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ABSTRACT.  Geographic information systems (GIS) have been widely used to study spatial variability in different atmospheric pro- 
cesses. In this study, we used a GIS approach to explore the potential to examine variation patterns of lightning strikes at different 
scales so that micro-, synoptic-, and planetary-scale processes can be linked in explaining and modeling the distribution patterns of 
lightning strikes. The data collected by the ground-based lightning detection system for an entire month in the western United States 
were used as an example. Lightning strike density surfaces were generated using different kernel bandwidths, or search radii. It has 
been recognized that density surfaces are useful in visual interpretation of spatial patterns at different scales, but there are insufficient 
data on how well such surfaces can be used in quantitative analysis of point distribution patterns. In our study, the resulting surfaces 
were compared quantitatively with gridded lightning strikes using meshes, or fishnets, of different cell sizes. The fishnet cell sizes 
ranged from 1 km for micro-scale processes to 50 km for synoptic- and planetary-scale processes. The results suggest that there is a 
threshold in the search radius or kernel bandwidth, above which a significant amount of errors would be introduced in quantitative 
analysis. It could be argued that it is possible to achieve a balance between the need for visual interpretation of distribution patterns 
and the need for quantitative analysis at different scales. We used the lightning data of August 1990 and digital elevation models of 1 
km resolution to perform a case study on the relationship between lightning occurrence and topography. Our results indicate that at 
different spatial scales, the relationships between lightning density and topography may reflect different processes that influenced the 
spatial distribution pattern of the lightning occurrence. 
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1. Introduction  

This study examines the potential of studying spatial pat-
terns of cloud-to-ground lightning events using density sur-
faces generated by geographic information systems (GIS). 
Cloud-to-ground lightning is a frequent natural phenomenon 
often associated with severe weather conditions, which can 
cause loss of property and human life. Therefore, it is consid-
ered a form of natural hazards requiring risk analysis from 
both spatial and temporal perspectives (Elsom, 1996, 2001; 
Coates et al., 1993; Blong, 1997; Berz et al., 2001). From a 
regional point of view, it is a concern for the utility industry 
because severe thunderstorms can cause equipment damage 
and power shortages for large areas. Spatial analysis of light-
ning occurrence has been useful to assess the safety and 
reliability of power utility systems (López et al., 1997). It can 
also pose a severe risk for major public events. For example, 
Livingston et al. (1996) and Watson and Holle (1996) 
examined the climatology of lightning for the 1996 Summer 
Olympic Games in Atlanta, Georgia, a region with frequent 
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thunderstorms during the summer months. Lightning is asso- 
ciated with the occurrence of wildfires as a major ignition me- 
chanism, which again has significant impact on human society 
and ecosystems (Stocks et al., 2003; Gedalof et al., 2005). The 
spatial and temporal patterns of wildfires can be linked to the 
occurrence of lightning events (Hardy, 2005). To understand 
the occurrence of wildfire, lightning and the associated wea- 
ther conditions must be examined. Synoptic conditions opti- 
mal of thunderstorm occurrence can then be used for predic- 
tions of fire occurrences in a large area context (Rorig and 
Ferguson, 1999, 2002).  

Because of its associations with many different atmosph-
eric and surface processes, the spatial pattern of lightning oc- 
currence is of special interest in atmospheric science, fire 
ecology, disaster planning and management, and the power/ 
energy industry. Under a specific synoptic condition, lightning 
occurrence associated with one or more thunderstorms may 
display distinct spatial patterns (Figure 1). Besides numerous 
studies on the physics of the lightning phenomenon, quan- 
titative information on lightning has been used to estimate 
convective rainfall at different spatial scales, especially during 
the warm season when convective rainfall makes up a large 
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portion of the total rainfall events (Sheridan et al., 1997; 
Petersen and Rutledge, 1998; Tapia et al., 1999; Seity et al., 
2001; Ezcurra et al., 2003). Spatial patterns of lightning were 
analyzed together with precipitation data for specific events, 
such as the 1993 flood in the U.S. Midwest (Kempf and 
Krider, 2003) and post-wildfire debris flows in Colorado 
(Underwood and Schultz, 2003, 2004). Lightning data may 
also be useful in the construction of global gridded preci- 
pitation datasets (Morales and Anagnostou, 2003; Chronis et 
al., 2004). In many studies with a spatial context, the lightning 
events were often overlaid with other layers of information. In 
predicting lightning occurrence in space and time, Diaz- 
Avalos et al. (2001) considered factors such as vegetation 
cover, elevation, and slope in the Blue Mountains area of 
Oregon. In a study covering different spatial scales, Dissing 
and Verbela (2003) concluded that various combinations of 
elevation and areal coverage of forest variables can be used to 
explain the variation in lightning strikes. In studies of wild- 
fires, vegetation, topography and weather conditions have 
been used to predict fire behavior (Fowler and Asleson, 1984). 
On the other hand, the occurrence of lightning has been used 
to predict spatial pattern of wildfire occurrence and the associ-
ated vegetation changes from a long-term perspective (Griffin 
et al., 1983; Bergeron et al., 1997; Potter et al., 1998; Dissing 
and Verbyla, 2003). Another example of relating lightning oc- 
currence to earth surface processes is the investigation of the 
possible enhancement effect of urbanization on lightning fre- 
quency, in which lightning frequency and density data must 

