

 42

04JEI00026
1726-2135/1684-8799

© 2004 ISEIS
www.iseis.org/jei

Journal of Environmental Informatics 3 (1) 42-50 (2004)

An Integrated Approach to Real-time Environmental Simulation and Visulization

B. Huang1*, D. Xiong2 and H. Li3

1Department of Geomatics Engineering, University of Calgary, AB T2N 1N4, Canada

 2Engineering Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
3Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China

ABSTRACT. This paper introduces a novel visualization approach that can effectively facilitate the analysis, control, and refinement
of dynamic environmental simulations on the World Wide Web. This approach overcomes drawbacks of current Internet Geographic
Information System (GIS) technologies by providing an effective and efficient mechanism for two-way and sustained communication
and synchronization between the visualization and the modeling processes. The critical aspect of this approach is the establishment of a
virtual environment on the Internet using the applet-servlet-socket architecture that supports real-time interactive and collaborative
visualization of an environmental modeling process. In this virtual environment, the model residing in the simulation application server
is fed with real-time rainfall data from a remote data server through a socket connection. The computational modeling and visualiza-
tion can take place simultaneously on the application server and the client sides. As modeling computations proceed on the server,
modeling results and outputs stream into the client side continuously. The client interface is updated with live 3D displays (not in the
sense of predefined 3D animations provided by AVI or dynamic GIF files). Meanwhile, these 3D graphics can act as a support for fur-
ther user interactions. A hydrological model, TOPMODEL, is implemented using the proposed web-based visualization environment to
demonstrate the applicability of the proposed approach in facilitating environmental modeling and simulation.

Keywords: Environmental simulation, internet, applet-servlet-socket, TOPMODEL, visualization, VRML

1. Introduction

People visualize by nature, and visualization has become
an integral part of scientific data modeling and analysis (Mar-
shall et al., 1990). In environmental planning and manage-
ment, using visualization tools as an aid to understand com-
plex environmental data has received a great deal of attention
(Rhyne et al., 1993). While static visualizations of environ-
mental phenomena are still valuable for the objectives of
many studies, there is an increasing demand for dynamic,
interactive visualization capabilities to facilitate the analysis
and understanding of complex environmental processes
(Burrough, 1998). In particular, there is a strong interest in
using advanced visualization techniques to involve public
interests in environmental decision making as visualizations
provide a powerful means through which environmental
scientists and the general public can effectively communicate
and collaborate.

Continuing advances in the technologies of computer
networking and interactive graphics (Singhal & Zyda, 1999;
Walsh & Bourges-Sevenier, 2001) make the dynamic, visual
exploration of environmental processes particularly attractive.
Interactive control and visualization, or process steering
which links visualization with computation, has been em-

 * Corresponding author: cvehb@nus.edu.sg

ployed to explore the virtual world created from environ-
mental models in a single user environment (Marshall et al.,
1990). However, making such an interactive visualization to a
larger group of end users is still an open challenge. The emer-
gence of the Internet as a fast and efficient information me-
dium offers some exciting new opportunities to address this
challenge. On the one hand, interactive simulation and
visualization on the Internet provide simultaneous access to
many users, and this access is on-line and in real-time. The
simulation and the visualization can be carried out either
through a live broadcast or through the interactive control by
the end user. On the other hand, not only environmental scien-
tists can take advantages of this capability to effectively
communicate their data, results, and understandings among
themselves, but the public also can use the Internet to appreci-
ate and evaluate the same information. While it is an appeal-
ing idea to make environmental models operational across the
Internet, the implementation of such a capability is a
non-trivial task. Major difficulties for Internet-based com-
bined environmental modeling and visualization include:

 Given the computational intensity required for environ-
mental modeling and visualization in general, computa-
tional resources must be carefully allocated in order to
achieve the optimal use of these resources. It is still a
constant struggle to determine whether an application
(e.g., a modeling procedure or the visual representation

B. Huang et al. / Journal of Environmental Informatics 3 (1) 42-50 (2004)

 43

of the modeling results) should be run on the client side
or on the server side.

