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ABSTRACT.  In order to meet the new stringent environmental regulations, it is necessary to investigate the adaptive and optimal 
control strategies for the biological wastewater treatment processes. Nitrogen removal is one of the essential concerns in wastewater 
treatment. Nitrogen removal is a nonlinear, dynamic, and time variant complex process as complicated activities of microbial metabo-
lism are involved. The mechanistic models for nitrogen removal are complicated and still uncertain to some extent. A new machine 
learning approach, Support Vector Machine (SVM) was proposed as black-box modeling technique to model the biological wastewater 
treatment processes. LS-SVM, a simplified formulation of SVM, has been applied in this study to predict the concentration of nitrate 
and nitrite (NO) in the Mixed Liquor (ML) of wastewater treatment plant. Nonlinear Autoregressive model with Exogenous inputs 
(NARX model) can be employed with LS-SVM to extract useful information and improve the prediction performance. In this paper, 
the premium wastewater treatment plant simulation and optimization software, GPS-X, is used to create virtual plant layout and simu-
lated data. The simulation results indicate that the proposed method has good generalization performance, especially when the input is 
fluctuated without a usual pattern. We conclude that LS-SVM with NARX modelling could be used as an alternative approach to pre-
dict the behaviour of wastewater treatment systems by further studying some essential issues such as the tuning of memory order and 
training data size. 
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1. Introduction  

As the regulations for effluent quality are getting more and 
more stringent in North America, the advanced biological 
wastewater treatment techniques, such as the conversion of 
ammonia nitrogen to nitrate by biological nitrification and the 
removal of nitrate by biological denitrification, have become 
essential. To accommodate plant influent fluctuations and other 
disturbances, there is a need to investigate the development and 
implementation of adaptive process control strategies, so that 
more precise and timely controls are achieved for the afore- 
mentioned techniques. As the basis of the development of the 
adaptive controllers, estimating the dynamics of the concen-
trations of some important trace elements in the effluent is of 
primary consideration. 

Conventionally, mechanistic models have been the most 
commonly used method for predicting the process dynamics so 
as to estimate the concentrations of various elements. Many 
mechanistic models and various control strategies have been 
incorporated in different software packages to address practical 
wastewater treatment problems. However, mechanistic models 
suffer from several fundamental deficiencies that have been 
discussed extensively by several researchers (Beck, 1986; 
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Marsili-Libelli, 1989; Juppseon, 1996; Beck et al., 1997). A 
recent synthesis and consolidation of these deficiencies can be 
found in the article by Guergachi and Patry (Guergachi and 
Patry, 2003b), and can be recapped in the following fact: 
mechanistic models are not able to deal with uncertainty in an 
effective manner. The rationale behind this statement is de-
scribed next. 

Despite the usage of the adjective “mechanistic” in the 
name “mechanistic models” and all the claims that can be made 
with regard to the inclusion of the first principles of physics 
and bio-chemistry in the development of the mechanistic 
models, the latter remain a rough approximation of the dy-
namic behaviour of the wastewater treatment systems, as many 
parts of the foregoing models are still highly empirical. While 
the mechanistic modelling approach aims at implementing the 
Newtonian thinking in dealing with system complexity, there is 
so far no possible comparison between the performance of the 
mechanistic models that have resulted from this approach for 
wastewater treatment systems and that of the Newton’s laws 
for gravitation or Maxwell’s equations for electromagnetism, 
for example. The question of how far (or close) the predictions 
of mechanistic models are from reality is still an open-ended 
one, and the mechanistic modelling approach provides no 
formal method for addressing it. 

One of the main long-term goals of our research is to de-
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velop a framework that allows us to address the deficiencies of 
the mechanistic modelling approach (Guergachi, 2003; Guer-
gachi and Patry, 2003a). A model is viewed in this framework 
as a learning machine that acquires knowledge not only from 
first principles but also from other sources of information such 
as data and empirical laws. The mechanistic modelling ap-
proach becomes a particular case within this framework. Based 
on this idea, a novel modelling technique has been developed 
(Guergachi and Patry, 2004) to allow the modellers to make use 
of the mechanistic thinking and, at the same time, be able to 
manage the uncertainty that underlies the system under study. 
This technique aims in developing not one single mechanistic 
model, but a series of nested mechanistic models iM (i = 1, 2, 
3, …) such that 1 2 1... ...i iM M M M +⊂ ⊂ ⊂ ⊂ ⊂  