be overlaid accurately on the land use/land cover data in order 
to determine the spatial associations (Westcott, 1995; Steiger 
et al., 2002; Soriano and de Pablo, 2002; Naccarato et al., 
2003; Pinto et al., 2004). Similarly, lightning occurrence 
downwind of forest fires has been investigated for possible 
enhancement by the smoke plumes (Smith et al., 2003), which 
again requires geographic coregistration of lightning and fire 
occurrence. 

The purpose of this study is to investigate the potential of 
using density surfaces generated by GIS as a tool for both 
visual and quantitative analyses of the spatial pattern of light-
ning strikes. A density surface is a raster data format, with 
each cell containing a value to represent the density of point 
occurrence (Bailey and Gatrell, 1995), such as lightning 
strikes. The density is determined by counting the number of 
point occurrence within a given search radius or bandwidth. 
For regions with a high frequency of lightning strikes, density 
surfaces are especially useful in visually characterizing long- 
term patterns of lightning occurrence because a map of all 
lightning events as points during an extended period, such as a 
few weeks, would simply result in a solid mass without any 
discernable patterns (Figure 2). Another advantage of density 
surfaces lies in the nature of the raster data model, which has 
a simple data structure and is easy to use in biophysical mo- 
deling of spatial processes in which overlay of different data 
layers is often necessary (Lo and Yeung, 2002). One question 
we attempt to answer is whether density surfaces generated 
using different levels of smoothing as represented by the 

 
 

Figure 1. Spatial pattern of lightning occurrence associated with a given synoptic condition. 
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search radius or bandwidth could satisfy the accuracy require- 
ments of studies of lightning at different spatial scales. We 
will examine current practices of using GIS in lightning ana- 
lysis and investigate the influence of various parameters in 
constructing the density surfaces, especially the influence of 
search radius or bandwidth, using the lightning strikes during 
August 1990 across the entire western United States as a case 
study. 

2. Data and Methods 

The lightning data of August 1990 used in this study 
were obtained by the National Lightning Detection Network 
(NLDN), a ground-based detection system established during 
the 1980s. There are over 100 sensors across the contermi-
nous United States with an accuracy of 0.5 ~ 1 km (Cummins 
et al., 1998; Underwood and Shultz, 2004). This network 
mainly monitors cloud-to-ground lightning activities and is 
currently managed by Vaisala located in Tucson, Arizona 
(www.vaisala.com). The dataset contains the following fields: 
latitude and longitude of lightning events, date and time, po- 
larity, frequency when there were multiple strikes at a given 
location, and amplitude. Since the main focus of this study is 
the lightning occurrence frequency, each event was treated as 
a single point without considering the multiplicity. The light-
ning data were not screened for errors or to separate positive 
and negative polarities since the main purpose of this study is 
to explore the methods of analysis. For the month of August 
1990, there were a total of 666,811 lightning events in the 

western United States in the spatial realm of 31 ~ 45°N and 
103 ~ 125°W.  