 Environmental modeling and visualization involve mas-
sive amounts of data. If not effectively managed, ineffi-
cient data communications between the server and the
client can easily jam the network. Proper mechanisms
must be devised to effectively control and schedule
bi-directional communications and data exchanges during
the modeling and visualization process. For instance,
when modeling results are derived from the server side,
these results must be packaged and delivered in a speci-
fied time interval to minimize data volumes. At the same
time, information contained the data must be retained,
and a proper feeding rate to the client must be maintained
to make the process appear “alive”.

 Dynamic simulation and visualization require frequent
graphical updates on the screen of the client side. These
updates, if not correctly handled, would involve exces-
sive amounts of redundant data. To overcome this prob-
lem, graphical updates must be implemented incremen-
tally so that existing displays (e.g., a 3D visualization and
a chart) are only updated in places where changes occur
at each time interval. To do so, only part of the graphical
data is reloaded and redrawn.

 Synchronization among different tasks while simulation
and visualization occur concurrently across the network
is yet another challenge. To address this challenge, sys-
tem design and implementation must establish effecttive
ways for message exchange and task coordination among
various activities (e.g., user inputs, model calculation,
and graphical display).
Because of these difficulties, much visualization devel-

oped on the Internet is often limited to one-directional
communication between the server and the client. In this
one-directional communication, the server will respond to a
request from the client by providing a static scene to the client.
As such visualization is not truly interactive, end users will be
limited to accessing a set of predefined outputs. It is most
desirable, however, that the end users can actively interact
with the simulation process, control and steer this process so
that they will be able to explore different scenarios and derive
information to meet their own requirements. Nevertheless, the
implementation of high-level of user interactions and visua-
lization steering requires frequent two-way communications
between the client and the server. Existing Internet-based
visualization technologies such as Common Gateway Inter-
face (CGI) or Active Serve Page (ASP), in combination with
Virtual Reality Modeling Language (VRML), have shown
various limitations in dealing with process-based visualization
issues (Huang et al., 2001).

This paper introduces a real-time visualization approach
to environmental modeling and simulation. This approach
facilitates the establishment of a virtual environment on the
Internet that supports interactive and collaborative visualiza-
tions of dynamic environmental modeling processes. In this

virtual environment, the (application) server is supplied with
raw data in real-time. The computational modeling and
visualization can take place simultaneously on the server and
on the client sides. As modeling computations proceed on the
server, modeling results and outputs stream into the client side
continuously. The client interface is updated with live 3D
displays (not in the sense of predefined 3D animations pro-
vided by AVI or dynamic GIF files). Meanwhile, these 3D
graphics can act as a support for further user interactions.

The research takes a hydrological process model as an
example to demonstrate the implementation and effectiveness
of the proposed approach. This demonstration is based upon
the use of the TOPMODEL (TOPography based hydrological
MODEL) (Beven & Kirby, 1979). TOPMODEL is a well-
known hydrological model that is able to make computation-
ally efficient predictions of stream flows, which simulates
catchment response to rainfall input. Integrating the model
with the visualization environment as proposed by the
research, the predicted hydrological responses can be visual-
ized using 3D maps on the Web and the modeling process can
be effectively controlled by the end user.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the underlying visualization principles of our
approach, and how it can be used for a better understanding of
complex phenomena by implementing it in a highly interac-
tive computer environment on the Internet. Section 3 intro-
duces the communication and visualization techniques used in
this research. In section 4, a brief overview of TOPMODEL is
given. Section 5 presents an Internet implementation of the
TOPMODEL hydrological model with frequent communica-
tions between the client and the server. Section 6 describes the
performance test on the program developed. Finally section 7
draws some conclusions.

2. Interactive Simulation and Visualization

Data analysis and visualization play critical roles in the
environmental modeling process. Traditionally, data analysis
and visualization are performed as post-processing steps after
simulations have been completed. As shown in Figure 1, the
visualization part can be described well by a simple form of
the visualization model in Upson (1989), i.e. the visualization
pipeline model (see also Haber & McNabb, 1990). This model
views visualization as a pipeline in which the simulation data
is fed in, and successively filtered, mapped, and rendered to
create a displayable image.

