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ABSTRACT.  Temporal predictions by using long memory time series models have recently attracted much attention. In real surveys, 
such as those on environmental pollution, the observed data have long memory characteristics. In particular, the time series of pollu-
tion usually show “persistence” in the sense that their correlation functions decrease to zero at a much slower rate than the exponential 
rate implied by a short memory time series. In the literature, several contributions for the multistep prediction of univariate long mem-
ory time series have been proposed. However, in pollution studies, the phenomena are generally observed in several points of a study 
area so that a space-time series is available. In this context, we consider a multivariate extension of the univariate methodology in 
order to develop a multistep long memory space-time series prediction. For an easier evaluation of the procedure proposed, we focus 
our attention on bivariate long memory space-time series in ecological framework. The two proposed approaches of multistep 
prediction of the concentration of carbon monoxide in the Bergamo (Italy)-District are compared. 
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1. Introduction  

Recently, the large collection of satellite data and 
environmental monitoring (Byun et al., 2003; Guo et al., 2003; 
Manobavan et al., 2003) have increased the need of new 
developments in the field of time and space-time-series. In the 
standard Box-Jenkins method, it is required to assume that the 
series are stationary. In nonstationary cases, the first differ-
ence will be well behaved, as long as there are no seasonal 
components (Box and Jenkins, 1994). In particular, it is hoped 
that difference tx∆ , of the series {xt} (t = 1, 2, …), will have 
rapidly decaying autocorrelations and with any trend behav-
iour, so that it can be well described by a stationary invertible 
ARMA model. In practice, many time-series processes are 
nonstationary as is the case with numerous environmental, 
biological or economic processes and therefore more general 
methods need to be developed (Taqqu et al., 2003). In these 
cases, we may have that the sample autocorrelation decays 
very slowly and the periodogram is completely dominated by 
the low frequency components (Giraitis et al., 2001). The first 
differences are better behaved as the sample autocorrelations 
decay more rapidly than for the original data. A look at the 
periodogram shows that most of the power is concentrated 
near zero frequency. Differencing the series a second time 
seems to go too far in removing the trend behaviour. The 
periodogram of 2

tx∆  shows almost no power near zero fre-
quency, indicating that the low frequency components have 
been eliminated. Thus, data may have been over differenced. 
It seems that the “right” number of differences is between 1 
and 2. The long memory models provide us with a way to 
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define such a fractional difference. We will say that a station-
ary time series { }tx has long memory if there is a nonzero 
d (-0.5, 0.5)∈  such that the spectral density obeys a power 
law, i.e. -2d( )f kλ λ≈  as 0λ +→ . Thus, as 0λ → , ( )f λ  
tends either to ∞  (if d > 0) or to zero (if d < 0). If d = 0 we 
say that {xt} has short memory. In this case, f(0) will be 
positive and finite. All stationary invertible ARMA processes 
are short memory. Another phenomenon indicating the inade-
quacy of ARMA models for some stationary time series and 
showing the need of long memory models is the failure of the 
central limit theorem. If the series {xt} is iid for each t with 
finite variance, as it is well known, the sample mean x  is 
asymptotically normal and has a variance proportional to 1/n. 
It is possible to prove (Fox et al., 1986) that the Central Limit 
Theorem will still be valid if the observations are not iid un-
der the condition that the autocovariances decay rapidly (Gi-
raitis et al., 1990). This is the case of the stationary invertible 
ARMA processes in which the covariance function decreases 
exponentially fast to zero. It has been found, however, that 
certain observed time series although apparently stationary, 
seem to violate the Central Limit Theorem in that the variance 
of x  seems to go to zero more slowly than 1/n. Mandelbrot 
and Wallis (1969) found similar behaviour in a variety of geo-
physical time series including rainfall, earthquake frequencies 
and sunspot numbers. In this setting, a theoretical analysis 
shows that if the autocovariances decay to zero slowly enough, 
then the central limit theorem can indeed fail (Karanasos et al., 
2004). 

