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ABSTRACT.  A finite element code to simulate the forward and inverse induced polarization response to a 2-D model was developed. 
The "Fractal Model to Complex Resistivity" was applied as an intrinsic electrical property of the medium. The simulations were car-
ried out in five different frequencies. The inversion of the complex resistivity parameter was applied to each frequency, further it was 
applied also to each cell of the finite element mesh in order to analyze the possibility of using the fractal model parameters in the 
qualitative and quantitative interpretation of the induced polarization response to this geological geometry. The results showed that the 
anomalies are well detected by the image of the fractal model parameters. 
 
Keywords: complex resistivity, finite element, forward modeling, fractal, inverse modelling 

 
 

1. Introduction  

The induced polarization phenomena (IP) have an 
electrochemical origin and are frequently used to explain the 
electrical response of geological layers or strucutures (Rocha 
and Habashy, 1995a, b) and biological environments (Rocha 
et al., 1997). As a consequence of these phenomena, the 
electrical resistivity (or their reciprocal electrical conductivi-
ties) are a frequency-dependent complex variable. The method 
of induced polarization in a geophysical environment uses the 
complex character of the conductivity of rocks in low- 
frequencies to perform a variety of prospecting activities. The 
method was originally developed to search for disseminated 
ores. The development of this technique made possible to 
apply the IP method for mineral discrimination (Sampaio et 
al., 1998) and environmental investigation (Kemna et al., 
1999, 2000). 

A quantitative interpretation of induced polarization data 
in geophysical prospecting is difficult due mostly to the frac-
tal nature of geologic structures. To perform this interpretation, 
it is necessary a physical model to explain the behavior of the 
polarizable medium for a large frequency range of the electro-
magnetic spectrum. 

Rocha (1995) introduced a physical model that considers 
the fractal effects of the porous surface and includes the bulk 
response of rocks at low frequencies of electromagnetic 
source. The introduction of the fractal roughness factor, per-
mits the investigation of the texture of rocks, which is a very 
important parameter to explain their electrical properties. 

                                                        
  * Corresponding author: valcir@ufpa.br 

Rocha and Habashy (1995a) applied the fractal model of 
complex resistivity as an intrinsic electrical properties of a 
horizontally stratified medium (1-D model) and analyzed its 
IP response. They observed that the fractal parameter of the 
fractal model dominates the phase response of the apparent 
resistivity. 

In this paper shaped bodies were simulated (2-D geologi-
cal model) using finite element mesh and the fractal model 
was introduced as the complex resistivity associated to the 
intrinsic electrical property of this medium. This simulation 
was carried out in five different frequencies. At each fre-
quency the inversion of the complex resistivity was obtained. 
Furthermore, for each cell of the finite element mesh, the frac-
tal model parameters inversion was undertaken to analyze the 
possibility of using the fractal model parameters, for qualita-
tive and quantitative interpretations of the induced polariza-
tion response of this geological geometry. In this model the 
fractal parameter (η) represents the fractal index, which can 
be related to the rock texture. 

2. The Fractal Model 

The fractal model for complex resistivity of rocks was 
first introduced by Rocha and Habashy (1995a) using an ana-
log model circuit which included the diffusity (K) of ions in 
the vicinity of the electrode/electrolyte interface, and a fractal 
parameter (η). In addition, Rocha (1995) proposed the adop-
tion of a fractal time to substitute the diffusivity of ions. 

Rocha (1995) considered that, throughout the whole fre-
quency spectrum, two main paths could electrically character-
ize rocks: one representing the free porous channel, and an-
other representing the blocked porous channel. The free chan-
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nel represents the electrical paths in the rock that are free of 
clay or metallic particles, while the blocked channels repre-
sent the paths which encounter these minerals. 

The model includes a fractal rough surface impedance 
element. This element will be responsible for the behavior of 
the material at very low frequency signals. The electrically 
charged double layer in the porous medium may be repre-
sented by a pure resistive term (resulting from loss of energy 
due the collision of the free carriers during their motion across 
the charged double layer) and capacitive term (caused by 
oscillations of the bound charges in the double layer). This 
couple of parameters will respond by the medium frequency 
response of rock. 