The filter process accesses the raw data or simulation
data and operates on and modifies them in one or more ways
to derive data for subsequent visualizations. For example, a
soil saturation deficit matrix is selected from the simulation
result of TOPMODEL. The map process creates an abstract
geometrical representation of the data, e.g., a saturation
isoline map, and the rendering process takes the 3D geometry
from the map process and applies lighting, shading, and
projection to create an image.

B. Huang et al. / Journal of Environmental Informatics 3 (1) 42-50 (2004)

 44

Simulation

Data

filter map render Data

Later time…

Interaction

Images

Graphics

Figure 1. Post-processing.

The main limitation of this approach is that model errors
can be found only during post-processing. Also the degree of
user interaction is quite low.

Ideally a dynamic and interactive visualization process,
as shown in Figure 2, is established so that the modeler can
steer both the simulation and visualization processes as
computations proceed. Such a steering technique allows
modelers to monitor their environmental modeling programs
while viewing the results of the calculation graphically,
thereby facilitating the program debugging. On the other hand,
it also allows users to fully control model parameters to ob-
serve the model behavior through visual presentations, and
thus enhancing understanding of the modeling process.

Simulation

Data filter map render

Interaction

Images

Graphics

Figure 2. Interactive simulation and visualization.

Compared with the post-processing model, this model
provides a mechanism through which the user is able to con-
trol and manipulate the proceeding of the simulation and may
then alter the processing steps as required. This process is
continuous, dynamic and interactive (Hibbard, 1998; Johnson,
1999).

The above model is also amenable to incorporating
different web-based visualization options and strategies in
terms of filtering, mapping, and rendering tasks.

3. Bi-directional and Real-time Communications
and Web 3D-based Visualization

Traditionally, web-based visualizations are often per-
formed on either the server side or the client side, which re-
sults in a fat server or a fat client accordingly (Huang et al.,
1999). For environmental modeling and visualization, as fre-
quent communication between computation and visualization
is needed, we advocate a relatively balanced and synergic
client/server application, in which the client is dedicated to
visualizations, while the server is responsible for intensive
modeling computations, and the client and the server can
maintain a continuous communication until a modelling proc-
ess finishes. The hybrid approach exploiting both the client
and server sides has already been explored (e.g., Bender, 2000;
Huang et al., 2001), which provides greater flexibility for task
sharing between the client and the server and the enhanced
capability for implementing visually attractive interfaces.
While this approach alleviates the problems of the single side
method, it is still not ideal, as it cannot achieve bi-directional
and sustained communications between the client and the
server. In this regard, we explore an architecture which sup-
ports bi-directional communication and 3D visualization over
the Internet.

3.1. Bi-directional and Persistent Communication

Since the traditional approaches have their limitations for
applications in environmental simulation and visualization,
we become particularly interested in using a server technology,
i.e., servlets, to achieve bidirectional communications through
data streaming.

 Servlets are not new. A servlet is a generic server exten-
sion, a Java class that can be loaded dynamically to extend the
functionality of a web server. It can be thought of as a server
side applet because a servlet can extend the capabilities of a
server in the same way as an applet extends the capabilities of
a browser. A Java servlet runs inside a Java virtual machine
(JVM) on the server.

The applet connected with the Common Gateway Inter-
face (CGI) program is not suitable for intensive communica-
tions between the server and the client, as new communica-
tion channels must be established for each request and re-
sponse. The introduction of Java servlets and object serializa-
tion has given a second life to these traditional applet-server
communications techniques. Servlets replace slow-starting
CGI programs, which improves the performance of app-
let-server communication and make frequent applet-server
communications feasible. All these lend the applet-servlet
approach to dynamic modeling and visualization because effi-
cient bi-directional communications are essential for dynamic
modeling and visualization.

The applet and the servlet can interact in several ways,
including HTTP text, HTTP object, socket, and RMI (Hunter
& Crawford, 1998). In our case, we choose an HTTP object
because it is simple, intuitive, and standard. Also, it can be
immune from firewall blockage and browser security checks.

B. Huang et al. / Journal of Environmental Informatics 3 (1) 42-50 (2004)

 45

Obviously, other communication methods can be utilized as
well. For example, a socket connection can be established to
deliver data streams between the applet and the servlet that
may allow more efficient bi-directional, sustained com-
munications. The drawback however, is that decoding these
data streams may be time-consuming. More seriously, the
socket connection may fail for applets running behind
firewalls, as most firewalls disallow raw socket connections.