To carry out this work, statistical learning theory (Vapnik, 
1998) has been used as the main logical basis for putting the 
various pieces of the framework together. However, develop-
ing novel modelling techniques that are able to handle system 
uncertainty is not the only objective of building this framework. 
Another objective is to integrate existing modelling technolo-
gies (not only the mechanistic modelling approach) under one 
single over-arching umbrella that takes advantage of their 
strengths and minimizes the weaknesses of each modelling 
technology (Guergachi, 2003). While we are aware of the 
strengths and weaknesses of many of the exiting technologies 
such as neural networks, fuzzy logic and knowledge-based 
systems, there is a novel system modelling approach that has 
emerged recently as a natural consequence of the results of 
statistical learning theory and that needs more investigation 
before one can start thinking about integrating it with other 
technologies: it is the support vector machine (SVM) approach 
(Vapnik, 1998). Many researchers and authors have acknowl-
edged this approach, when it is applied to pattern recognition, 
is a powerful one, and delivers better results than the other 
traditional and competing approaches such as neural networks 
do (Terrillon et al., 2000; Scholkopf, 1997). There is, however, 
a need to carry out more investigations (empirical first and then 
theoretical) of the performance of the support vector machines 
(SVMs) in the case of continuous and complex systems such as 
biological wastewater treatment plants. It is the intention of 
this paper to present an empirical investigation of SVMs by 
applying them to the modelling of nitrogen removal in 
wastewater treatment systems. 

The SVM concept was initially introduced by Vapnik 
(1998), but many variations of SVMs have been developed by 
other researchers to leverage the strength while overcoming the 
difficulties in applications of the initial SVM concept. One of 
these variations known as the least squares SVM (LS-SVM) 
was introduced by Suykens and co-workers (Suykens et al., 
2002). It is this variation that will be investigated in this study. 
An advantage of the LS-SVM is its simplicity in terms of 
memory requirements and algorithmic implementation, and the 
fact that LS-SVM can be used for applications where adaptive 
and online learning is needed. 

In a previous paper (Yang et al., 2004); a simulation study 
was carried out using ‘toy’ continuous functions and systems to 
investigate the performance of LS-SVM for the time-series 

prediction has shown satisfactory results. However, the nitro-
gen removal processes in wastewater treatment systems are not 
as simple as ‘toy’ systems, because the output depends on 
many inputs and control variables, as well as on the previous 
values of the output itself. We proposed to make use of the 
NARX (Nonlinear Autoregressive model with Exogenous 
Inputs) modelling concept to handle the time series aspect of 
the output concentrations. Extensive simulation work using 
simulated data generated from the wastewater treatment soft-
ware package GPS-X (Hydromantis, 2004) is carried out to 
examine how LS-SVM can perform on predicting nitrogen 
concentrations in treated wastewater. NARX model imple-
mented within the LS-SVMlab MATLAB/C toolbox is used in 
the estimation of NO concentration. 

In section 2 brief introductions of SVM, LS-SVM and 
NARX are given to provide the basic knowledge. The simula-
tion settings and results are demonstrated in section 3 while 
section 4 concludes the paper. 

2. Support Vector Machines (SVMs) 

2.1. Introduction 
Machine learning is an artificial intelligence approach to 

establish and train a model to recognize the pattern or the 
underlying mapping of a system based on a set of training 
examples consisting of input and output patterns. SVM is a 
similar machine learning approach. The simplest support vec-
tor machines were developed for binary classification. With 
continuous extension and advancement, SVMs were applied to 
functional approximation and time series prediction. Linear 
learning machines are the fundamental formulations of SVMs. 
The objective of the linear learning machine is to find the linear 
function that minimizes the generalization error from a set of 
functions, which can approximate the underlying mapping 
between the input and output data. Generalization error is the 
distance between the true and estimated values on the data 
point outside the training data set. According to statistical 
learning theory (Vapnik, 1998), the generalization (test) error 
can be upper bounded in terms of training error and a confi-
dence term as shown in equation (1): 
 

(ln(2 / ) 1) ln( / 4)( ) ( )emp
h N hR R

N
ηθ θ + −

≤ +
           (1) 

 
The term on left side represents generalization error. The first 
term on right side is empirical error calculated from the train-
ing data and the second term is called confidence term which 
is associated with the VC dimension h of the learning ma-
chine. VC dimension is used to describe the complexity of the 
learning system (Vapnik, 1998). The relationship between 
these three items is illustrated in Figure 1. 