In this paper, the applicability of the multivariate long 
memory time series in environmental framework has been 
considered. In particular, the article deals with environmental 
processes concerning the observation of the concentration of 
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carbon monoxide on two areas of the District of Bergamo. In 
other words, a spatial temporal process with long memory 
dependence is available. However, having examined only two 
spatial location, the spatial temporal process can be reduced to 
a bivariate temporal process. Thus, we can model the tempo-
ral component by using a Vector Autoregressive Fractionally 
Integrated model (VARFI) that allows us to generate multistep 
prediction of the process. In a univariate setting, Bhansali and 
Kokoszka (2001) proposed two different approaches, called 
type-I and type-II, to predict the long memory time series. In 
the former, the long memory time series is treated as a stan-
dard short memory time series and its multistep predictions 
are obtained by using the existing modelling approaches. The 
latter, by contrast, seeks to model the long memory stochastic 
characteristics of the observed time series by a fractional 
process such that its fractional difference follows a standard 
short memory process. In other words, the type I approach 
does not require the estimation of the long memory parameter 
while the type II requires this estimation process. In this paper, 
we propose a multivariate extension of both approaches in 
order to develop a multi-step long memory time series predic-
tion in environmental surveys. The first one constructs the 
multi-step prediction of the bivariate long memory time series 
by a Vector Autoregressive model (VAR) with the order se-
lected by the Akaike Information Criterion (AIC). For the 
univariate case, a justification of this approach can be found 
in Crato and Ray (1996). The second one seeks to model the 
long memory stochastic characteristics of the observed time 
series by a Vector Autoregressive Fractionally Integrated 
model (VARFI). The parameters have been estimated by the 
indirect estimation method as shown in Gourieroux et al. 
(1993). 

The paper is structured as follows: Section 1 provides a 
brief discussion of the properties of multivariate autoregres-
sive fractionally integrated moving average models (VAR-
FIMA) and indirect estimation methods for estimating VAR-
FIMA models. In section 2 the two forecasting approaches are 
developed. In section 3, the results of a simulation study de-
signed to compare the two approaches to multi-step prediction 
are discussed. Finally in section 4 we find an application to 
environmental data. 

2. Statistical Models 

As said before, our approach is based on two methodolo-
gies, the VAR and VARFIMA approaches. In this section, we 
will focalise our attention on VARFIMA models. In fact, 
while VAR models are widely known and used in the litera-
ture (Hannan, 1970; Lütkepohl, 1993), we believe that a brief 
description of VARFIMA models to bes useful because of 
their complexity. 

The Vector Autoregressive Fractionally Integrated Mov-
ing Average model, denoted VARFIMA (p, d, q), can be for-
mally expressed as 
 

( ) ( )dΦ Y Θ εt tL L∇ =                               (1) 

where tY  is a k × 1 vector process, ∇d  is a k × 1 fractional 
differencing operator with d = {d1, d2, …, dk}, ~  (0, )t iid Nε Σ  
where Σ  is a k × k matrix of variance-covariance, 

0( ) j
jL L= − ∑Φ Φ Φ where jΦ is a k × k matrix of the 

autoregressive parameters, 0( ) j
jL L= + ∑Θ Θ Θ  where jΘ  

is a k × k matrix of moving average parameters, and L is the 
lag operator (Baillie, 1996). 

We shall call tY  the VARFIMA[p, ( 1 2,  ,  ...,  kd d d ), q] 
process where p is the maximum order of the autoregressive 
component and q the maximum order of the moving average 
component. The univariate version with k = 1 is referred to as 
the ARFIMA(p, 1d , q) process which has been extensively 
studied by Hosking (1981), Granger (1980), Granger and 
Jogeaux (1980), and Sowell (1992). 