While the socket connection is not used in the cli-
ent-(application) server communication for complying with
the generic HTTP protocol, it is used for the real-time
communication between a data server that stores the data and
the (simulation application) server because such a com-
munication does not need to use the Internet but just the
normal local area network.

3.2. Web 3D-based Visualization

After the applet-servlet-socket architecture has been
introduced, another major choice to make is on the presenta-
tion of 3D graphics using Web3D (Walsh & Bourges-Sevenier,
2001).

Web3D describes any programming or descriptive lan-
guage that can be used to deliver interactive 3D objects and
worlds across the Internet. These include open languages such
as VRML, Java3D, X3D and any proprietary languages that
have been developed for the same purpose. VRML and
Java3D are widely used in the industry while X3D is the latest
generation Web 3D technology that possesses great potential
and flexibility.

Until recently, VRML has been the main standard for
representing 3D content on the Web. It provides a versatile
platform for a variety of applications that uses 3D as a central
metaphor or interface. Major strengths of VRML include its
tight integration with a variety of other Web technologies and
its ease in incorporating the benefits of those technologies
(e.g., its flexibility with various graphic, audio, and video
formats; capability with scripting languages; and compatibil-
ity with different network protocols). Another powerful fea-
ture of VRML is its easy extensibility that allows new node
types and capabilities to be added to the base language.

The Web technologies evolve quickly nowadays, and
XML enjoys increasing popularity. XML and its extensions
that support the description of geo-spatial data (e.g., GML)
and query languages have been employed to describe various
types of data in a number of application domains. The virtual
reality (VR) community has, in fact, recognized the growing
success of XML. In response, the Web3D Consortium, in con-
cert with the W3C (World Wide Web Consortium), has de-
fined an XML-compliant 3D standard for the Web, X3D
("Extensible 3D"). X3D extends the capabilities of VRML
and provides a means to express the geometry and behavior of
VRML using XML. It is now possible to translate a VRML
file into a X3D file and each VRML node has a corresponding
XML entity.

Nevertheless, the essence of VRML still remains. The old
VRML syntax does not go away though it is encapsulated by

XML. A VRML-based virtual environment can, therefore, be
easily transplanted to the new X3D environment once the
proposed standard is approved. In addition, VRML itself is
continually evolving and is still the core of Web3D. Also, the
VRML plug-ins are still widely used at present for 3D
visualization on the Web. With all of these considerations,
VRML is chosen for the presentation of 3D graphics in the
current study. Java 3D is not selected because the software
built upon it is relatively slow.

There are two different ways to bring dynamic contents
into the VRML world (Figure 3). One is to implement
JavaScript in the Script node, and the other is to control the
VRML contents in a Java program using the External Author-
ing Interface (EAI). JavaScript, as included in a node of the
VRML file, allows a good portability over the Internet. By
using the Script node, the VRML scene is acting as the
front-end that invokes user interaction and conveys 3D spatial
information to background processes running in Java. How-
ever, there are also good reasons for the ability to control the
scene content from outside the VRML browser, typically from
within a web browser because this is an environment more
users are familiar with. With this ability, a very flexible user
interface can be created through an integration of VRML
within a wider multimedia design and extended functionality,
which provide capabilities for interactions and communica-
tions well beyond what the basic scene navigation controls
can facilitate with VRML browsers (Brutzman, 1998). The
EAI connects an applet with a VRML plug-in on the same
page using browser-specific plug-in activation framework.
Essentially, the applet has access to any nodes in the VRML
plug-in that has been defined with the keyword “DEF”. Java
from the applet can control any such nodes by sending them
events that match event field types or reading any of the event
fields’ or event Outs’ values. Since environmental simulations
involve intensive computations of environmental models, and
graphical displays, both inside VRML (e.g., 3D scenes) and
outside VRML (e.g., charts), are required, a powerful user-
control interface, utilizing the EAI approach to link and
control these components, will provide a suitable solution.

