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ABSTRACT.  The formulation and the evaluation of environmental policy depend upon a general class of latent variable models 
known as multivariate receptor models. Estimation of the number of major pollution sources, the source composition profiles and the 
source contributions are the main interests in multivariate receptor modelling. Many different approaches have been proposed both 
when the number of sources is unknown (explorative factorial analysis) and when the number and the type of sources are known 
(regression models). The objective of this work is to propose a flexible approach to the multivariate receptor models that incorporates 
the extra variability due to the spatial dependence. The method is applied to Lombardia air pollution data. 
 
Keywords: Covariance modelling, environmental data, latent variable models, multivariate receptor models, spatio-temporal modelling 
 

 
 

1. Introduction  

In the past few years interest in air quality monitoring has 
increased, specifically pertaining to the identification of pollu-
tion sources and their information needed to implement air 
pollution control programs. Since observing the quantity of 
various pollutants emitted from all potential pollution sources 
is virtually impossible, receptor models are used to analyze 
concentrations of pollutants or particles measured over time in 
order to gain insight concerning the unobserved pollution 
sources. Multivariate receptor modeling aims to identify the 
pollution sources and assess the amounts of pollution by 
resolving the measured mixture of chemical species into the 
contributions from the individual source types. The basic 
physical model comes from the laws of chemistry. The num-
ber of sources is the first problem we encounter. When the 
number and the composition of pollution sources are un-
known, factor analytic approaches have been employed in 
order to identify pollution sources. As in the factor analysis 
models, the choice of the number of pollution sources (factors) 
used in receptor models is crucial. 

Generally, the number of sources is chosen using one of 
many methods (often ad- hoc methods) suggested in the litera-
ture. Park, Henry and Spiegelman (1999) provide a review 
with discussion of several of these methods. However, these 
methods often are not satisfying and in many papers the num-
ber of pollution sources is fixed on the basis of previous stud-
ies and/or specific assumptions made by the researcher. Once 
a model with k sources has been fitted, interest often lies in 
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describing the composition of each pollution source and the 
amount of pollution emitted from each source. Such informa-
tion is of great value when formulating and evaluating air 
quality policy. 

To make sound decisions from the data, it is necessary to 
make inferences about the fitted model; however statistical 
tools for such data have not received much attention in the 
literature. Pollution data collected over time and/or space 
often exhibit dependence which needs to be accounted for in 
the procedures for inference on model parameters. 

The objective of this paper is to present a flexible ap-
proach to multivariate receptor models for incorporating the 
spatial dependence exhibited by the data and then show the 
usefulness of the procedure using air pollution data from 
Lombardia area. 

The paper is organized as follow: in section 2 we restate 
the model from a statistical point of view, section 3 contains 
the methodological issues related to spatial covariance estima-
tion and in section 4 we present the application of the pro-
posed model to the air pollution data. 

2. A flexible multivariate receptor model 

Let p be the number of pollutants and k be the number of 
sources. Based on the chemical mass balance equation and 
assuming that the relative amounts of the pollutants are 
approximately the same traveling from sources to receptor, a 
multivariate receptor model can be written as follow (Park et 
al., 2002): 

 

1

k

t j tj t            
j

y f e                   t 1, ..., M
=

= Λ + =∑                   (1) 
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where 1( , ..., )t t tpy y   y=  is the t-th observation at the receptor, 
1( , ..., )j j jp  Λ = Λ Λ  is the j-th source composition profile 

composed of the portion of each pollutant in the emission 
from the j-th source at time t and 1( , ..., )t t tpe e   e= is the 
measurement error in the t-th observation. 

In vector form, model (1) can be written as: 
 

ft t ty e= +Λ                                     (2) 
 
where 1( , ..., )t t tkf   f=f  and Λ  is a p × k non-negative 
source composition matrix and its columns are the source 
composition profiles. 

From a statistical perspective, model (2) can be viewed 
as a latent variable model (Bartholomew and Knot, 1999), in 
particular as a factor analysis model where y  is a set of p 
variables that can be directly observed, f is a set of k latent 
variables or factors (unobservable), Λ is the unknown p × k 
factor loading and k is the unknown number of factors. 

Two different approaches have been used in the literature 
depending on the knowledge of the number and the nature of 
the pollution sources. 

When the number and nature of the pollution sources are 
known (in this case this means that Λ is known), the pollution 
source contributions can be estimated using regression or 
measurement error models. Conversely when some of the 
elements of the source composition matrix Λ are not known, 
the estimates of the pollution sources contributions can be 
obtained using linear factor analysis models. 