The characteristics of the fractional vector time series 
tY  can be obtained from the univariate case as developed by 

Sowell (1989): 
(1) tY is stationary if 1/ 2id <  for i = 1, 2, ..., k; 
(2) tY has an invertible moving average representation if 

1/ 2id > − ; 
(3) if the spectral density of tY  is denoted by ( )f λy  then 
as 0λ →  
 

( )( ) [ ]y
i jd d

ijf kλ λ− +=                                (2) 
 
where each ijk  is a constant and it is independent from id  
and jd ; 
(4) if the autocovariances of tY are denoted by ( )sγ =y  

[ ' ]t t sE −Y Y  then as s → ∞ , 1( ) ~ [ ]i jd d
ijs h sγ + −

y  where each 
ijh  is a constant and it is independent from id and jd . 

The indirect estimator proposed by Martin and Wilkins 
(1999), in order to estimate the parameters of both ARFIMA 
and VARFIMA models, is considered. This approach is based 
on the Indirect Inference criterion proposed by Gourieroux et 
al. (1993). 

An Indirect approach is motivated by the fact that 
econometric models often lead to complex formulations, 
which may even be such that it is impossible or extremely 
difficult to efficiently estimate the parameters of interest be-
cause of the intractability of the likelihood function. In this 
way, the method circumvents the problems associated with the 
complicated likelihood function arising from VARFIMA 
models, while it generates consistent and asymptotically 
normal parameter estimates under fairly general conditions 
(Martin and Wilkins, 1999). 

To make it easier we consider the bivariate Vector 
Autoregressive Fractionally Integrated models (VARFI) with-
out the moving average component. Implementation of the 
indirect estimator involves generating a simulated process 
using the VARFI model for a given set of parameter values. 
The real data and the simulated data are then used to estimate 
an auxiliary model (in this case we refer to a VAR model). 
The two sets of parameter values obtained for the indirect 
model using the two data sets are then calibrated by choosing 
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the parameters of the VARFI model. 
The main steps of this method are: (1) to choose an auxil-

iary model and an estimation method of it. In this context we 
use a VAR(p) model with the order p selected by the Akaike 
Criterion (AIC), estimated by OLS method; and (2) to simu-
late a VARFI model for a given set of parameter values. The 
simulation method that we use in this framework is known as 
the truncated auto regression method. 

Given the model in (1), with 
 

0

( )
( ) ( 1)

d j

j

j d L
d j

∞

=

Γ −
∇ =

Γ − Γ +∑  

 
where ( )Γ ⋅  is the Gamma function, the simulation model 
can be written as 
 

0

( )( ) ( )
( ) ( 1)

l
j

t t
j

j dL L Y L
d j

δ ω
=

⎛ ⎞Γ −
Φ = + Θ⎜ ⎟

Γ − Γ +⎝ ⎠
∑             (3) 

 
where ~ (0,  )t iidω I  and l is the truncation parameter for the 
infinite order differencing filter. 

To begin the algorithm, it is necessary to choose l + p 
starting values for simulating tY . We set these values equal to 
zero. This approach may be inaccurate if the long memory 
property of the model takes a long time to forget these values. 
To overcome this start-up problem we simulate the model for 
T τ+ observations and truncate the first τ  observations. 

To compute the indirect estimates of a VARFI(p, d, 0) 
model with a VAR auxiliary model and the truncated simula-
tor, the algorithm proceeds as follows: 
1) draw a set of random numbers tϖ  from a N(0, I) distri-

bution; 
2) choose an initial set of parameter estimates for the 

VARFI(1, d) model, (0) (0) (0){ ;  ,  1,  2,  ...,  }i i p= =Ψ d Φ  
and simulate it; 1d and  2d  are chosen in the interval of 
stationary (0 - 0.5) whilst the autoregressive coefficients 
matrix is selected to assure the process to be stationary; 
in other words, we impose that the eigenvalues of Φ(L) 
are less then 1 in module; 