The capacitance associated with the bulk polarization of 
rocks is represented by their capacitive path in parallel with 
DC resistivity of rock. This capacitance in combination with 
the bulk resistivity (ρo) of the naterial will be responsible for 
the very high frequency response. In the absence of this 
capacitive element, the dielectric constant will have no upper 
bound at high frequencies. 

Representing the time dependence of the electric field as 
eiωt, the expression proposed by Rocha (1995) for the complex 
electrical resistivity ρ(ω) is given by: 
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where ρo is the DC resistivity of the material; m is the charge-
ability; δr is the grain percent resistivity; γh = 1 / (1 + iωτo); u 
= iωτ (1 + v); v = (iωτf)-η; τ is relaxation time constant related 
the double layer oscillations; τo is the sample relaxation time 
constant; τf is the fractal relaxation time and it is related to the 
time involved in the transference of charge and energy in the 
rough interfaces; and η is the parameter directly related to the 
fractal geometry of the medium. 

Olhoeft (1985) measured the complex conductivity of 
different kinds of rocks, including uncontaminated soils and 
soils contaminated with chemical products and waste materi-
als. By means of the least squares fit, the intrinsic fractal 
model parameters were estimated by (Rocha, 1995) from 
experimental data of Olhoeft (1985). Table 1 presents the 
intrinsic fractal parameters obtained for some Olhoef data. 

3. Two-Dimensional Forward Modelling 

The aim of the forward modeling in geophysical 
prospecting with electrical method is to calculate the apparent 
resistivity, for the electrode configuration adopted, and a 
given subsurface conductivity structure. We assumed in this 
study that the region of interest might be represented as a 2-D 
complex resistivity distribution. Neglecting the electromag-
netic induction effects, the forward problem is defined by 

Poison's equation for a point source with real current I, thus: 
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where V(x, y, z) is the potential and ρ*(x, z) is the complex 
resistivity of the medium which is given by (1). 

The resistivity distribution ρ*(x, z) has two dimensions. 
However, the current electrode is a point source (3D problem). 
By taking the Fourier transform of the equation above in the 
y-direction, the 3D potential distribution V(x, y, z) is reduced 
to a 2D transformed potential, thus: 
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where V* is the transformed complex potential, l is the Fou-
rier transformation variable. 

The Equation (2) was solved using the finite element 
method for an appropriated boundary condition. The finite 
element discretization of the Equation (2) gives rise to the 
system of algebraic equations: 
 

*AV b=                                       (4) 
 
where the conductance matrix A is a N × N symmetric sparse 
banded matrix, with N been the number of nodes; b is the 
current vector. To reduce the memory space necessary to store 
the conductance matrix, we stored the matrix by diagonal. 
 
Table 1. Fractal Model Parameters Obtained by Rocha (1995) 
to the Experimental Data of Olhoeft (1985). 

Sample ρo 
(Ω.m) 

m δr τ  
(µs) 

τf 
(ms) 

η τo 
(ps) 

Oh-1 400.0 .439 .303 .342 97.8 .323 .005 
Oh-2 30.0 .608 .617 .207 29900 .238 .026 
Oh-3 30.0 .691 .292 .255 13935 .288 .024 
Oh-4 7.877 .756 2.042 .121 .783 .378 .009 
Oh-5 5.669 .995 4.046 .157 .001 .159 .294 

Note: Oh-1 = Tuff with its natural content of water; Oh-2 = Unconta- 
minated smectite soils; Oh-3 = Organic waste contaminated smectite 
soils; Oh-4 = Uncontaminated montmorillonite soils; Oh-5 = Organic 
waste contaminated montmorillonite soils. 
 

The complex potential V*(x, λ, z) obtained in different 
wavernumbers (generally five to ten) are used to reconstruct 
the potential V(x, y, z) by an inverse Fourier Transform. When 
the potential electrodes are located in the plane y = 0, the in-
verse Fourier transform reduces to the integral: 
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The complex apparent resistivity was calculated with the 
expression: 
 

a
VK
I

ρ =                                        (6) 

 
where K is the geometric factor related to the electrode 
configuration. 