Unlike the principle of Empirical Risk Minimization 
(ERM) applied in neural network which aims to minimize the 
training error, SVMs implemented Structural Risk Minimiza-
tion (SRM) in their formulations. SRM principle takes both the 
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training error and the complexity of the model into account, as 
finding the minimum of the generalization error shown in 
Figure 1. SRM can be seen as a nested structure of the learning 
system. Each element of the structure represents a subset of 
functions (Suykens et al., 2002). However, most of the 
practical problems are nonlinear instead of simple linear ones. 
Kernel functions extended the power of linear learning 
machine by mapping the input data into a high dimensional 
feature space. A linear learning machine can be employed in 
the feature space to solve the original non-linear problem. 
Kernel functions satisfying Mercer condition not only enable 
implicit mapping of data from input space to feature space but 
also ensure the convexity of the cost function which leads to 
the unique optimum. There are several typical choices of 
kernels such as linear, polynomial, MLP and RBF kernel. 
Mercer condition states that a continuous symmetric function 
K(x, z) must be positive semi-definite to be a kernel function 
which can be written as inner product between the data pairs as 
in equation (2) (Cristianini and Shawe-Taylor, 2003): 
 

1

( , ) ( ) ( ) ( ), ( )]j j j
j

K x z x z x zλ ϕ ϕ φ φ
∞

=

= =∑   [                  (2) 

 

Bound on the test error

Confidence term 

Training error 

h 

Error 

 
Figure 1. Upper bounded generalization error. 

 
In order to minimize a cost function which takes into ac-

count both empirical error and complexity of the learning 
machine, SVM formulations were established as a constrained 
optimization problem shown in the formulation (3): 
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where C is a regularization parameter which adjusts the 
balance of the training error and the complexity of the system. 

This formulation is named the Vapnik’s ε -insensitive cost 
function due to ignoring the error within a band ε  around 
the target function. The ξk and ξk * are slack variables; ω is a 
weight vector of the linear learning machine and follows from 
the solution of the optimization problem in (3); )(xϕ is the 
mapping from original input space to feature space. The target 
function is expressed in equation (4): 
 

( ) ( )Tf x w x bϕ= +                                 (4) 
 
where b can be calculated using the complementary condi-
tions (Suykens et al., 2002) 

This formulation is in primal weight space as a con-
strained optimization problem. Lagrangian technique is used 
to solve this problem into dual space of Lagrangian multipli-
ers. The dual problem is described in the formulation (5): 
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The non-zero Lagrangian multipliers kα  are called support 
vectors. Only support vectors are involved in the expression 
of target function as in equation (6): 
 

*

1
( ) ( ) ( , )

N

k k k
k

f x K x x bα α
=

= − +∑                       (6) 

 
The advantage of using the dual representation is derived 

from the fact that in this representation the number of tuneable 
parameters (equals the dimension of weight vector) does not 
depend on the number of dimensions of the input space. In the 
formulation of Lagrangian, the training examples never appear 
isolated but always in the form of inner products between pairs 
of examples. By replacing the inner product of input data pairs 
with an appropriately chosen ‘kernel’ function, one can avoid 
to explicitly establish a non-linear mapping to a high dimen-
sional feature space. In the feature space, the size of the model 
is determined by the number of support vectors and the diffi-
culty that was caused by infinite dimension of the input space 
is avoided. 

SVMs possess the properties of global optimum, sparse-
ness of support vectors and bounded generalization risk, which 
can be derived directly from the solution of the optimization 
problem or the statistical learning theory (Cristianini and 
Shawe-Taylor, 2003). These properties make SVMs advanta-
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geous compared to Neural Networks that suffer the local opti-
mum and over-fitting problem due to using ERM principle. 