3) simulate the VARFI model; these observations represent 
the actual data ACT

tΥ ; 
4) estimate the VAR(p) auxiliary model with the lag length 

p set to 2; ACTΦ is computed; 
5) draw a second set of random numbers different from the 

first one, from an N(0, I) distribution; 
6) simulate a VARFI(1, d) process which represents now 

the simulation data SIM
tΥ ; 

7) estimate a VAR(2) model obtaining  

SIM
hΦ for the hth 

simulation path; 
8) repeat steps 6 and 7, for h = 1, 2,..., H times by using the 

same set of random numbers each time from step 5; and 
9) calibrate the parameter vector (0)Ψ  to minimize the 

following function: 
 

( )
2

1
Ψ̂ Φ Φ

niter
ACT SIM

h
h

Min
Ψ =

= −∑                          (4) 

3. Forecasts for VARFI Models: Two Approaches 

In real applications the main purpose of the analysis is to 
forecast the future values of the time series based on the data 
collected to the present. As known, the best linear predictors 
are those that minimize the mean squared error. In this section 
we compare two distinct approaches for constructing the 
linear least squares forecasts of unknown future values of 
long-range dependent process. As mentioned before, the first 
approach is essentially based on the application of the VAR 
model. In other words, the vector long memory time series is 
treated on pair with short memory time series without 
recognizing its special structure. 

However the method requires the choice of a model to 
approximate the autocorrelation structure of the process. We 
propose to fit the long memory process by a VAR model with 
the order selected by the Akaike Criterion (AIC) as a good 
approximation of a VARFI model. As known, the order of the 
VAR model can be very high in the presence of a long 
memory component. In this context, the first step of the 
analysis is the estimation of the model parameters by the 
ordinary least squares, which are then used for constructing 
the multistep forecasts at all lead times. 

The first approach, for the univariate case, is justified by 
Crato and Ray (1996) who demonstrated, by a simulation 
study, that only a high number of observations and a strong 
persistence motivate the use of models that take into account 
the presence of long memory parameters. Starting from the 
last consideration, in this paper we tried to extend their results 
to the multivariate case. 

On the other hand, the second approach proposed is 
implemented by explicitly recognising that the observed proc-
ess has long memory and by postulating that its dth fractional 
difference, 0 < d < 0.5, follows a short memory model. This 
approach requires the choice of the stochastic model to being 
fitted to the observed time series. In this context, we propose 
the VARFI model to perform the analysis. 

4. Simulation Results 

The relative predictive performance of the two ap-
proaches has been compared on simulated time series. The 
following five VARFI models were simulated by using the 
truncated autoregression method (Martin and Wilkins, 1999) 
with the choice of the initial set of parameters as shown in 
point 2 of section 2 (see Table 1). 

Bivariate time series of length N = 600 from each of 
these five models were generated with the innovation process 

tε  simulated as a sequence of MNV(0, I). For each simulated 
bivariate long memory time series, the multistep forecasts H 
= 15 steps. 
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Table 1. Initial Sets of Parameters for Simulated VARFI(1, d) 
Models 

 
The final objective of the simulation study has been to 

compare the relative behaviour of the two approaches for 
multistep prediction of bivariate long memory time series. 

We use the criterion of the proportionate change in the 
cumulative simulated mean squared errors of prediction up to 
H step ahead (H = 1, 2,…, 15) for making the comparisons 
discussed above. A definition of how this measure was com-
puted is given in generic terms for two different approaches of 
multistep prediction, called Approach A and B respectively 
(Bhansali and Kokoszka, 2002): 
 

{ }( ) ( )
( )

( )
A B

B

CSMSE H CSMSE H
PCSMSE H

CSMSE H
−

=          (5) 

 
where ( ) ( )A ACSMSE H SMSE h= ∑  denotes the cumulative 
simulated mean squared error of H-step prediction for the 
approach A and  
 

