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ABSTRACT.  In this study, the reservoir operating rules for satisfying reliable water releases under uncertain inflows and water de-
mands were developed. This development was based on a chance-constrained programming model associated with a factorial design 
measure for examining interactions among various impact factors. The reservoir inflows and water demands in different operating sea-
sons were of normal distribution with known means and variances. The minimum cost of water releases from the reservoir was 
achieved by keeping minimum storage, maintaining sufficient flood and drought control capacities, achieving water demands of users, 
and satisfying releases to downstream channel with acceptable reliabilities. The complex interrelationships among water releases, ini-
tial reservoir storage, and reliability level were revealed through the developed model. This proposed approach would offer an im-
proved measure for reservoir operation and management under uncertainty. 
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1. Introduction  

The system analysis techniques have been widely applied 
to water resources planning and management over the past 
decades. In terms of reservoir planning and operation prac-
tices, there has been much attention on developing and apply-
ing a variety of optimization models (Wurbs, 1993). Typical 
reservoir systems are usually subject to constraints of continu-
ity assumptions and various conditions for regulating reser-
voir storage and release variables (Reznixek & Cheng, 1991). 
Due to the complexities of reservoir systems, a number of 
uncertainties exist in the related modeling parameters, such as 
water demands, future costs, and inflow levels. These 
uncertainties may result in significant impacts on system 
predictions and the related decisions on system operation and 
management (Jenkins & Lund, 2000). As a result, it is recog-
nized that the reservoir optimization modeling should seri-
ously take uncertainties into consideration for ensuring more 
reliable system planning and decision robustness. 

A number of inexact optimization models were devel-
oped to account for such uncertainties during the past years 
(Xu et al., 1997), such as stochastic programming, stochastic 
dynamic programming, and fuzzy programming. In stochastic 
dynamic programming (SDP), inflows of the reservoir are 
considered as the Markov processes. The related decision is 
usually made to maximize the expected value of the sum of 
immediate and future returns, and the algorithm has to be 
solved backwards (Umamahesh & Sreenivasulu, 1997). The 
challenge of SDP locates that it is usually associated with 
difficulties in data availability and solution efforts, especially 
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when there are more than two state variables (Ravikumar & 
Venugopal, 1998; Dos Santos & Marino, 2002). Fuzzy 
programming involves fuzzy constraints and/or objectives 
with the uncertain parameters and/or relationships being 
treated as fuzzy sets. A decision is then defined as the 
intersection of the membership function corresponding to the 
maximized realization of fuzzy goals and constraints (Russell 
& Campbell, 1996). As a result, the decision is obtained by 
applying the max-min convolution operator to maximize the 
minimum membership value, with the effect of balancing the 
degree to which the objective is achieved while the con-
straints have also to be satisfied (Hulsurkar et al., 1997; Jairaj 
& Vedula, 2000). As a whole, the fuzzy programming pro-
vides a convenient approach for optimizing complex reservoir 
systems associated with low-quality information where the 
uncertainty cannot be represented adequately by probability 
theory (Liu, 2001). 

 

 

Figure 1.  The study reservoir system. 
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ming may provide an effective tool for system optimization 
under uncertainty. Among various stochastic approaches, the 
chance-constrained programming can incurporate stochas- 
ticity of input parameters within a linear programming 
formulation. This approach admits random data variations and 
permits constraint violations up to specified probability limits 
(Duffuaa, 1991; Morgan et al., 1993). The probabilistic 
constraints, with the unknown random variables replaced by 
their equivalent counterparts derived from known probability 
distributions under a certain reliability level, can then be 
converted to deterministic constraints. However, the 
application of this approach to reservoir operation is chal-
lenged by the difficulties in relating probability distributions 
of input variables to those of release and storage variables, as 
well as in identifying suitable reliability levels for the related 
probabilistic constraints to be satisfied (Paudyal & Das Gupta, 
1991; Reznixek & Cheng, 1991; Rangarrajan & Simonovic, 
1999). As a result, this study is to develop the reservoir 
operating rules for satisfying reliable water releases under 
uncertain inflows and water demands by using chance- 
constrained programming. The impacts of system reliability 
level and initial reservoir storage, as well as their interactions, 
are examined through a factorial design analysis. The 
complex interrelationships among water releases, initial 
reservoir storage, and reliability level can then be revealed 
through implementing the developed model based on a set of 
reliability levels and initial reservoir storages. 