Lightning studies have employed several ways to sum- 
marize lightning density over space. One approach of integra- 
ting other spatial data with lightning data is by boundaries of 
spatial units such as counties (Stallins, 2004) or watersheds. 
The results are step-like statistical surfaces similar to choro- 
pleth maps (Dent, 1999), which may not offer sufficient spa- 
tial resolution for modeling purposes as other spatial data 
layer may be presented as continuous fields. Another com-
monly used method is to use grids of a fixed size, such as 5 
km (Steiger et al., 2002), and present the number of lightning 
strikes in each cell, essentially constructing a 2-dimension his- 
togram (Silverman, 1986). In an investigation of the relation-
ship between lightning occurrence and cloud-top temperature, 
Molinie and Jacobson (2004) used variable grid sizes from 10 
× 10 km to 20 × 20 km across the conterminous United 
States corresponding to the footprints of the GOES-8 sensor. 
An alternative, but similar method is to use the grid of latitude 
and longitude to create grid cells (Pinto et al., 2004), although 
it may not be appropriate for large areas because the physical 
dimension of the latitude/longitude grid is not constant at dif- 
ferent latitudes. Both approaches result in a surface presen- 
tation of the lightning density. These surfaces, however, may 
not be smooth (unless the grid size is small relative to the 
spatial extent of the study area) and there could be abrupt 
changes from one cell to the next depending on where the cell 
boundary is located.  

A density surface, on the other hand, is a raster presenta-

 
 

Figure 2. The study area – western United States, and all lightning events during August 1990. 
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tion of point density distribution as a continuous smooth sur-
face over space. Density surfaces are produced by counting 
the frequency of points within a moving disc of a given search 
radius. There are two approaches to presenting the density of 
points inside the disc. One is a simple summation of the num-
ber of points divided by the search area, which is assigned to 
the cell at the center of the search area (Help Manual of Arc-
GIS under Point Density, ESRI, Redlands, CA). Another 
approach, kernel bandwidth, uses a bivariate probability den-
sity function to attribute the density values inside the search 
area for a given location, with the highest value centered at 
the event and reaching zero at the margin of the search area 
(Silverman, 1986; Bailey and Gatrell, 1995). The intensity of 
a spatial process that generates the point distribution (s1 … sn) 
at any location s can be estimated as: 
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where δτ(s) is an edge correction factor to ensure that all 
computations are limited within the study region, and τ is the 
bandwidth or search radius that defines the disc of search area 
surrounding the location s (Bailey and Gatrell, 1995). K is the 
bivariate probability density function, also known as kernel 
function, with a radially symmetric unimodal shape. The vari-
ate of K is the distance between the location s and the point 
event si, normalized by the bandwidth τ. If the quartic kernel 
function as described by Silverman (1986, p. 76, Eq. 4.5) is 
used without considering the edge effect, the above equation 
can be approximated as:  
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where hi is the distance between a location s and an observed 
point event si, which has an influence to the density value at 
point s within the bandwidth of τ (Bailey and Gatrell, 1995, p. 
85). Figure 3 illustrates the profile of the quartic density ker-
nel function for half of the search area based on a 5 km band-
width. At any given cell location of the output raster, all over- 
lapping density values are added up to form a continuous den- 
sity surface. Generally speaking, the greater the bandwidth, 
the flatter and smoother the resulting density surface, but the 
more likely that the local features may be obscured (Bailey 
and Gatrell, 1995). 
Although the density surface approach has advantages over 
the other methods, except for a rough estimate or rule- 
of-thumb based on the average point density, there are no 
clear guidelines on how to determine a proper bandwidth. For 
example, in ArcGIS, a leading GIS software package (ESRI, 
Redlands, CA), the default search radius or bandwidth is set 
arbitrarily as the smaller of the width and height of the point 
data extent divided by 30 (Help Manual of ArcGIS under 
Point Density). A number of estimates of the bandwidth exist 

based on the mean density of points in area of A (N/A) or 
mean distance between points as A0.5/N, where N is the total 
number of point events. Bailey and Gatrell (1995) outlined an 
estimate of suitable bandwidth as 0.68 N-0.2 A0.5. This implies 
that for lightning studies in a given region, different band-
widths or search radii might be necessary to achieve the best 
results as the number of lightning strikes fluctuates. The issue 
may be more relevant in GIS analysis since the operator may 
zoom in and out to various spatial extents to examine features 
and processes of different scales. In this case, variable band-
widths may not be feasible as the number of total point events 
changes, while a single fixed bandwidth based on the total 
number of points in the entire dataset may not work well at all 
scales. Williamson et al. (1999) proposed a method based on 
the spacing between a given number of nearest neighboring 
points. They claimed that their method was superior to the 
others. However, the user was still left with the need to deter-
mine a factor (k) for the smoothing effect.  
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Figure 3. A profile of the quartic kernel density function 
(Silverman, 1986, p.76 Eq. 4.5; Bailey and Gatrell, 1995, p. 
85) of half of the search area for a 5 km bandwidth. 