As a result, the integrated VRML applet-servlet-socket
architecture as shown in Figure 4 is adopted. In this architec-
ture, the real-time data is fed into the (simulation) application
server through a socket connection. The main computation of
environmental modeling is undertaken by the application
server, while 3D graphics rendering and updating, as well as
synchronous updating of other graphic windows (e.g., a chart
window) are performed by the client. The applet and the serv-
let communicate for a given time interval through an HTTP
object, which is not of a large size.

Take the rainfall-runoff modeling and visualization as an
example. Assuming that the data server is able to receive the
rainfall data in real-time, and it continuously pushes the data
to the application server. This server performs model
computations such as calculations of soil saturation and flow
generation, while on the client side, once the Java applet re-
ceives the computation results from the server, it will interact
with the VRML scene of the watershed through the EAI and

B. Huang et al. / Journal of Environmental Informatics 3 (1) 42-50 (2004)

 46

 HTML
file

Java applet

Script node

Java scripting

VRML scene graph

EAI

Figure 3. Java/VRML interaction.

Simulated data Filter Map Render image

3D
Visualization

VRML
scene graph

Simulation Web server
Timestep

Result
datastream

Servlet

Client
Application

Server

Java Applet
Real-time
field data

EAI

Control Panel

Socket
Sustained

communication

Data server

Real-time data

Figure 4. The applet-servlet-socket architecture for integrated simulation and visualization.

B. Huang et al. / Journal of Environmental Informatics 3 (1) 42-50 (2004)

 47

perform various operations on the scene, e.g., update the sur-
face color. When this finishes, a signal will be sent to the
server side, which then proceeds to the calculation in the next
step. Such a process continues till the last step in the model. It
is noted here that the real-time rainfall data pushing speed
from the data server to the application server is generally
faster than the applet-servlet communication. Thus, the latter
does not need to worry about the real-time data pushing.

4. The Rainfall-Runoff Model: TOPMODEL

TOPMODEL (Beven & Kirby, 1979) is a physically
based watershed model that simulates the variable-source-area
concept of stream flow generation. This model requires Digi-
tal Elevation Model (DEM) data and a sequence of rainfall
and potential evapotranspiration data. It predicts the pattern of
soil water deficit Si, as well as the resulting stream discharges.
TOPMODEL has become increasingly popular as it provides
computationally efficient prediction of distributed hydrologi-
cal responses with a relatively simple framework using DEM.

This model is built upon the following equations:
1 () () (log log)i i iS S X X T T
m

− = − + − (1)

 A B C
and

1 1 1log(), , , exp log()
tan

i
i i i iA A A

i

X X X S S T T
A A A

α
β

⎡ ⎤= = = = ⎢ ⎥⎣ ⎦∫ ∫ ∫

where iα is the local flow accumulation quantity, iβ is the
local slope angle (tanβi is an approximation of the local
hydraulic gradient), iT is the local soil transmissivity, T is
the mean catchment transmissivity, S is the mean catchment
soil water deficit, iX is the local value of the topographic
index, X is the mean catchment value of the topographic
index, and m is a parameter dependent on the rate of
change in hydraulic conductivity with depth. Equation (1)
consists of three parts: a soil water-deficit distribution func-
tion, A, a topographic distribution function, B, and a
soil-distribution function, C. If the spatial variation in soil
properties is ignored, then the soil water-deficit distribution
can be expressed as a function of the topographic index. The
negative value of Si indicates that the area is saturated, and the
saturated overland flow is generated while the positive value
of Si indicates the area is unsaturated.

Over the past two decades, TOPMODEL concepts have
been implemented with several computer languages like For-
tran and Basic on different computer platforms (see e.g.,
Beven, 1997). The developed tools have been widely used in
the application of hydrological modeling in numerous catch-
ments in the world.

While TOPMODEL has been implemented in different
ways, its prototype on the Internet has rarely been done so far.
With the web-based modeling and visualization approach
proposed in the previous section, the current research aims to
demonstrate a different way for interactive and dynamic
environmental modeling and visualization on the Internet.