2. Methodology 

Figure 1 shows a single reservoir system. It supplies wa-
ter for drinking and industrial users in the watershed, and re-
leases regulated flows to the lower reach. The total reservoir 
capacity is C. The unit cost of supplying water to water users 
and releasing water to the lower reach are di and ei, respec-
tively, for season i (i = 1 for winter, 2 for spring, 3 for summer, 
and 4 for autumn). 

The objective of reservoir operation is to minimize the 
total costs for water supply and water releases. The related 
variables include (Reznixek & Cheng, 1991): 
(a) Decision variables: 
R1i: water supply from the reservoir to water users at the end 
of period i, 
R2i: releases from the reservoir to the lower reach at the end of 
period i; 
(b) Parameters: 
FCi: flood control storage of the reservoir at the end of period 
i, 
DCi: drought control storage of the reservoir at the end of 
period i, 
MRi: minimum required release to the lower reach at the end 
of period i, 
MSi: minimum required storage of the reservoir at the end of 
period i; 
(c) Random variables: 

iS : random reservoir storage at the end of period i, 

iX : random inflow of the reservoir at the end of period i, 

iD : random minimum water demand of water users from the 
reservoir at the end of period i. 

If the seasonal discount rate is j, then the reservoir opera-
tion problem can be formulated as follows: 
         

( )
( )

( )
( )

4

1 2
1 1 1

i i
i ii i

i

d eMin     Z R R
j j=

⎡ ⎤
⎢ ⎥= +
⎢ ⎥+ +⎣ ⎦

∑           (1a) 

subject to 

1 1 2i i i i iS S X R R i−= + − − ∀                            (1b) 
 

( ) 1Prob i i iS MS iα≥ ≥ ∀                         (1c) 

 

( ) 2Prob i i iC S FC iα− ≥ ≥ ∀                            (1d) 

 

( ) 3Prob i i iS DC iα≥ ≥ ∀                               (1e) 

 

( )1 4Prob i i iR D iα≥ ≥ ∀                                 (1f) 

 
2i iR MR i≥ ∀                                  (1g) 

 
1 2, 0i iR R i≥ ∀                                    (1h) 

 
where constraint (1b) is a continuity equation; constraint (1c) 
states that the reservoir storage should not be less than the 
minimum level as required for recreation and amenity with a 
probability of α1i; constraint (1d) is about the capacity for 
flood retention being greater than the flood control storage 
with a probability of α2i; constraint (1e) states that the reser-
voir storage should be greater than the drought control de-
mand (α3i); constraint (1f) is for satisfaction of water demands 
of the water users (α4i); constraint (1g) is about the minimum 
lower-reach release required for dilution, channel regulation 
and other purposes; and constraint (1h) is for non-negativity 
definitions. 

The above model requires specification of initial storage 
S0. Constraint (1c) for the first time period can be expressed 
as follows by using the continuity equation (1b) (Reznixek & 
Cheng, 1991): 

 

( )0 1 11 21 1 11Prob S X R R MS α+ − − ≥ ≥                       (2) 

 
The following constraint can then be obtained by re- 

arranging (2): 
 

( )1 11 21 0 1 11Prob MS R R S X α+ + − ≤ ≥                       (3) 

 
According to Hulsurkar et al. (1997) and Mohammed 

(2000), the above constraint can be converted to: 
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( )
1

1
1 11 21 0 111XMS R R S F α−+ + − ≤ −                    (4) 

 
where 

1

1
11(1 )XF α− − is the inverse of the cumulative distribution 

function evaluated at (1 - α11) for random variable 1X . 
The minimum storage constraint (1c) for the second time 

period contains two random events 1X  and 2X which ori- 
ginnate from the double recursive substitution of continuity 
equation (1b). The equivalent of this constraint at the second 
time period can then be expressed as: 

 
( ) ( )2 11 21 12 22 0 1 2

12

Prob MS R R R R S X X

        α

⎡ ⎤+ + + + − ≤ +⎣ ⎦
≥

    (5) 

 
The above constraint can then be replaced by: 

 
( ) ( )

( )
1 2

2 11 21 12 22 0

1
121X X

MS R R R R S

F α−
+

+ + + + −

≤ −
                   (6) 

 

where 
1 2

1
12(1 )X XF α−

+ − is the inverse of the cumulative distribu-
tion function of the sum of random events 1X  and 2X  
evaluated at (1 - α12). 

