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ABSTRACT.  This paper presents a series of experiments on classification of remotely sensed images, to investigate the effective-
ness of various combinations of different types of feature sets, including spectral features, variance features and wavelet-based features. 
All the experiments use the identical study area, training data, reference data, testing data, and classification algorithm while varying 
the feature sets. The classification accuracy from different feature sets is evaluated using the traditional accuracy assessment from 
reference data. The experimental results show that the spectral-based feature set has the basic discrimination power to distinguish 
classes with middle and high homogeneity value. However, it has little success in correctly classifying classes with low homogeneity 
value, such as the residential class. Compared with spectral features, the multi-scale wavelet-based feature set can improve the 
discrimination power for classes with both low and high homogeneity value. The variance-based feature set alone has little discrimina-
tion power, no matter what homogeneity level the class has. However, adding the variance features into the spectral feature or wave-
let-based feature set can dramatically increase the classification accuracy for classes with low homogeneity value. 
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1. Introduction 

Classification of a remotely-sensed image is the process 
of assigning categorical classes (such as land-use/land-cover 
types) to the pixels in the digital remotely-sensed images 
(Lillesand, 2000). Automatic classification of remotely-sensed 
images plays an increasingly important role in analyzing the 
huge number of remotely-sensed images. Various classifica- 
tion approaches have been applied to the classification of re- 
motely-sensed images in the past decades. The approaches are 
characterized as supervised and unsupervised classifications 
(Jensen, 1996). Supervised classification uses a set of prede- 
fined classes, and labeled training data. In contrast, unsuper- 
vised classification works with little prior knowledge and 
aims to discover natural clusters that exist in the data set. We 
focus on supervised classification in this paper. 

The most commonly used supervised classification ap- 
proach is the pixel-based spectral approach, in which a classi- 
fier is applied to label a pixel based on its spectral values in 
different bands. The pixel-based classification approach has 
been criticized for not considering the spatial structure (or he- 
terogeneity) of a class (Chen et al., 2003), especially for com- 
plicated classes in an urban environment when fine spatial re- 
solution imagery is used (Gong and Howarth, 1990; Fung and 
Chan, 1994). For example, a single-family house may be re- 
presented by a pixel in a 30-m spatial resolution remotely sen- 
sed image. However, when looked at in 4-m spatial resolu- 
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tion images, a single-family house may include building roof, 
pool, shrubs, grassland and driveway, etc. Consequently, a 
single-family residential house cannot be accurately classified 
by using the spectral signatures of individual pixels. 

Considerable research has been conducted to increase the 
accuracy of the spectral analysis of remotely-sensed images 
by using texture analysis, in which some measure of variabi- 
lity in density values is estimated within local windows. The 
most common of these are contrasts between neighboring 
pixels (Edwards et al., 1988), the standard deviation (Arai, 
1993), or local variance (Woodcock and Harward, 1992). 
Other measures include the coefficient of variation, higher 
moments of different order, spatial auto-correlation, and grey- 
level differences. Conners and Harlow (1980) proposed the 
gray level difference histograms in which various texture fea- 
tures are calculated to classify texture. Second-order statistical 
based methods rely on the spatial arrangement of adjacent 
pixels that consider the second order probability distribution. 
However, most of the studies primarily focus on the use of 
texture on a single scale, while the textures of a class in the 
real world are often non-uniform and can be characterized at 
multiple scales (Pathak and Dikshit, 2007). 

Wavelet-based classification addresses of the lack of ade- 
quate tools to represent textures at different scales (MyInt, 
2000). Several researchers showed that texture analysis of the 
wavelet decomposed sub-images at different scales provides 
superior discrimination of different urban objects/samples 
(Zhu and Yang, 1998; MyInt, 2002). Zhu and Yang (1998) 
achieved high accuracies in distinguishing different texture 
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images. Chang and Kuo (1993) proposed a multi-resolution 
approach based on a modified wavelet transform called the 
tree-structured wavelet transform for the texture analysis and 
the classification. Andrew and Jian (1993) studied the texture 
classification using wavelets. They evaluated wavelets for the 
classification of twenty-five natural textures selected from the 
Brodatz album (1966), which is an album consisting of va- 
rious types of texture images. Unser (1995) proposed a new 
approach for texture classification and segmentation using the 
wavelet frames. Yet individual assessment of the effective- 
ness of wavelet-based approaches using different wavelet fea- 
tures measures without having integrated assessment of wave- 
lets with other non-wavelet-based feature sets has sparked a 
marked interest on advanced study. 

The objective of this paper is thus to investigate the ef- 
fectiveness of three feature sets (spectral-based feature set, 
variance-based feature set, wavelet-based feature set) and the 
effectiveness of combining two other feature sets with wave- 
let-based features. To achieve this goal, we carry out a series 
of classification experiments using combinations of three dif- 
ferent feature sets, while keeping the training data, reference 
data, and classification algorithm unchanged. In the following, 
we describe the wavelet-based feature decomposition first. 
Then the methodology is presented. 