 
We used ArcGIS to analyze all lightning events in August 

of 1990, focusing on two approaches to generating lightning 
densities. For the first approach, we used fixed grid cell sizes 
of 1, 5, 10, 20, 40, and 50 km and counted lightning events 
within each cell, as described by Steiger et al. (2002). A Vis-
ual BASIC script (Nicholas, 2003) was used to generate “fish-
net” grid layers of 1 km, 5 km, 10 km, 20 km, 40 km, and 50 
km in size (Figure 4). These grid sizes can be related to me- 
teorological conditions of various scales: 1 ~ 5 km to repre-
sent micro-scale distribution patterns, such as those influen-
ced by local topography, 10 ~ 20 km grids to represent meso- 
scale or regional patterns, and grids of 40 ~ 50 km to repre- 
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sent synoptic and planetary patterns, such as those related to 
upper-air ridge and trough locations and general circulation 
patterns. The fishnet grid layers output from the script are 
comprised of polygons, which were used to count the light- 
ning events inside each grid cell using the spatial join function 
of the GIS software.  

For the second approach, kernel bandwidths of 1, 5, 10, 
20 and 50 km were used to generate raster lightning density 
surfaces, while maintaining a constant output cell size of 1 km. 
In producing raster point density surfaces, the kernel band- 
width option was chosen over the simple search area option 
because of the smoothed visual effect (Figure 5). Additionally, 
the underlying assumption of the kernel bandwidth estimation 
is that the event occurrence is probabilistic, with the recorded 
location having the highest probability (Silverman, 1986), 
which fits well to the characteristics of lightning occurrence 
and the accuracy of the lightning data (0.5 ~ 1 km) (Cummins 
et al., 1989; Underwood and Schultz, 2004). The same set of 
fishnet grid polygons were then used to summarize raster 
values of the five density surfaces using the Zonal Statistics 
function. The density results from both approaches were com- 
pared using regression analysis, with the estimated number of 
events from the raster density surfaces regressed against the 
actual number of events counted by the fishnet grids. 

For analysis based on 1 km grids, the Zonal Statistics 
function could not be directly employed because we encoun-

tered a limit to the maximum number of the vectors zones 
allowed. Therefore, three fishnet polygon layers, each with 
315,000 1-km cells running N-S across and study region, were 
generated for the areas with high lightning occurrence (Figure 
4). The raster density surfaces were first converted to a point 
data layer using a Visual BASIC script (Rathert, 2005), with 
the points located at the center of the raster cells assigned with 
the cell density values. Then the point layer was spatially 
joined to the fishnet grid polygons to transfer the raster cell 
values to the fishnet polygon layers, which were also used to 
count the number of lightning events from the original light-
ning point data. Additionally, an area of 99,225 km2 was se-
lected in a region of relatively high lightning spatial variabi- 
lity (north-eastern Arizona) to be used for verification (Figure 
4) using the Zonal Statistics function.  

In regression analysis for the comparison between the 
density values obtained from the raster density surfaces and 
those from the fishnet grids of different sizes, we used the ra- 
tio of the search radius or kernel bandwidth (KB), to the sum- 
marizing grid size as the criterion to standardize the effect of 
grid size. For example, a value of 1.0 means the search radius 
is the same as the summarizing grid size ranging from 1 km to 
50 km when the lightning events were counted. A ratio smal- 
ler than 1.0 represents the bandwidth being smaller than the 
size of the summarizing grid cells, and vice versa. The coef- 
ficient of determination (R2) and the standard error of estima- 

 
Figure 4. Fishnet grids of 1 km to 50 km in size used as the summarizing grids (a), three bands of 1-km grids of 315,000 cells 
used in analyzing the performance of density surfaces (b), and an area of 99,225 km2 in northeastern Arizona for verification 
using the Zonal Statistics function of ArcGIS. 
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tion of regression were used as the measures of performance 
of the raster density surfaces to predict lightning distribution 
patterns.  