Subsequently, the minimum storage constraint (1c) for 
the T-th time period contains the inflow random events of all 
T time periods. Therefore, the deterministic equivalent of 
minimum storage constraint for the T-th time period can be 
written as follows: 

( ) ( )
1

1
1 2 0 ... _ 1

1

1
T

T

T i i X X T
i

MS R R S F α−
+

=

+ + − ≤ −∑            (7) 

 
where

1

1
... 1(1 )

TX X TF α−
+ + − is the inverse of the cumulative 

distribution function of the sum of random events X1, X2, …, 
XT evaluated at (1 - α1T). 

Flood control constraint (1d), drought control constraint 
(1e), and water supply constraint (1f), can be transformed to 
their deterministic equivalents for the T-th time period in a 
similar manner as follows: 
 

( ) ( )
1
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( )1
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Assume that iX and iD are independent random varia- 
bles that follow normal distribution with known means and 
standard deviations. Let E(Xi) and σ(Xi) denote the mean and 
standard deviation of random variable iX , while E(Di) and 
σ(Di) denote the mean and standard deviation of the random 
variable iD . If 

ij
Kα represents the value of a standard normal 

variable at which ( )
ij ijF Kα α= ，then the inverse of the cu- 

mulative distribution functions can be expressed as follows: 
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4

1
4( ) ( ) ( )

T TD T T TF E D K Dαα σ− = +                       (14) 
 

Therefore, the stochastic programming problem for reser-
voir operation as stated in (1) will be equivalent to the follow-
ing deterministic linear programming problem: 
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41 ( ) ( )
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3. Case Study 

The developed chance-constrained model is applied to a 
reservoir operation problem under uncertainty. The study 
reservoir system is shown in Figure 1, with the reliability lev-
els for different constraints in different seasons being assumed 
to be identical (i.e., αij = α). The unit costs di and ei for differ-
ent seasons are 8 and 4, respectively; and the reservoir capac-
ity is 5 million m3 (MCM). The seasonal discount rate is 2.5%. 
The other related parameters are listed in Table 1. 

4. Result Analysis 

In order to test the sensitivities of reliability level (α) and 
initial reservoir storage (S0) to the decisions of reservoir 
operation, as well as to examine the interactions between 
these two parameters, a set of 4 factorial design experiments 
are implemented based on the 22 factorial design. Table 2 lists 
the combinations of factor settings in the design. The devel-
oped chance-constrained programming model is then imple-
mented for each combination. 

The main effects and interactive effects are quantified 
based on the Yates’s Algorithm (Box et al., 1978). Table 3 lists 
the magnitudes of main and interactive effects of the 2 factors, 

where factors A and B represent reliability and initial reser- 
voir storage, respectively. It is indicated that the system 
reliability is the only critical factor that has the main effect on 
water supply to the water users. In comparison, the initial 
storage will not significantly affect the decision of water sup-
ply to the users. In terms of the impacts on water releases to 
the lower reach, the initial reservoir storage has significant 
main effect in winter and spring, but negligible effect in sum-
mer and autumn. These are due to fact that inflows in winter 
and spring are higher than those in summer and autumn. The 
interactive effects of reliability level and initial storage in 
winter and spring are close to the main effects of reliability 
level, indicating that the main contribution for this effect is 
the factor of initial storage. Besides, the main effect of system 
reliability is significant in autumn, and the negative effect 
means that increase of reliability will result in decrease of 
water release. 