5. Implementation of On-line
TOPMODEL Simulation

The implementation of TOPMODEL mainly consists of
two stages. The first stage is to derive α and tanβ from the
elevation map of the watershed, which results in a topog-
raphic index map. The second stage integrates all hydrological
parameters and rainfall records to predicate stream flows. The
topographic index map is first derived by ArcView, a
commercial-off-the-shelf (COTS) desktop GIS software pack-
age. The topographic index map is then read by the Java app-
let, which begins the simulation process.

Outputs of the TOPMODEL are designed to include
different graphical displays, such as a hydrograph showing a
curve of predicted stream flows or animation of soil saturation
status at each time step. These outputs are intended for visual
exploration of the modeling process and are generated by a
Java applet at the client side.

To provide a realistic testing scenario, we use the datasets
of the Slapton Wood catchment, Devon, UK. This catchment
covers 0.94 km2, 60% of which lies above the 90 m contour.
The soils throughout the catchment are mainly freely draining
acid brown soils with a clay-loam texture. These lend the
catchment to the application of TOPMODEL.

The prototype interface is shown in Figure 5. The lower
right window offers a control panel for users to interactively
enter parameter values. After all the parameters are defined,
the simulation process begins when the “simulation” button is
clicked.

Firstly, a signal is sent to the real-time data server
through the application server and the socket. Then the
real-time data server starts to push the data to the application
server till the data at all modeling steps are delivered.

Meanwhile, the Java-based client displays the 3D VRML
model of the catchment draped by the topographic index map
in the web browser (the left window). Then it sends the time
step number to the servlet, which, after receiving the time step
number, generates the saturated contributing area and the pre-
dicted stream flow at that time step with the data supplied
from the real-time data server. The calculated result, encoded
as an HTTP object, is then sent back to the Java client, which
updates the 3D VRML model with the new saturated
contributing area in the red color and draws the curve of pre-
dicted stream flows at the upper right window. This is
achieved by updating a color node in the VRML model by a
set of new color values as follows:

colorIn.setValue(update_color);

colorIn represents the color surface of the watershed. Upon
completion of the color update (i.e. saturated cells are high-
lighted; the stream flow curve will also be updated). As shown
in the upper-right part of Figure 5, the predicated stream flows
move one step forward. As the background information of
observed stream flows, and rainfall records are provided, the

B. Huang et al. / Journal of Environmental Informatics 3 (1) 42-50 (2004)

 48

difference between the predicted flow and the observed data
can be easily compared. The displays of the soil saturation
status and the predicated stream flows are synchronized using
threads in Java programming. Such a process continues until
the final modeling step is reached. It is worth noting that for
the map generated on the client screen, only the portion that
has been changed between two time steps will be updated. For
instance, in the case of the saturated contributing area display,
not the entire image will be sent from the server to the client
for each time step. Instead only incremental changes on part
will be sent and used as updates to refresh the client screen.
This practice significantly reduces network traffic and in-
creases computational performance.

With a proper screen-refreshing rate, continuous updates
of the saturation map create an animation of the modeling
process. The animation, in conjunction with dynamic stream
flow drawing, provides a vivid graphical depiction of the
hydrological process in the catchment. A user can also interac-
tively adjust the parameters in the control window and view
the corresponding changes of soil saturation status and pre-
dicted stream flows. With these capabilities, a user can easily
investigate different hydrological responses while scenarios
(e.g., rainfalls, terrain features, or soil conditions) are changed.
Also the user might be able to fine-tune the modeling process
so that the user’s knowledge and judgement can be incorpo-
rated into the modeling results. For example, the value of
SRinit (initial value of root zone deficit) is very sensitive to
the prediction result since it determines the amount of satu-
rated deficit that is essential to runoff generation in the TOP-
MODEL. If little changes take place on the value of SRinit,
the observed difference between the observed and predicated
stream flow curves can be much bigger. Through visual
comparison of the differences between the observed and pre-
dicted stream flow curves, the user will be able to adjust the
SRinit until the simulation results meet the user’s satisfaction.