Much of the multivariate receptor modeling studies in the 
literature use exploratory factor analytic techniques to identify 
the number of pollution sources, the pollution source 
compositions and the source contributions. However, this goal 
cannot be achieved without additional assumptions on the 
model. The unknown number of sources (factors) k, is the first 
problem because Λ and ft depend on k in the model (2). Sec-
ondly, the parameters in the model (2) are not uniquely de-
fined, even under the assumption that k is known. This means 
that there may be other parameterizations that produce the 
same data (rotational indeterminacy of factors plays here a 
major role).This is called nonidentifiability in latent variable 
models and additional restrictions on the parameters are re-
quired to remove it. Park et al. (2001) discussed a wide range 
of identifiability conditions for multivariate receptor models 
when the number of sources k is assumed to be known. In a 
receptor modelling feasibility study Javitz, Watson, Guertin 
and Muller (1988) made several recommendations for future 
developments in receptor modeling. They noted the non- 
unique nature of exploratory factor analysis fit of the multi- 
variate receptor model (2) when matrix Λ is unknown, and 
they also noted that it is often impossible to obtain complete 
and accurate source composition information necessary to fit 
a chemical mass balance model using regression. These 
authors noted the need for future development of a physically 
meaningful hybrid model which could be used with only 
partial source composition information and pointed out the 

importance of estimates of uncertainties associated with the 
model which are necessary for inference. The use of a flexible 
latent variable model allows the researcher to incorporate 
physical constraints, past data or other subject matter know- 
ledge in the model and guarantees valid model fits using only 
limited information about the relationship between the ob- 
served ambient species and the pollution sources. 

The main difference between the use of multivariate 
receptor models in the literature and the use of linear factor 
analysis models is that the observations in a pollution data set 
are rarely if ever independent. Multivariate receptor models, 
in fact, are used to model data that exhibit temporal and/or 
spatial dependence. Several potential hazards arise when fac-
tor analysis ignores dependence structure, most of them re-
lated to invalidity of inferential techniques. 

3. Spatial covariance estimation 

The hazard of ignoring temporal and spatial dependence 
is implicitly assumed in almost every study involving receptor 
modelling. One exception was given by Park et al. (2001) 
who incorporated temporal dependence structure directly into 
hierarchical model and then estimated the model parameters 
using Markov Chain Monte Carlo methods. 

Spatial dependence can be incorporated in the model 
finding an appropriate estimate of the spatial covariance ma-
trix that take into account the spatial structure of the data. 

In this paper we account for dependence structure using 
the method proposed by Nott and Dunsmuir (1998) for 
estimating non stationary spatial covariance structure from 
space time data. The methods are computationally attractive 
and can be extended to the assessment of covariance for 
multivariate processes. 

Departing from the estimated spatial covariance structure, 
we can use the classical multivariate receptor/latent variable 
model, which can be fit using existing software package, that 
yield a unique model fit based on only partial source profile 
information. 

An advantage of our approach is that it requires no 
assumption about distributional form and prior distributions 
for parameters. 

We must introduce some additional notation in order to 
formulate the general problem of spatial covariance estima-
tion for multivariate space-time data. 
 
Let ( ){ }2, , ,Y Y s  t s t += ∈ℜ ∈ℜ                       (3) 
 
be a multivariate spatio-temporal process with 
 

( ) ( )1, ( , ), ..., ( , )
TqY s  t Y s  t   Y s  t=                                  (4) 

 
We assume that Y can be observed at a collection of sites 

{ }1, ..., nI s   s= and for a collection of times { }1, ..., .MT t   t=  
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Write 
 

( ) ( ) ( ) ( )( )1 1
1 1,, , ..., , , ..., , ..., ,

Tq q
i i n i i n iY Y s  t   Y s  t   Y s  t   Y s  t=  

 
for the vector of the spatial measurements at time ti, and write 
yi for an observed realization of Yi. If Y is temporally ergodic 
then we can define the q × q matrix valued spatial covariance 
function of Y as: 
 

( ) ( ) ( )( )
,

, Cov , , ,l j
Y l i j q

R s  u Y s  t Y u  t
≤ ≤

⎡ ⎤= ⎣ ⎦              (5) 

 
and we can estimate spatial covariance between pairs of moni-
tored sites by averaging over time. 