{ }
2

1
,

1

ˆ( ) ( ) ( )
niter

A jNA j N h
j

SMSE h Niter h−
+

=

= −∑ y y  

 
denotes the simulated h-step mean squared error of prediction 
for Approach A; ( )BCSMSE H  and ( )BSMSE h  are deter-
mined through replacing ˆ ( )jNA hy  by corresponding forecast 
ˆ ( )jNB hy  given by the Approach B. Niter represents the num-

ber of iterations. 
PCSMSE(H) measures the change in the cumulative 

simulated mean squared error of prediction when using Ap-
proach A in preference to the Approach B as a proportion of 
the cumulative simulated mean squared error of prediction of 
the Approach B. If for a given value of H it is positive, then 
this signals that the approach B has an advantage over ap-
proach A in that the latter has a larger cumulative simulated 
MSE of prediction up to H steps ahead than the former 
method and conversely a negative value of PCSMSE(H). 

The simulation results do not unequivocally point to the 
superiority of one approach over the other. These two ap-
proaches give quite similar results for all the simulated mod-

els. For the models 1, 2, 3 and 5 the cumulative simulated 
mean squared error of prediction for the second approach is 
larger than the first approach, even if not at all lead times, 
while the reverse is true for model 4. 

In summary, the simulation results do not provide evi-
dence for preferring either the first or the second approach. In 
any case, for moderate values of d (d < 0.3), the first approach 
can represent a valid alternative to the second one. Conversely, 
for larger values of d (d ≥ 0.3) there is evidence to support the 
use of the second approach because the order of the VAR 
model becomes quite high (generally 3 or 4) involving a 
growth of the number of parameters estimated. This later 
doesn’t respect the parsimonious criterion. 

 
5. Application to Environmental Data 

The proposed approaches were applied to a space-time 
series with long memory observed just on two spatial points. 
The choice of only two stations is motivated to better evaluate 
the performance of our proposal. 

Data concern the daily maximum value of carbon 
monoxide concentration on two stations of the Bergamo Dis-
trict, which are named Nembro and Seriate. The measurement 
units are micrograms of Carbon per cubic meter. The raw data 
were provided by the Environmental Agency (ARPA) of Lom-
bardy of Region Italy. The time-series are composed by 1500 
observations covering the period of 1998 to 2001. As we can 
better see in the comments, data are suitable in order to be 
analyzed by a long time series approach. 

In fact, preliminary analysis shows that the series cannot 
be considered a realization of a temporal stationary process. 
To remove heteroschedasticity, a logarithm transformation has 
been applied. As shown in Figure 1, the variability structure 
of the two series exhibits a strong seasonal component. As the 
width of the seasonal component is of order 365 days, we 
stabilized the data by the difference of order 365 of the 
logarithm data. 

Further analysis, on stationary data, shows the presence 
of long memory components as confirmed by the autocorrela-
tion function which decreases to zero at a very slow rate. This 
is confirmed through the Rescaled-range test (R/S), the Lo-
bato-Robinson Test (Lob-Rob) and the Rescaled variance test 
(V/S) for the null hypothesis of no long memory time series 
(Beran, 1994). Table 2 shows test results at a significance 
value of 5%. All tests are generally significative which means 
that both the time series are generated by a long memory 
process. 

Thus, the described stationary series can be used both for 
the application of the indirect estimation method and for the 
application of the proposed multistep prediction method.  

In particular we performed the OLS estimation on the 
transformed data of a VAR model with order p = 5 selected by 
the Akaike Criterion (AIC) and the indirect estimation method 
of the parameters of a VARFI (1, d) model (see Table 1).