The visualization procedure even proves valuable for
debugging the TOPMODEL. Through the comparison of
predicated stream flow curves and the observed stream flows,
we were able to identify and correct some of the program
errors. Besides the ability for model parameter adjustment, a
user can also control the simulation start and end steps
through the timestep sliding bars and pause the simulation, if
necessary. Furthermore, the user also has a degree of the con-
trol of the visualization process during a simulation. He/she
can change visualization viewpoints, zoom in/out, pan, rotate,
and tilt the 3D model. By doing so, the user will be able to
view the modeling results in the way he or she prefers. More
importantly, because of the use of the simulation and
visualization approach as proposed by the current research,
user interactions with the model simulation and with the
visualization do not significantly impact the performance of
the simulation and visualization process, which is critical in a
web-based environment.

6. Performance Analysis

Performance testing has been undertaken on a PC install-

ing Windows XP with Internet Explorer. The application
server, the Jakarta server and the Tomcat servlet engine run on
a Windows 2000 PC server with 1200 MHz CPU and 524 M
RAM. The data server resides with a normal PC running Win-
dows XP. The testing procedure was designed to mimic how
the service would be used across the web. It differs from the
procedure devised by Morrison and Purves (2002) in that we
need to record the response time for a modeling process with
a number of steps rather than one request-one result.

The procedure is that a client program submits a ‘si-
mulation’ request to the application server, which computes
streamflow and saturated cell numbers and then sends these to
the client side. The client side updates the displays. Upon
completion, the simulation proceeds to the next timestep.
Such a process continues till the simulation finishes (there are
in total 950 steps). The program was tested with different
number of threads to simulate the running by single or multi-
ple users. The client program can run in two ways—in sin-
gle-thread mode, sending many requests in series, or in
multi-thread mode, where many requests are sent in parallel.
The second mode is more typical of the web, where many
users may log on from many different machines, all at the
same time. The testing program has been run multiple times
and the response times logged. A typical distribution of re-
sponse times is shown in Figure 6. The x-axis represents the
response time for the client and the application server to finish
10 steps simulation and visualization, while the y-axis repre-
sents the percentage of performed steps (i.e. the steps that
have results returned to the client) at a specific response time.

It is noted that we do not intend to make the visualization
process very fast as we need to make sure that the display
update at each modeling step be observed clearly by the user.
Under this condition, the most rapid response times occur, as
we would expect, are when the server is responding to a sin-
gle thread (analogous to a single user accessing the service)
where it achieves an average response time of 3.7s/step. As
the number of threads increases (equivalent to concurrent
users), there is some degradation in performance due to more
consumption of computing resources. With 8 threads, the
average response time is 7.5s/step.

7. Conclusions

This paper introduces an Internet-based approach for
real-time environmental modeling and simulation using a
VRML 3D-based applet-servlet-socket technique. This ap-
proach overcomes drawbacks of current Internet GIS te-
chnologies by providing an effective and efficient mechanism
for two-way and sustained communications and synchroni-
zation between the visualization and the modeling processes.
The interactions through simulation steering and visualization
control enables users to experiment with alternative model
computations, fine-tune model results, and visually observe
the model behavior through dynamic 3D graphics. The critical
aspects of the current approach are its ability to provide
computational and communicational performances that are
required for dynamic simulation and visualization in a

B. Huang et al. / Journal of Environmental Informatics 3 (1) 42-50 (2004)

 49

Figure 5. Steered simulation and 3D visualization.

Performanc Test under Single User and
Multi-User Modes

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Response time (seconds/10 steps)

Pe
rc

en
ta

ge
 o

f p
er

fo
rm

ed
 st

ep
s

1 thread

2 threads

4 threads

8 threads

1 thread
2 thread
4 thread
8 thread

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Response times (second/10setps)

20%

18%

16%

14%

12%

10%

8%

6%

4%

2%

0%

Pe
rc

en
ta

ge
 o

f p
er

fo
rm

ed
 s

te
ps

Figure 6. Distribution of server response times under different user modes.

B. Huang et al. / Journal of Environmental Informatics 3 (1) 42-50 (2004)

 50

web-based environment, and the ability to take in real-time
data.

The implementation of TOPMODEL on the Internet has
demonstrated the feasibility of the proposed modeling and
visualization approach. It indicates that with the current ap-
proach, advanced environmental simulations and visualiza-
tions can be effectively carried out in a web-based environ-
ment. The ability to simultaneously simulate and visualize
environmental processes on the Internet is particularly appea-
ling because it can reach an audience that cannot be reached
with other means. At the same time, the proposed approach
provides similar capabilities that are available in a Desktop
environment. Users are able to effectively steer the simulation
calculations and exercise controls of the visualization process.