4. Inverse Modelling 

To recover the instrinsic electrical proprieties of the 
media its necessary to solve an inverse problem. The 
objective function being minimized in the inversion is of the 
same kind as the used by (Xia et al., 1994) and is given by 
expression: 
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where µ (0 < µ < ∞) is the regularization parameters 
(Lagrange multiplier); χ2 is the prescribe value of data misfit; 
f(m) is the operator of the forward solution; dobs is the 
measured data vector, usually corrupted with some level of 
noise; mr is the reference model which includes all a priori 
information on the complex resistivity; Wx is the inverse of 
the model covariance matrix; and Wd is the inverse of the data 
covariance matrix. If the measured noise is stationary and 
uncorrelated, then Wd = diag(1/σj

2) where σj is the rms 
deviation of the noise for the jth measurement. 

To solve the above optimization problem, we employed 
the iterative Gauss-Newton approach, where each step j of the 
complex linear system is solved by an updating ∆mj value. 
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where J is the sensitivity matrix (Jacobian matrix). We solve 
the linear system above using the gauss elimination method. 
The same methodology it was used to recovered the 
parameters of the fractal model. 

5. Results 

The 2-D model was divided into 147 × 20 cells (2940 
cells), the region of interest has considered only 76 × 10 cells 
(760 cells). The measured data were generated using a di-
pole-dipole array with a dipole length of 2 m, and the elec-
trode configuration consists in introducing a current into the 
medium through a pair of electrodes and the voltage was 
measured in another pair of electrodes. The geometric factor 
of this electrode configuration is presented in Equation (9): 
 

1 1 1 1K
AM BN AN BM

= + − −                         (9) 

where AM, AN, BM e BN are the distances between the cur-
rent (A and B) and potential electrodes (M and N). 

The data were collected using 20 electrodes with 8 
n-spacing and the results are represented in the form of 
pseudo-sections. The simulations were performed in five 
different frequencies sampled logarithmically in an interval of 
0.1 Hz to 64 Hz. The data were contaminated with gaussian 
random noise with a standard deviation of 5% of the datum 
value. The inverse model was obtained in the five different 
frequencies, and there was two synthetic models considered in 
these simulations: Models 1 and 2. 

 
5.1. Model 1 

Model 1 (Figure 1) consists of one block intruded in the 
half-space. The fractal model parameters of the half-space are 
the same of the sample Oh-4 (Table 1). The block was 
considered with the fractal model parameters of the sample 
Oh-5. 
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Figure 1. Model 1 consists of a block embedded in the 
half-space (the dimension of the block is 6 × 2). 

 
The pseudo section (apparent resistivity) of the forward 

modeling for the frequencies from 0.1 to 64 Hz is shown in 
Figure 2. The influence of the block can be detected only in 
the phase angle of the apparent complex resistivity response. 
Figure 3 presents the apparent fractal model parameters η, δr, 
m and τf recovered from the apparent complex resistivity in all 
frequencies. The apparent fractal parameters had the same 
behavior of the phase angle of the apparent complex resistiv-
ity. 

The amplitude and phase angle of the inverse model for 
frequencies from 0.1 to 64 Hz (the minimum and the maxi-
mum values for the frequency range, respectively) are shown 
in Figure 4. The contamination of the half-space (the block) 
can be observed, and it is discretely detected by the phase 
angle response values, but the shape of the body was not very 
well defined, mainly when it was analyzed in the lowest fre-
quency signals. 

The image of the distribution of the intrinsic fractal 
model parameters recovered from the inverse model for all 
frequencies is shown in Figure 5. The image of the parameters 
η and δr, Figure 5(a) and (b), respectively, shows clearly the 
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Figure 2. Apparent complex resistivity Pseudosection in frequency of 0.1 and 64Hz: (a) amplitude (Ω.m) in 0.1 Hz;  
(b) phase angle (mrad) in 0.1Hz; (c) amplitude (Ω.m) in 64 Hz; (d) phase angle (mrad) in 64Hz. 
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Figure 3. Apparent fractal parameter pseudo section recovered from the apparent complex resistivity pseudo section:  
(a) fractal parameter (η); (b) parameter (δr); (c) Chargeability (m); (d) fractal relaxation time (τf). 
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Figure 4. Inverse model of the model 1: (a) and (b) amplitude and phase angle in the Frequency 
0.1 Hz, respectively; (c) and d) amplitude and phase angle in the frequency 64 Hz. 
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Figure 5. Image of the intrinsic fractal model parameters to model 1: (a) fractal parameter (η);  
(b) parameter (δr); (c) chargeability (m); (d) fractal relaxation time parameter (τf). 