VARFI(1, d) 
Iteration 

Parameters Estimation 
(0) )(0) (0Ψ = { ;  Φ ,  = 1,  2, ..., }id i p  

1 Ψ(0) = {(0.1, 0.2); (-0.296, 1.119; 0.653, 0.282)} 

2 Ψ(0) = {(0.2, 0.2); (0.487, 0.278; 0.259, 1.080)} 

3 Ψ(0) = {(0.3, 0.3); (0.547, 0.568; 0.568, -0.018)} 

4 Ψ(0) = {(0.3, 0.4); (0.912, -0.082; 0.051, -0.711)} 

5 Ψ(0) = {(0.4, 0.4); (0.981, -0.176; 0.474, -0.247)} 
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Table 2. Results of Long Memory Test 

Truncation lag for 
correlogram 0 4 8 10 12 26 50 Critical 

value 5% 
First series 1.091 0.384 0.087 0.129 0.192 0.121 0.0685 V/S 

statistic Second series 1.106 0.276 0.198 0.177 0.161 0.104 0.074 
0.1869 

First series 135.651 58.65 96.45 48.623 51.892 31.125 41.562 R/S 
statistic Second series 127.527 63.69 53.947 51.053 48.684 39.098 32.907 

1.747 

Truncation frequency 
periodogram 10 15 20 25 30 35 40 Critical 

value 5% 

First series -0.183 -1.21 -1.625 -1.992 -2.521 -4.589 -4.989 Lobato- 
robinson Second series -0.222 -1.01 -1.845 -2.668 -3.469 -4.441 -5.326 

-1.96 
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Figure 1. Concentration of carbon monoxide in Nembro and Seriate for 1998 to 2001.
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From each of the two models we generated a multi-step pre-
diction for H = 15 periods ahead by the two proposed ap-
proaches of the multi-step prediction. In order to test the 
goodness of temporal forecasts, the last 15 observations for 
each series have been excluded from the analysis. Figure 3 
compares observed data and predicted data generated by 
VAR(5) model and VARFI(1, d) model estimated on the data. 

Finally, we compared the behaviour of the two ap-
proaches by the PCSMSE index (5) introduced in section 3. 
This index results to be positive for the time series of Nembro. 
That means that the VARFI approach has an advantage over 
the VAR approach, while it is negative for the time series of 
Seriate except for the central steps of prediction (see Figure 
4). 

This confirms the simulation results in the sense that the 
VAR model represents a good fit of the correlation structure 
of a long memory process generated by a VARFI (1, d) model 
even if the lag order necessary to produce forecasts similar to 
them generated by a VARFI (1, d) model can be very high if 

the fractional component is strong and generally greater then 
0.3. In this case, the estimated VAR model is not parsimoni-
ous as the high dimension of the parameter vectors that must 
be estimated. 

On the other hand, considering that the VARFI model is 
computationally more intensive than a VAR model, even with 
a high order, we can conclude that the univariate results ob-
tained by Bhansali and Kokoszka (2001) can be extended to 
the multivariate analysis. 

6. Concluding Remarks 

In this paper we have stressed the opportunity to imple-
ment the long time series in the environmental framework. 
Long-range dependence has become a key aspect of time se-
ries modelling in a wide variety of areas including hydrology, 
physics, econometrics and many others fields. Thus, estima-
tions of long-memory models have been considered by a large 
number of authors.
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Figure 2. Data depurated by the non-stationary in variance and the seasonal component. 
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Figure 3. Multistep prediction for H = 15 steps ahead from a VAR(5) model and a VARFI model. 
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Figure 4. Representation of PCSMSE measure. 
 
Unfortunately, in this setting, the recent literature pro-

posed efficient solutions only for univariate time series, leav-
ing unsolved the multivariate case. To solve this shortcoming 
we have proposed a multivariate extension of the univariate 
methodology in order to develop a multi-step long memory 
space-time series prediction. In particular, two different 
approaches have been considered. Simulations have been 
performed in order to asses the predictive performance of the 
two approaches. 

Results show a good performance in both cases even if 
evidence is given in order to choose the method suitable 
according to the value of differences d used for nonstationary 
series. Furthermore, in order to show the applicability of the 
long memory models on environmental processes, the two 
proposed approaches have been applied in order to make 
predictions on the concentration of carbon monoxide observed 
in the Bergamo District (Italy). 
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