It has been frequently demonstrated that dynamic simula-
tion and visualization can provide an elegant and powerful
solution to the understanding of the environmental processes
for both the environmental scientists and the public. From the
perspective of environmental scientists, it helps to assess the
evaluation of the convergence or divergence between simu-
lated and observed processes in order to identify issues that
are to be studied in future investigations or to formulate
strategies in order to improve model procedures. From the
perspective of the public, it helps them understand many of
the environmental problems, encourage their participation in
the environmental decision making process, and improve their
ability to make the right decisions on many of the challenging
environmental issues. The current approach contributes to
environmental modeling and visualization in the sense that it
allows broader collaborations and communications among
environmental scientists and between environmental scientists
and the public.

In conclusion, the implementation of the TOPMODEL
on the Internet illustrates that the approach developed in the
current research is effective and useful. It is hoped that the
implementation techniques described in this paper can provide
a basis for the implementation of other interactive and dy-
namic processes.

References

Bender, M., Klein, R., Disch, A. and Ebert, A. (2000). A functional
framework for web-based information visualization systems.
IEEE Trans. Vis. Comput. Graphics, 6(1), 8-23.

Beven, K.J. (1997). TOPMODEL User Notes (Windows Version),
Centre for Research on Environmental Systems and Statistics,
Lancaster University, UK.

Beven, K.J. and Kirby, M.J. (1979). A physically based variable
contributing area model of basin hydrology. Hydrol. Sci. Bull.,
24(1), 43-69.

Brutzman, D. (1998). Virtual reality modeling language & Java.
Commun. ACM, 41(6), 57-64.

Burrough, P.A. (1998). Dynamic modeling and geocomputation, in P.
Longley, S. Brooks, R. McDonnell and B. MacMillan (Eds.),
Geocomputation, a Primer, John Wiley & Sons, pp. 165-191.

Haber, R.B. and McNabb, D.A. (1990). Visualization idioms: A
conceptual model for scientific visualization systems, in B.
Shriver, G.M. Nielson and L.J. Rosenblum (Eds.), Visualization
in Scientific Computing, IEEE Computer Society Press, pp.
74-93.

Hibbard, W. (1998). VisAD: Connecting people to computations and
people to people. Comput. Graphics, 32(3), 10-12.

Huang, B., Jiang, B. and Lin, H. (2001). An integration of GIS, vir-
tual reality and the internet for spatial data exploration. Int. J.
Geogr. Inf. Sci., 15(5), 439-456.

Hunter, J. and Crawford, W. (1998). Java Servlet Programming,
O'Reilly & Associates, Inc. Sebastopol, CA, USA.

Johnson, C., Parker, S., Hansen, C., Kindlmann, G. and Livnat, Y.
(1999). Interactive simulation and visualization. IEEE Comput.,
32(12), 59-65.

Marshall, R., Kempf, J. and Dyer, S. (1990). Visualization methods
and simulation steering for a 3D turbulence model of Lake Erie.
Comput. Graphics, 24(2), 89-97.

Morrison, K.W. and Purves, R.S. (2002). Customizable landscape
visualizations. Implementation, application and testing of a
web-based tool. Comput., Environ. Urban Syst., 26(2/3),
163-183.

Rhyne, T.M., Bolstad, M., Rheingans, P., Petterson, L. and
Shackelford, W. (1993). Visualizing environmental data at the
EPA. IEEE Comput. Graphics Appl., 13(2), 34-38.

Singhal, S. and Zyda, M. (1999). Networked Virtual Environ-
ments-Design and Implementation, ACM Press.

Upson, C., Faulhaber, J., Kamins, D., Laidlaw, D., Schlegel, D.,
Vroom, J., Gurwitz, R. and Dam, A. (1989). The application
visualization system: A computational environment for scientific
visualization. IEEE Comput. Graphics Appl., 9(4), 30-42.

Walsh, A.E. and Bourges-Sevenier, M. (2001). Core Web3D, Pren-
tice-Hall, NJ, USA.