3. Results and Discussion 

3.1. Visual Evaluation 
The lightning strike data were projected to an Albers 

equal area projection with parameters listed in Table 1. The 
resulting spatial extent was measured as approximately 2150 
km in width (X) and 2070 km in height (Y). Table 2 contains 
general statistics of the lightning strikes during August of 
1990. The mean density was calculated by dividing the total 
estimated area (A) using the spatial extent height and width 
into the total number of lightning events (N). The mean dis-
tance between lightning events was determined as A0.5/N. 
Figure 6, zooming into the verification area in northeastern 
Arizona for a visual comparison, shows the raster density sur- 
faces using the default bandwidth of 68.4 km in ArcGIS, and 
that based on the Bailey and Gratrell (1995) bandwidth esti- 
mate of 98.2 km. Both raster surfaces were generated for the 
entire study region with an output cell size of 1 km. There is 
no doubt that the evaluation of visual presentation can be sub- 
jective. However, one can make a general assessment whether 
a map, based on an appropriate bandwidth at a specific band- 
width, renders good visual results. Both maps gave reasonably 
good presentations of regional patterns of lightning occur- 
rence at the synoptic scale, with very smoothed density sur- 

faces (Figure 6). When compared with the original point pat- 
tern in Figure 2, the density surfaces clearly demonstrated the 
advantage of displaying the spatial pattern of lightning occur- 
rence during the month. The smaller bandwidth (ArcGIS de- 
fault) rendered slightly more details than the map based on the 
greater bandwidth. 

 
Table 1. Parameters of the Albers Equal Area Projection Used 
in this Study  

 Projection Parameters 
Projection Name Albers Equal Area Conic 
Central Meridian 114°W 
Reference Latitude 20°N 
1st Parallel 35°N 
2nd Parallel 45°N 
False Easting 0.00 meter 
False Northing 0.00 meter 

 
The following examples at the local/micro-scale and re-

gional scales (Figure 7) illustrate the influence of bandwidths 
on the patterns displayed on density surfaces, as bandwidth 
increased from 1 km to 20 km. Again, all density surfaces 
were generated using 1-km cell size for the purpose of compa- 
rison in the following section. The maps focus on an area with 
relatively high lightning density in northeastern Arizona. It 
can be seen that the density surfaces became increasingly 

 
 

Figure 5. Visual comparison between the simple search radius (a) and kernel estimation (b) approaches in 
generating density surfaces. Both were based on the ArcGIS default search radius of 68.2 km and generated for the 
entire study region, but zoomed to the verification area in northeastern Arizona. 
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smoothed as the bandwidth increased and, concurrently, local 
details were diminished in the process.  

 
Table 2. General Characteristics of Lightning Strikes in the 
Western United States in August 1990 

  General Statistics 

Total Lightning Events 666,811 
Spatial Extent Height 2070 km 
Spatial Extent Width 2150 km 
Total Area 4,450,555 km2 

Mean Lightning Density 0.1498/km2 

Mean Distance 2.58 km 
ArcGIS Default Bandwidth 68.4 km 
Bailey & Gatrell Bandwidth 98.2 km 

 
3.2. Accuracy Assessment Using Regression Analysis 

In regression analysis to assess the performance of the 
density surfaces, the dependent variable is the lightning den-
sity values obtained by counting the number of lighting events 
in grids of different sizes, while the independent variable is 
the lightning density obtained by summarizing the density 
surfaces using the same set of summarizing grids. The R2 
value is a measure of the goodness-of-fit of the point pattern 
to the regression line or the prediction power of the regression 
equation. In this case, the R2 value represents the quality of 

prediction of the actual occurrence of lightning events by a 
raster density surface within a specific grid system. For each 
summarizing fishnet grid size 5 km or larger (5, 10, 20, 40, 
and 50 km), a regression model was produced for a given ker- 
nel bandwidth (KB). For example, when 10 km fishnet grids 
were used, the R2 values of the regression models decreased 
from 0.999 to 0.993, 0.980, 0.932, and 0.832 for bandwidths 
of 1 km, 5 km, 10 km, 20 km, and 50 km, respectively (Table 
3). For summarizing fishnet grids of 1 km in size, four dif- 
ferent regression models were produced using results from 
three bands of 315,000 fishnet grids and the verification area 
of 99,225 km2 in northeastern Arizona. The other metric used 
in evaluation is the standardized errors of estimates of regres- 
sion analysis, further normalized by the mean density and half 
of the data range for cross-bandwidth comparisons. 

