agents also appeared to modify their spatial behav-
ior perhaps being indicative of the capacity to anticipate the 
location of food. 

As an EC model, COBWEB exhibited behavior resem- 
bling other EC simulations such as sensitivity to resource 
levels, re-emergence of lost agent strategies, and in keeping 
with the definition of EC, the system dynamics of COB-
WEB were found to result from the interactions of low-level 
factors. COBWEB also allowed for multiple agent strategies 
and exhibited evolutionary behavior as agents consumed 
and expended energy. As in other models, most maladapted 
strategies are removed from the system. 

The properties that COBWEB has demonstrated indi-
cate its utility for modelling ecological adaptation to 
environmental change. It features mobile agents and immo-
bile resources, environmental variability and environmental 
change. High level properties emerge from the interactions 
of many individual agents, the system behavior is non-linear 
and it allows for the existence of multiple attractors and 
important characteristic of ecological adaptation (Bass, 
1998). More recent versions of COBWEB have multiple 
resources that can be programmed to provide varying 
amounts of energy to different agents. This version of COB-
WEB has been used to simulate long-term responses to cli-
mate change, as represented by the changing length of 
different seasons, invasive species and the advantages of 
impact of memory and communication. Memory and 
communication with other agents changes the decision that 
an agent will make in a similar circumstance, and agents 
with memory are more likely to live longer and have more 
descendants. 

Future work on COBWEB will involve more analysis 
on the threshold values that trigger different attractors, the 
advantages of memory and communication, the evolution of 
cooperation, spatial analysis of the system and agent behav-
ior with distinct preferences. COBWEB is a general simula-
tion platform constructed in the Java computer language. 
The code is available from Environment Canada by contact-
ing Brad Bass.  
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 Figure 1.  Longevity of Agent with and without Memory. 

0

100

200

300

400

500

600

Ti
m

e 
st

ep
s 

liv
ed

1 2 3 4 5 6 7 8 9 10

Simulation #

with memory
no memory

 

       

0

10

20

30

40

# 
of

 d
es

ce
nd

an
ts

1 2 3 4 5 6 7 8 9 10
Simulation #

with memory
no memory

Figure 2.   Impact of Memory of Descendants.  
 

 
 Figure 3.   Impact of Memory on Descendents. 
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