 
2.2. Least-Squares SVM (LS-SVM) 

Standard SVMs have been developed for classification 
and regression, while least squares support vector machines 
(LS-SVMs) can tackle a wider range of problems (including 
kernel ridge regression, classification (kernel Fisher discrimi-
nant analysis), kernel PCA, kernel CCA, kernel PLS, recurrent 
networks, optimal control, and other) which is possible via the 
equality constraints instead of inequality constraints and the 
use of a simpler loss function (Suykens et al., 2002). LS-SVM 
is a variation of Vapnik’s SVM and is expressed as in the 
formulation (7) (Suykens and Vandewalle, 1999): 
 

2

, , 1

1 1min ( , ) ( )
2 2

N
T

P kb e k
J e e

ω
ω ω ω γ

=

= + ∑  

 
Such that 
 

( ) , 1, ...,T
k k ky x b e k Nω ϕ= + + =                      (7) 

 
In fact, this is a ridge regression (Cristianini and 

Shawe-Taylor, 2003) cost function formulated in the feature 
space. γ plays the same role as the regularization parameter C 
in SVM formulation. This LS-SVM formulation modifies 
Vapnik’s SVM at two points. First, LS-SVM takes equality 
constraints instead of inequality constraints. Second, the error 
variable ek was introduced in the sense of least-square 
minimization. These error variables play similar role as the 
slack variables in SVM formulation such that relatively small 
errors can be tolerated (Suykens et al., 2002). 

In the case of linear function approximation one could eas-
ily solve the primal problem, but in general ω might become 
infinite dimensional and difficult to solve. The solution is to 
derive the dual problem by constructing Lagrangian for this 
primal problem. Taking the condition for optimality of the 
Lagrangian yields a set of linear equations shown in equation 
set (8): 
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      (8) 

 
Solving this set of linear equations in α, b, the resulting 

LS-SVM model for function approximation becomes equation 
(9): 
 

1
( ) ( , )

N

k k
k

y x K x x bα
=

= +∑                           (9) 

 
As it was shown in the previous section, SVMs solve the 

nonlinear regression problems by means of convex quadratic 
programs (QP). The use of least squares and equality con-
straints for the models leads to solving a set of linear equations, 
which is easier to use than QP solvers. But on the other hand it 
has potential drawbacks such as the lack of sparseness which is 
clear from the condition  k keα γ=  in equation set (8) since the 
error would not be zero for most of data points. One can 
overcome the drawbacks using special pruning techniques for 
sparse approximation (Suykens et al., 2002). 

 
2.3. NARX Model 

Basically, SVM is used for classification or function ap-
proximation, which involves mapping of multi-dimensional 
input and output. Time series prediction is to predict one or 
more variables in the future point in time. From the inspective 
of machine learning, time series prediction is a special case of 
function estimation and equivalent to find the underlying 
functional relationship between previous values and the next 
value. Thus, SVMs can be used in time series prediction in the 
form as given in equation (10): 
 

1 1ˆ ( , , ..., )k k k k py f y y y+ − −=                           (10) 
 
where p is referred as embedding dimension or memory order 
in time series. Note that the value of p determines the dimen-
sion of inputs of the SVM model. 

One of the deficiencies of time series prediction is that it is 
unable to accommodate other meaningful input variables in 
system identification or dynamic modelling. An important and 
useful class of discrete-time nonlinear model is the NARX 
model (Nonlinear Auto Regressive model with Exogenous 
Inputs) (Lin et al., 1997). 
 

( ) [ ( ), ..., ( 1), ( ), ( ), ..., ( 1)]y t f u t Du u t u t y t Dy y t= − − − −            (11) 
 
where u(t) and y(t) represent input and output of the model at 
time t, Du and Dy are the input-memory and output-memory 
order respectively, and the function f is a nonlinear function. 

NARX model combines the power of function approxi- 
mation and time series prediction. The embedded memory of 
the input and output variables plays an important role in the 
learning capability and the generalization performance through 
incorporating the historical information. The selection of in-
put-memory and output-memory is critical for the forecasting 
performance. “The problem of choosing the proper memory 
architecture corresponds to giving a good representation of 
input data. A good representation can make useful information 
explicit and easy to extract” (Lin et al., 1996, 1997). 
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3. Simulations 

3.1. Simulation Settings 
The target problem of our study is to predict the concentra-

tion of indicator variables in nitrogen removal processes, such 
as Ammonia, Nitrate and Nitrite (NO), in a short term. When 
the concentration of an indicator variable is predicted to exceed 
the standards for discharging treated wastewater, the system 
acts and adjusts the input of chemicals or operation conditions 
in order to optimally control the biological wastewater treat-
ment processes. 