In order to examine the complex interactions among wa-
ter release, initial reservoir storage and reliability level, a se-
ries of modeling implementations are conducted under a set of 
reliability and initial reservoir storage levels. Figure 2 shows 
the relationship between optimal water supply to the water 
users in different seasons under different reliability levels and 
initial reservoir storage conditions. It is found that the in-

 Table 1.  Parameters of Reservoir Operation (unit: million m3) 

Parameter Mean  Standard deviation  Parameter Mean  Standard deviation 

X1 3.0 0.4 D1 0.8 0.3 

X2 3.5 0.4 D2 1.5 0.3 
X3 2.0 0.4 D3 2.0 0.3 
X4 2.5 0.4 D4 1.0 0.3 

Parameter Value Parameter Value Parameter Value Parameter Value 

FC1 1.0 DC1 1.0 MS1 1.0 MR1 0.3 

FC2 0.8 DC2 1.4 MS2 1.0 MR2 0.3 
FC3 0.0 DC3 1.8 MS3 1.0 MR3 0.3 
FC4 0.5 DC4 1.2 MS4 1.0 MR4 0.3 

 
 

 Table 2.  Combinations of Factors in the 22 Factorial Design 

Set No. Reliability Level  Initial Storage (MCM)  Set No. Reliability Level Initial Storage (MCM)  

1 
2 

0.6  
0.88 

1.5  
1.5 

3 
4  

0.6 
0.88 

 4.5 
4.5 

 
 

 Table 3.  Estimated Effects on Water Supply and Release 

Factor R11 R12 R13 R14 R21 R22 R23 R24 

Average 
A 
B 
AB 

1.0145 
0.277 
0 
0 

1.7145 
0.277 
0 
0 

2.2145 
0.277 
0 
0 

1.2145 
0.277 
0 
0 

1.5355 
0.046 
2.471 
0.046 

1.4395 
-0.078 
0.529 
-0.046 

0.3 
0 
0 
0 

0.6375 
-0.337 
-0.001 
0.001 
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crease in system reliability will result in increase of water 
supply, while the change of initial reservoir storage will have 
negligible effects on water supply. The high and low water 
supplies in summer and winter correspond to the relevant 
demands in the two seasons. 

Figure 3 shows the relationship between water release to 
the lower reach in different seasons under different reliability 
levels and initial reservoir storage conditions. It is indicated 
that the system reliability will have negligible impacts on the 
water release to the lower reach during winter, spring and 
summer seasons; however, it has significant effects in autumn. 
This fact is also revealed in the results of the factorial design 
experiments. In addition, the variations in the initial reservoir 
storage conditions lead to significant changes of water re-
leases in winter and spring. Under high initial storage condi-
tions, water release in winter is higher than that in spring. 

Figure 4 shows the relationship between water release to 
the lower reach in different seasons and the initial reservoir 
storage under different reliability levels. It is indicated that 
system reliability will affect the water release in autumn. 
When the initial storage is less than 2.0 MCM, any of its 
variation will lead to significant effects in spring, but negligi-
ble impacts during winter, summer and autumn seasons. 
When the initial storage is greater than 2.0 MCM, the initial 
storage will have very significant effects in winter, but 

negligible impacts in spring, summer and autumn. These are 
also due to the fact that inflows, water demands, and flood 
and drought events vary among different seasons. 

5. Conclusions 

A methodology by integrating chance-constrained program-
ming and factorial design is proposed to account for 
uncertainties in reservoir operation and management. A reser-
voir system that is responsible for supplying water to various 
users and releasing regulated flows to the lower reach is pre-
sented to illustrate the proposed method, and the operation 
objective is to minimize the total system cost for releasing 
water to the users and the lower reach. The related uncertain 
variables include inflows and water demands in different sea-
sons in a year. The constraints include those of continuity, 
minimum release, minimum storage, flood and drought con-
trol, and water demand requirements under a variety of 
reliability levels. The impacts of system reliability and initial 
reservoir storage, as well as their interactions, are examined 
through a set of factorial design experiments, and the complex 
interrelationships among water releases, initial reservoir stor-
age, and reliability level are examined through implementing 
the developed chance-constrained model based on a variety of 
system conditions. The results indicate that reasonable and 
informative outcomes have been generated. In general, this 
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Figure 2.  Optimal water supply to users versus 
system reliability level under (a) S0 = 1.5 and (b) 
S0 = 4.5. 
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downstream versus system reliability level under 
(a) S0 = 1.5 and (b) S0 = 4.5. 
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Figure 4.  Optimal water release to the downstream 
versus initial reservoir storage under (a) α = 0.60 
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proposed approach offers an improved measure for reservoir 
operation and management under uncertainty by effectively 
relating the information quality of system variables to the 
reservoir operation decisions. 
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