In this paper, following the approach suggested by Nott 
and Dunsmuir (1998), we estimate site means by averaging 
over time. In particular we write y  for the spatial mean 
vector obtained in this way: 
 

1

1 M

i
i

y y
M =

= ∑  

 
with spatial trend estimated by site means, a spatial covari-
ance matrix Γ can be estimated as: 
 

( )( )
1

1 M

i i
i

y y y y
M =

= − −∑Γ T            (6) 

 
If Γ is partitioned into nxn blocks of size qxq, each block 

can be interpreted as an empirical spatial covariance or 
cross-covariance matrix for the components of Y at the moni-
tored sites. 

Given an estimate of Γ it is important in many spatial 
modeling problem to estimate valid (non-negative definite) 
covariance function of Y based on the information in Γ. 

Following the method suggested by Nott and Dunsmuir 
(1998), one way of estimating a valid non-negative definite 
spatial covariance function from Γ is by reproducing Γ at 
monitored sites and then describing conditional behaviour 
given monitoring sites values by a stationary process or 
collection of a stationary processes. 

To describe the idea of Nott and Dunsmuir more pre-
cisely, we need some more notations. Let ( ){ }2;W s  s ∈ℜ be 
a multivariate zero mean, stationary Gaussian process with q 
components, ( ) ( ) ( )( )1 , ...,

TqW s W s   W s= , with covariance 
function R(h). Let W denote the vector: 
 

( ) ( ) ( ) ( )( )1 1
1 1, ..., , , ...,

Tq q
n nW s   W s  W s   W s=W  

 
and write C for the covariance matrix of W. 

Also write the nq q× cross-covariance matrix between 

W and W(s) as 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1 1 1
1

1

Cov , ,..., , ,...,
( )

Cov , ,..., ,

T

n

q q q q
n

W s W s W s W s
c s

W s W s W s W s

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

 
If we observe values of the process at the monitored sites, 

W = w say, then for an arbitrary collection of sites we can 
write down the joint distribution of W at these sites. These are 
the finite dimensional distributions of a random field which 
describes the conditional behaviour of W(·) given W = w, and 
such a random field has a representation: 
 

( ) ( )1Tc s C w sδ− +                                 (7) 
 
where δ(s) is a zero mean Gaussian process with covariance 
function: 
 

( ) ( ) ( ) ( )1, TR s  u R u s c s C c uδ
−= − −  

 
One simple way of constructing a valid non-negative 

definite covariance function which reproduces the empirical 
spatial covariance matrix Γ at the monitored sites is to replace 
w in the above representation by a random vector W* which 
has zero mean and the covariance matrix Γ independent of 
δ(s). 

Intuitively, we are constructing a process with the covari-
ance matrix Γ at the monitored sites but with the conditional 
distribution given values at monitored sites the same as those 
of the stationary random field W(s). 

It must be emphasized that the covariance function of 
W(s) is not the model used for the unconditional covariance 
but is merely a part of a construction to obtain valid, 
non-negative definite non-stationary spatial covariance func-
tion model for Y: 
 

( ) ( )( )
( ) ( ) ( ) ( )1 1

Cov , , ,
T

Y s  t Y u  t

     R u s c s C C C c u− −= − − Γ −
            (8) 

 
This covariance function reproduces Γ (that is, evaluating 

(8) at (s, u) = (si, sj) gives Γij) since c(si) is simply the i-th col-
umn of C. Hence one simple way of constructing a non- 
negative definite estimate of spatial covariance is to fit a 
stationary model to Γ and to then compute (8) with R(u - s), C, 
c(s) and c(u) evaluated according to the fitted stationary 
model. 

4. Analysis of Milano-Bergamo air pollution data 

We apply the model to air pollution data in the Milano- 
Bergamo districts. In particular we consider the daily average 
of CO, NOX, NO2 and SO2 obtained from 23 monitoring sites 
during May - June 2000 (Figure 1). 
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Figure 1. Geographic map of the Lombardia Region. 

 
The monitoring sites are: Zavattari, Verziere, Limito, 

Melegnano, Corsico, Pero, Legnano S. Magno, Carate 
Brianza, Vimercate, Arese, Settimo, S.Giuliano, Cormano1, 
Magenta, Ponte S. Pietro Nembro, Seriate Treviglio, Ciserano, 
San Giorgio, Costa Volpino, Garibaldi, Goisis (Figure 2). 

The goal of the analysis is to identify major sources of 
the pollutant variables. Here, the 23 monitoring sites play the 
role of the variables in our basic multivariate receptor model. 