As discussed in section 2, in terms of simplicity and 
memory requirement, LS-SVM has more advantages than 
standard SVM. LS-SVM can be implemented by adaptive and 
on-line algorithm. For these reasons, we proposed to use 
LS-SVM combined with NARX model to predict the target 
variable. LS-SVMlab MATLAB/C toolbox was used to train 
the sample data and predict the future output (Suykens et al. 
2002). NARX model was employed to transform the input and 
output into more suitable state space in order to extract the 
information effectively. 

 
3.2. Data Collection 

In order to obtain the training and testing data, we selected 
to use COST simulation benchmark. COST simulation bench-
mark is a comprehensive description in terms of simulation and 
evaluation procedures including plant layout, simulation mod-
els and model parameters, a detailed description of disturbance 
to be applied during testing. A complete description of the 
COST benchmark and how to use the simulation benchmark 
layout can be found in literature (Copp et al., 2002). COST 
simulation benchmark has been implemented in GPS-X. The 
‘simulation benchmark’ plant design comprises five reactors in 
series with 10-layer secondary settling tank. The first two 

anoxic tanks, the following three aerobic tanks as well as the 
internal recycle from the fifth to the first tank are designed in 
order to realize nitrification. We focused on predicting the 
Nitrate and Nitrite (NO) concentration in the effluent of the 
reactor (MLSS). The plant layout in GPS-X is shown in Figure 
2. 

From the knowledge of the nitrogen removal process in 
wastewater treatment plant, the input variables are selected as 
influent flow rate i.e. the concentration of TSS, COD, TKN and 
TN in the influent. As the plant is operated with dissolved 
oxygen (DO) controller and nitrate controller, the oxygen 
transfer coefficient (KLa) in the final tank and the controlled 
nitrate value in the second anoxic tank are also used as input. 
The output is selected as the concentration of NO in MLSS. 

Three different influent files are included in the COST 
simulation benchmark implemented in GPS-X and each is 
meant to be representative of dry, rain or storm weather condi-
tion respectively. The influent files include the data of influent 
flow rate and influent composition. The concentrations of TSS, 
COD, TKN and TN in the influent can be obtained as 
composite variables in GPS-X. Each of the influent file con-
tains 14 days (2 weeks) of influent data at 15-minute intervals. 
In general, these files depict expected diurnal variations in 
influent flow. Additionally, expected trends in weekly data 
have been incorporated. This means, much lower peak flows 
are depicted in the ‘weekend’ data, which is consistent with 
normal load behaviour at a municipal treatment facility (Copp 
et al., 2002). The influent flow rates under three weather condi-
tions are illustrated in Figures 3(a) to (c). In the first week, all 
of the three files contain dry weather data. In Figure 3(a), the 
dry weather influent flow rate depicts what is considered to be 
normal diurnal variations in flow. Figure 3(c) is a variation on 
the dry weather with the incorporation of two storm events in 
the second week. The first storm event is of high intensity and 
short duration. The peak flow for both storms is the same while 

 

 

Figure 2. COST simulation benchmark plant layout. 
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the peak flow of the second storm is maintained over a longer 
period of time. Figure 3(b) represents a long rain event 
occurring in the second week. The influent flow during this 
rain event does not reach the level attained during the storm 
events, but the increased flow is sustained for a much longer 
period of time. What we need to do is to simply execute the 
simulation benchmark using three influent disturbances and 
record the corresponding inputs and outputs. The recorded 
output, the concentrations of NO under three weather condi-
tions are depicted in Figures 4 (a) to (c). It indicates that the 
concentration of NO is mainly maintained around 10-15 gN/m3. 
It can be observed that the concentration of NO under rain or 
storm event is reduced because the wastewater is diluted by the 
excess water flow due to the rain or storm. 

 
3.3. Simulation Results 

Now that we have obtained the simulated input and output 
data, we can use this data as the training and testing data for the 
LS-SVM prediction. The simulation approach of the LS-SVM 
includes five steps: input selection, model selection, training, 
prediction and result visualization. LS-SVMlab MATLAB/C 
toolbox provides a rich class of functions to realize these steps. 
In this paper, we applied LS-SVM combined with NARX 
model to the prediction of NO concentration in MLSS. The 
input variables have been selected according to the domain 
knowledge as given in section 3.2. RBF kernel is used and the 
kernel parameters can be tuned using cross-validation in 
LS-SVM toolbox. 