 



V. J. da C. Farias and B. R. P. da Rocha / Journal of Environmental Informatics 6 (1) 25 - 32 (2005) 

 

3

position and the form of the block (the contamination 
introduced in the experiment). The image of the chargeability 
(m) and fractal relaxation time (τf) parameters (Figure 5 (c) 
and (d), respectively) cannot be used for a precise definition 
of the body position. 

 
5.2. Model 2 

Model 2 shown in Figure 6 consists of one block buried 
in the second layer of two layered medium. The parameters of 
the model of the first and second layer were the same of the 
samples Oh-1 and Oh-2, respectively; the block parameters 
were the same of the sample Oh-3. All these values of the 
samples of Oh-1, Oh-2 and Oh-3 were summarized in Table 1. 
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Figure 6. Synthetic model consists of a medium of the two 
layers and a block embedded in the second layer. The 
dimension of the block is 6 × 2. 

 
The pseudo section (apparent resistivity) of the forward 

modeling in the frequency of 64 Hz is showed in Figure 7(a) 
and (b). We can observe that the block (contamination of the 
second layer) was not detected by the response of the apparent 
complex resistivity data. Figure 7(c) presents the apparent 
fractal parameter (η) recovered from the apparent complex 
resistivity in all frequencies tested in the present study. The 
presence of the buried body in the second layer was detected 
and the other parameters had the same behavior of the appar-
ent complex resistivity of the pseudo section in the amplitude 
and phase angle presented in Figure 7(a) and (b). 

The inverse model (amplitude and phase angle) was ob-
tained for the frequencies of 0.1 and 64 Hz as shown in Figure 
8. It can be observed that the response in amplitude has the 
behavior of the layered medium and the phase angle response 
detect the contamination (block) of the second layer using low 
frequency signals. However, the format of the body cannot be 
very well defined. When the frequency of 64 Hz is used, only 
two-layers can be detected. 

Figure 9 shows the spatial distribution of the intrinsic 
fractal model parameters recovered from the inversed data. 
The block in the second layer was observed more clearly in 
the image of the parameters η, δr, m and τf than in the inverse 
model (Figure 8). 

The results obtained in the present study were expected 
on account of the fact that the fractal exponent dominates the 
phase response mainly in low frequency signals (Rocha, 1995; 
Farias and Rocha, 2003; Farias, 2004). This is a very impor-
tant result since in low frequency the fractal parameters carry 
information about porous roughness of the material. Thus, 
from field data and with an appropriated inversion algorithm 
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Figure 7. (a) and (b) Apparent complex resistivity Pseudosection in frequency of 0.1 Hz in amplitude (Ω.m) and  
phase angle (mrad), respectively; (c) apparent fractal parameter (η) pseudo section recovered from the apparent  
complex resistivity pseudo section. 
0 



V. J. da C. Farias and B. R. P. da Rocha / Journal of Environmental Informatics 6 (1) 25 - 32 (2005) 

 

31 

 

 

 

0

5

10

0    5    10   15   20   25    30   35 

Distance (m) 
0    5    10   15   20    25   30   35 

D
ep

th
 (m

) 

0

5

10D
ep

th
 (m

) 

c) 

-8 
-10
-12
-14
-16

250
200
150
100
50 

d) 

0 

5 

10 D
ep

th
 (m

) 

Distance (m) 
0    5    10   15   20   25   30   35 

a) 

0 

5 

10 D
ep

th
 (m

) 

300 

200 

100 

-30

-40

-50

-60

0    5    10   15   20   25   30   35 
b) 

 
Figure 8. Inverse model of model 2: (a) and (b) amplitude and phase angle in the Frequency 0.1 Hz,  
respectively; (c) and (d) amplitude and phase angle at the frequency of 64 Hz. 
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Figure 9. Image of the intrinsic fractal model parameters to model 2: (a) fractal parameter (η);  
(b) parameter (δr); (c) chargeability (m); (d) fractal relaxation time parameter (τf). 