The source profile, consisting of the relative amount of 
pollutant that are conveyed to the 23 monitoring sites in this 
case represents the spatial pattern underlying CO, NOX, NO2 

and SO2 concentration from each source (Figure 3). 
The underlying assumptions for this approach are: 
1) there are few underlying spatial patterns and they do 

not vary over time; 
2) the environmental factors such as wind do not interact 

with Λ, the overall spatial wind flow pattern (on which the 
spatial source pattern depend) are approximately constant. 

After trend removal (Tables 1 and 2) and missing data 
reconstruction, the first step of the analysis was the estimation 
of the spatial covariance matrix. 

 
Table 1. Estimated Variogram Parameters 

 Nugget Sill Range 

CO 0.051 0.129 0.12 
NO 8.4 42.55 34.15 
NOx  9.05 42.90 39.60 
SO2  0 2670 104 

 

Table 2. Estimated Trend Surface Parameters 

 β0 β1 β2 β3 β4 β5 

CO -9901.00 193.9 333.00 14.00 47.00 26.00
NO -89031.00 427.7 222.7 66.00 125.00 30.00
NOx -23813.00 342.00 841.00 4.00 9.00 7.00 
SO2 -66413.00 49.2.00 248.20 10.00 4.00 24.00

 

The use of the method described above requires calculat-
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Figure 2. Monitoring sites in Milano Bergamo district. 
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e empirical spatial covariance structure. Figure 4 shows 
mpirical and the fitted variogram using the exponential 
l. 
eparting from the estimated spatial covariance structure 
ve applied the multivariate receptor models with k = 3 

es (factors) for each variable assuming the 1st of June as 
nce day. As we can see in Table 3 the analysis carried 
ith k = 3 sources is quite satisfying, with cumulative 
ce explained ranging from 81.5% (NOX) to 96.5% 
. 
or this type of data the three major pollution sources are: 

le exhaust, industrial emissions and non-industrial emis-
. In Figure 5, we can see the plot of the factors for each 
le considering the first six loadings in order of impor-

. 
or comparison purposes we applied the model with k = 
rces (factors) to the same data but the gain in terms of 
ined variance is negligible. Then, we can say that the 
l with k = 3 sources is appropriate to describe the data 
sed for the analysis and this is in accordance with past 

information about this kind of data. Carrying out the analysis 
without taking into account the dependence exhibited by the 
data could be very misleading. 

5. Conclusions 

Identification of major pollution sources and their 
contributions can be assessed by a class of latent variable 
models known as multivariate receptor models. Using very 
limited information on the pollution sources, it is possible to 
fit a multivariate receptor model that is uniquely identified 
and the model parameter estimates have meaningful 
interpretations. Air quality data exhibit temporal and/or spatial 
dependence that is often ignored at the expense of valid 
inference. In this paper we incorporate dependence structure 
estimating a non-stationary spatial covariance matrix for 
multivariate space-time data where a given spatial covariance 
matrix is reproduced at a collection of monitored sites and 
conditional behaviour, given monitored site values, is 
described by a stationary process. Using this spatial co- 
variance estimate in the model gives good results. A possible 



A. Lamberti and E. Nissi / Journal of Environmental Informatics 5 (1) 9 - 16 (2005) 

 

14 

 

 

 

  

 

 

 

  

 

Lag Distance

0.14 

Direction: 0.0   Tolerance: 90.0
Column C 

0.12 

0.10 

0.08 

0.06 

0.04 

0.02 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Va
rio

gr
am

 

Va
rio

gr
am

 

0 0.05 0.1 0.1 0.2 0.25
Lag Distance 

0

5

10

15

20

25

30

Direction: 0.0   Tolerance: 90.0
Column C 

Va
rio

gr
am

 

0 0.05 0.1 0.1 0.2 0.25
Lag Distance 

0 

5 

10 

15 

20 

25 

30 

Direction: 0.0   Tolerance: 90.0
Column C 

Va
rio

gr
am

 

0 20 40 60 80 100 120 140
Lag Distance 

0

Direction: -30.0   Tolerance: 90.0

Column C

500

1000

1500

2000

2500

Figure 4. Empirical and fitted semivariogram. 
 
 
 
 
 



A. Lamberti and E. Nissi / Journal of Environmental Informatics 5 (1) 9 - 16 (2005) 

 

 15

extension for future works is to take into account meteo- 
rological variables in the model and to compare the behaviour 
of the different pollutants considering more than one day. 
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