 
Table 1. Prediction Error of NO Concentration under Dry 
Weather (g N m-3) 

 
The emphasis of this paper is on exploring the effects of 

the input and output memory order of NARX model on the 
performance of LS-SVM prediction under different weather 
conditions. A total of 672 training data examples over the first 
week (representing dry weather) was used to train the LS-SVM 
with RBF kernel and predict the next 672 values of NO 
concentration over the second week for three different weather 
conditions (representing dry weather, rain event and storm 
event respectively). The Mean Square Error (MSE) was used to 
measure the prediction accuracy. In Table 1-3, the prediction 
errors with different input and output memory orders are listed 
for three weather conditions. These results indicate that the 
LS-SVM using input memory order-3 and output memory 
order-1 has the best performance for predicting NO concentra-

tion under the dry weather. Under rain or storm event, the 
optimal input and output memory order are both 1. 

 
Table 2. Prediction Error of NO Concentration under Rain 
Event (g N m-3) 

 
Table 3. Prediction Error of NO Concentration under Storm 
Event (g N m-3) 

Input memory order Output 
memory 

order 0 1 2 3 

0 5.0235 4.3416 4.0412 3.9068 

1 2.6405 2.0437 2.6062 3.1143 

2 3.532 2.5308 2.6585 3.0345 

3 3.7025 2.8422 2.9338 3.1949 

 
Figures 5(a) to (c) show the comparison of predicted and 

actual NO concentrations using the optimal input and output 
memory order under three weather conditions. The solid line 
represents the actual concentration and the dashed line the 
predicted value. 

4. Conclusions 

In a short term period, the LS-SVM model with RBF ker-
nel and optimized parameters provides reasonably accurate 
prediction of the NO concentration in ML. From the simulation 
results, the generalization ability of LS-SVM in combination 
with NARX model is evident. We use only one week data 
representing dry weather condition as the training data. Since 
NARX model takes account of both the historical data of the 
input and output and the current influent disturbance, the NO 
concentration in MLSS under various weather conditions can 
be predicted, given appropriately selected parameters. As we 
can see from the simulation results, given the influent distur-
bance, the response of dry, rain and storm weather condition 
can be predicted using the same LS-SVM model trained by 
one-week dry weather data. 

In this paper, NARX model was proposed and experi-
mented to be effective in transforming the input and output into 
new state space in order to extract useful information. The 
simulation results are consistent with the embedding theory 
stating that forecasting performance could be seriously defi-

Input memory order Output 
memory 

order 0 1 2 3 

0 0.5204 0.3624 0.3104 0.2827 

1 0.2793 0.1550 0.1208 0.1049 

2 0.3338 0.1924 0.1423 0.1112 

3 0.2473 0.1693 0.1389 0.1166 

Input memory order Output 
memory 

order 0 1 2 3 

0 8.0022 7.2378 6.5409 6.1016 

1 4.6539 1.7146 2.5735 3.3245 

2 6.0985 2.2491 2.0145 2.3592 

3 6.0974 2.7482 2.4547 2.4989 
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Figure 3. Influent flow rate under (a) dry weather, (b) rain event, and (c) storm event (m3/d). 
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          Figure 4. NO concentration in MLSS under (a) dry weather, (b) rain event, and (c) storm event (g N m-3).  
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Figure 5. Comparison of predicted (dashed line) and actual (solid line) NO concentrations  
in MLSS under (a) dry weather, (b) rain event, and (c) storm event (g N m-3). 

 

(a) Output memory order: 1 
Input memory order: 3 

MSE: 0.1049 

(b) Output memory order: 1 
Input memory order: 1 

MSE: 1.7146 

(c) Output memory order: 1 
Input memory order: 1 

MSE: 2.0437 
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cient if a model’s memory order is either too little or too large. 
Therefore, choosing the appropriate memory architectures for 
a given task is a critical issue in NARX models. Our next study 
will investigate how to determine the appropriate memory 
order automatically.  The prediction can be extended to other 
elements such as ammonia in further studies. 
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