When the R2 values and the normalized standard errors 
are plotted against the ratio of bandwidth/grid size (Figure 8), 
it is clear that the density surfaces rendered accurate results as 
long as the bandwidth is smaller than or equal to the grid size 
used to summarize the surface values. When the bandwidth is 
greater than the grid size, the density surfaces become less 
and less effective as the bandwidth to grid size ratio increases. 
For summarizing grids of 5 km or greater, R2 values dropped 
to below 0.9 as the bandwidth/grid size ratio increased to 2.0 
or higher. Similarly, the standard errors/mean ratio reached 
0.5, while the standard errors normalized by half of the data 
range reached approximately 0.04. When the 1 km fishnet 
grids were used to summarize the density surfaces, however, 

 
 

Figure 6. Visual comparison between density surfaces generated using the ArcGIS default kernel bandwidth (68.2 
km) (a) and bandwidth estimated using the Bailey and Gatrell (1995) method (b). Both were generated for the entire 
study region, but zoomed to the verification area in northeastern Arizona. 
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the regression analysis produced dramatically worse perform-
ance for all density surfaces of bandwidths greater than 1 km, 
although the results of the 1-km summarizing fishnet grids 
were very consistent in the three different sampling bands. 
This was further confirmed by the results for the 99,225 km2 
verification area. 

Since the results of the 1-km summarizing grids differ so 
much from the grids of 5 km or greater, we analyzed the rela- 
tionships between the performance metrics and the bandwid-
th/grid size ratio separately. For plotting purposes, 1/R2 was 
used for graphing instead of the original R2 values. The best 
curve-fitting function (linear, logarithmic, power, or exponen-
tial) was determined for each metric (Figure 9, Table 4). It 
should be pointed out that due to small sample sizes; the 
confidence regions of the estimated parameters were not cal- 
culated. Nevertheless, based on these equations (Table 4), a 
bandwidth can be estimated for a given summarizing grid size 
and a desirable performance metric, or vice versa. For exam-
ple, if the desirable R2 is 0.95, then based on the equation 1/R2 
= 0.0418 × Bandwidth/Grid Size + 0.9928 for summarizing 
grids 5 km or larger, a Bandwidth/Grid Size ratio of 1.431 
would be needed to guarantee good quality outcomes. In the 
case of a regional study using 10 km summarizing grids, a 
bandwidth of 14.3 km or smaller should be considered. In the 
case of a synoptic level study using 50 km summarizing grids, 
a bandwidth of 71.6 km or smaller should be considered. A 

similar approach can be applied to requirements based on the 
standardized error of estimates. For example, a Bandwidth/ 
Grid Size ratio of 1.431 will render a SE/Mean ratio of 0.227, 
and a SE/0.5 of data range ratio of 0.034. 

 
3.3 Examples of Topographic Analysis of Lightning Distri- 
bution 

 To illustrate potential applications of density surfaces 
derived from different bandwidths, we performed analysis on 
the relationship between lightning frequency and topographic 
variables, such as elevation and slope aspect. It has been a 
common belief that lightning strikes occur on high topogra-
phic locations. However, previous studies on the relationship 
between lightning occurrence and topography were inconclu-
sive (Fowler and Asleson, 1984; Potter et al., 1998; Dissing 
and Verbyla, 2003). Based on the general rule identified in the 
previous section, we matched the summarizing grid size with 
the bandwidth of the density surface. In other words, a band- 
width/grid size ratio of 1.0 was maintained for all following 
analyses to ensure good performance of the raster density sur- 
faces. The original 1-km resolution DEM data were not used 
directly because of the poor results from the 1-km summari- 
zing grids. The DEM data were first resampled to 5 km, 10 
km, 20 km, and 50 km resolutions using the cubic convolution 
algorithm (Lillisand and Kiefer, 1999) to match the band- 
widths and represent the spatial scales of analysis, shifting 

 
 

Figure 7. Density surfaces generated using bandwidths of 1 km (a), 5 km (b), 10 km (c), and 20 km (d) for micro 
and regional scales, focused on the verification area in northeastern Arizona. The density surface of 50 km is not 
presented as it is similar to that using the bandwidth of 68.2 km. 
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from local/micro, regional, to synoptic scales. Then the DEM 
cells were used as the zones to summarize the lightning den- 
sity surface of the matching bandwidth. DEM cells of the 
same elevation (as integers) were aggregated so that for a 
given elevation value, there is a set of summary statistics of 
the lightning density surface. It should be pointed out that the 
spatial resolution of the DEM data and the accuracy of the 

lightning data do not allow an accurate account of the re- 
lationship between lightning occurrence and topography at the 
micro scale. 

The mean density and total events (calculated as the sum 
of all cell values multiplied by the cell area) corresponding to 
each elevation value are presented in Figures 10 and 11. It is 
beyond the scope of this study to examine the mechanisms 

Table 3. Results of Regression Analysis in Assessing the Performance of Density Surfaces of Different Kernel Bandwidth 
(KB) against the Actual Counted Lightning Frequency Using Different Summarizing Fishnet Grid Sizes  

Model  R2 Std. Error of the Estimate Summarizing Grid Size (km) KB/Grid Size 
1 km KB 0.9948 0.402 5 0.20 
5 km KB 0.9553 1.176 5 1.00 
10 km KB 0.8929 1.822 5 2.00 
20 km KB 0.8189 2.368 5 4.00 
50 km KB 0.7208 2.941 5 10.00 
     

1 km KB 0.9992 0.574 10 0.10 
5 km KB 0.9935 1.670 10 0.50 
10 km KB 0.9801 2.917 10 1.00 
20 km KB 0.9325 5.374 10 2.00 
50 km KB 0.8323 8.469 10 5.00 
     

1 km KB 0.9999 0.841 20 0.05 
5 km KB 0.9990 2.420 20 0.25 
10 km KB 0.9970 4.319 20 0.50 
20 km KB 0.9847 9.688 20 1.00 
50 km KB 0.9145 22.932 20 2.50 
     

1 km KB 1.0000 1.251 40 0.025 
5 km KB 0.9999 3.366 40 0.125 
10 km KB 0.9996 6.073 40 0.25 
20 km KB 0.9978 13.844 40 0.5 
50 km KB 0.9762 45.755 40 1.25 
     
1 km KB 1.0000 1.393 50 0.02 
5 km KB 0.9999 3.755 50 0.1 
10 km KB 0.9998 6.854 50 0.2 
20 km KB 0.9988 15.815 50 0.4 
50 km KB 0.9854 55.331 50 1 

* Results for 1 km summarizing grids were not included due to poor performance and multiple sampling areas, but are presented in Figures 
8 and 9. 
 
Table 4. Regression Equations between Metrics of Performance and the Bandwidth/Grid Size Ratio  

Summarizing Grid Size Dependent Variable  Regression Equation  R2 

1 km 1/R2  = 1.3233 Ln(Bandwidth/Grid Size) + 1.4718 0.9608 
 SE/Mean  = 0.2616 Ln(Bandwidth/Grid Size) + 1.1048 0.7193 
  SE/(0.5 Data Range)  = 0.0701 (Bandwidth/Grid Size)0.1958 0.6356 
≥ 5 km 1/R2  = 0.0418 (Bandwidth/Grid size) + 0.9928 0.9606 
 SE/Mean  = 0.1631 (Bandwidth/Grid Size)0.9243 0.9169 
  SE/(0.5 Data Range)  = 0.0255 (Bandwidth/Grid Size)0.7891 0.9517 
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Figure 8. Performance metrics: R2 (a), SE/mean (b), and SE/0.5 data range (c), plotted against the 
ratio of bandwidth to summarizing grid size.  
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Figure 9. Result of curve-fitting for the performance metrics: R2 (a), SE/mean (b), and SE/0.5 
data range (c), plotted against the ratio of bandwidth to summarizing grid size. 
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Figure 10. Mean lightning density by elevation at different spatial scales: 5 km (a), 10 km (b), 20 km (c), and 50 km (d).  
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Figure 11. Total lightning events by elevation at different spatial scales: 5 km (a), 10 km (b), 20 km (c), and 50 km (d).  



Z. Y. Yin et al. / Journal of Environmental Informatics 9(1) 4-17 (2007) 

 

15 

that determine the relationship between lightning occurrence 
and topography, but it can be clearly seen that the relationship 
between lightning density and elevation changes as the scale 
changes from the micro to synoptic level, apparently influ- 
enced by factors acting at different spatial scales. For example, 
at the micro and regional levels as represented by bandwidths 
of 5 and 10 km, there was a consistent trend of increase in 
mean lightning density with increasing elevation up to 3,000 
m and then it was obscured by large variability at higher ele- 
vations. With the bandwidth of 20 km, the trend was still visi- 
ble, and then it all but disappeared at the synoptic scale re- 
presented by the 50 km bandwidth. For total lightning events 
at various elevation values, there was a peak between 1000 ~ 
1500 m, best defined by 5 km bandwidth, but visible for band- 
widths of 10 and 20 km. Again, this peak disappeared for the 
50 km bandwidth, suggesting that at the synoptic scale, topo- 
graphic influences on lightning distribution patterns may be 
diminishing. It should be pointed out that the distribution of 
total lightning events by elevation is strongly influenced by 
the areal hypsography distribution in the study area and, 
therefore, may not be as revealing as the pattern of mean den- 
sity by elevation. Similarly, we calculated slope aspects using 
the resampled DEMs and then divided the slope aspects into 
the eight major directions (N, NE, E, SE, S, SW, W, and NW) 
and flat (mostly water surfaces). For each aspect direction, the 
mean lightning densities were summarized (Figure 12). It can 
be seen that results obtained from the density surfaces of 20 
and 50 km bandwidths were different from those from the 
smaller bandwidths. The distribution of lightning strikes on 
slopes of different aspects was relatively uniform at the 
micro-scale, with only a minor peak of lightning occurrence 
over the east-facing slopes based on the 5 ~ 10 km band- 
widths and DEM resolutions. For 20 ~ 50 km bandwidths and 
DEM resolutions, however, the peak occurrence was over the 
south- and southwest-facing terrains and there was low oc- 
currence over the north-facing slopes. Although we used only 
one month of data and the relationships between lightning oc- 
currence and topography may not be spatially and temporarily 
robust, our results suggest that such relationships could vary 
with spatial scales and may have reflected the influence of 
different atmospheric and surface processes.  

4. Conclusions 

In this study we examined the method and accuracy of 
using GIS generated raster density surfaces to visually and 
quantitatively present the spatial distribution patterns of light-
ning occurrence, using the western United States as an exam-
ple. Besides clear visual advantage of using density surfaces 
to present lightning data, we determined that satisfactory per-
formance can be achieved as long as the kernel bandwidth 
matches the summarizing grid size at a given spatial scale. In 
other words, the bandwidth or search radius used to generate 
the density surface should be determined according to the 
needs of analysis. In this case, a ratio of bandwidth/grid size 
of 1.431 or lower renders good results with R2 values higher 
than 0.95 and standard error/mean ratios lower than 0.25 in 
regression analysis of density-surface predicted values against 

the actual counted values for grids of 5 km to 50 km in size. 
However, there is probably no need to use a search radius 
smaller than half of the summarizing grid size. Once the 
above requirement is met, density surfaces performed very 
well both visually and quantitatively. This also suggests that 
density surfaces can be a means for data assimilation and as a 
form of model input.  
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Figure 12. Lightning distribution by major slope aspects at 
different spatial scales: 5 km, 10 km, 20 km, and 50 km. 
 

As grid size approaches the spatial resolution of the den-
sity surface (1 km) and the accuracy of the lightning data (0.5 
~ 1 km), the performance of density surfaces dropped drasti-
cally. Even the best performance of the 1-km summarizing 
grids was much worse than that of other grid sizes (R2 = 0.82 
~ 0.83, SE/mean = 0.8 ~ 2.0). Therefore, we separated the 1 
km summarizing grids from the rest in our regression analysis 
of performance for the raster density surfaces. Using these re- 
gression equations, a kernel bandwidth can be estimated once 
the spatial scale and a desirable performance level are deter- 
mined. 

We used raster density surfaces generated using kernel 
bandwidths from 5 km to 50 km to analyze the relationships 
between lightning occurrence in August 1990 and topographic 
factors (elevation and slope aspect) as examples. Our results 
suggested that such relationships, if valid, may change with 
the spatial scale, as the processes reflected by these relation-
ships may be different at micro, regional, and synoptic levels. 
Through these examples, the potential of density surfaces in 
studying spatial patterns of lightning occurrence was clearly 
demonstrated. It is the intention of the authors to further in- 
vestigate the spatial patterns of lightning events in the western 
United States in relation to a number of factors, such as 
vegetation, topography, and elevation (Potter et al., 1998; 
Dissing and Verbyla, 2003). Results of this study demonstra-
ted that density surfaces can be a valuable analytical tool for 
this purpose. 
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