2. Wavelet-Based Classification 

Wavelet-based classification is developed based on the 
wavelet theory initially developed from the signal processing 
using a set of special signals, which are oscillatory (look like 
waves) and have amplitudes decaying to zero in both positive 
and negative directions (Young, 1993). In the discrete wavelet 
transform (DWT), the signal is passed through a series of low- 
pass filters to analyze the low frequencies, and a series of 
high-pass filters to analyze the high frequencies. The resolu- 
tion of the signal, which is a measure of the amount of de- 
tailed information in the signal, is changed by the filtering 
operation, and the scale is changed by the up-sampling or 
down-sampling operations. After passing the signal through a 
half band low-pass filter, half of the samples can be elimi- 
nated. Therefore, the resolution is halved after the filtering 
operation. The DWT analyzes the signal at different frequency 
bands with different resolutions by decomposing the signal 
into a coarse approximation and detail information. 

The discrete wavelet transform proposed by Mallat (1989) 
initially decomposes an image into one approximation image 
and three detail images. It filters the original image with com- 
plementary low-pass and high-pass filters in each dimension. 
The filtered images are down-sampled at every other pixel, 

 
Figure 1. (a) Image convolution process; (b) Low-pass filter and high-pass filter convolution for 
rows and columns; (c) Input Image and the output sub-images (A, H, V, D) and their positions in 
the output image. 
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producing four images of half the resolution of the original. 
For a one-level wavelet transform, the result is an approxima- 
tion sub-image and three detail sub-images. The approxima- 
tion sub-image maintains the major trend of the original 
image, while the detail sub-images represent the difference 
between the approximation sub-image and the original image 
in different directions (Bian, 2003). 

The process of wavelet decomposition can also be de- 
scribed as a filter convolution with the original image. For the 
level one wavelet decomposition, the signals can be obtained 
by convolving the signal with the appropriate filters. Figure 1 
illustrates the process of filter convolution with the image. 

The filter process can be applied again to the approxima- 
tion sub-image (or any detail sub-images), resulting in four 
additional second-level sub-images (See Figure 2). There are 
many different types of wavelets, for example, Haar wavelet, 
Daubechies, coilets, symlets, biorthogonal (Gonzalez and 
Woods, 2001). The Haar wavelet is the simplest and oldest 

one in the wavelet family. For the Haar wavelet, the low-pass 
filter coefficient in a sub-image is obtained by dividing the 
sum of two adjacent pixel values by 2 , whereas the high- 
pass filter coefficient is obtained by dividing the difference of 
two adjacent pixels value by 2 . The approximation sub- 
image from a simple Haar transform at the second-level is the 
average of the approximation at the first-level, while the de- 
tailed sub-images represent differences between approxima- 
tions at two successive levels. This filtering process creates a 
multi-level representation of the original image through two 
sets of information. One is a hierarchy of approximation at in- 
creasingly coarser resolutions and the other is detail at cor- 
responding resolutions. Thus, the wavelet transform not only 
separates the trend from details as many other filtering me- 
thods do, but it also presents both sets of approximation and 
detail sub-images. Figure 2 illustrates the standard wavelet de- 
composition process of an image at one, two and three levels 
using a simple Haar transform. 

 
 
 
 

 
 

(a) Original image (b) One level wavelet decomposition 

(c) Two level wavelet decomposition (d) Three level wavelet decomposition 

 

  Figure 2. An example of one-, two-, and three-level wavelet decompositions using Haar wavelet. 
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The wavelet decomposition provides a set of coefficients 
at each pixel. For example, a one-level wavelet decomposi- 
tion provides four coefficients, namely, the four spectral (or 
density) values in each of the four sub-images. An approach 
based on the direct use of wavelet decomposition coefficients 
is investigated in our study. The wavelet transform not only 
separates the trend from details as many other filtering me- 
thods do, but it also presents both sets of information at mul- 
tiple scales. The wavelet coefficients in the approximation and 
detail sub-images are usually summarized by several indices 
that represent the underlying properties of the images. Widely 
used indices are statistical in nature, ranging from simple ones, 
such as mean and standard deviation, to more complex varie- 
ties, such as entropy measures (Pesaresi, 2000; MyInt, 2000). 

3. Methods 

3.1. Study Area and Data Set 

An IKONOS multi-spectral image covering a portion of 
the western part of the city of Kingston, Ontario, Canada is 
used in this study. The IKONOS image was acquired on April 
25, 2000 with a spatial resolution of 4 meters and four spec- 
tral bands. The size of each spectral band is 2,363-by-2,517 
pixels, covering an area of 9.45 × 10.07 km2. The four spec- 
tral bands are the visible blue band (wavelength 0.45 to 0.53 
µm), visible green band (wavelength 0.52 to 0.61 µm), visible 

red band (wavelength 0.64 to 0.72 µm), and invisible near in- 
frared band (wavelength 0.77 to 0.88 µm). Figure 3 shows the 
near infrared band of the IKNOS image. 

 
3.2. Classification Scheme 

Ten classes are defined in this study based on prior know- 
ledge of the ground characteristics of the study area (Kingston 
western area), and based on a previous study of classification 
of this area (Chen, 2007). The ten classes are described in 
Table 1. Of these ten classes, some are land cover classes, 
such as coniferous forest, deciduous forest and water; the 
others are land use classes, such as residential and commer- 
cial. 

 
3.3. Feature Extraction 

Experiments described in this paper use three feature sets: 
a spectral-based feature set, a wavelet-based feature set, and a 
variance-based feature set. The spectral-based feature set is 
derived from full spectral bands of the study area. It uses a 
feature vector of length of four, with one feature from each 
band. 

 The variance band is generated from the spectral band 
through calculating the variance of an n-by-n sliding window 
based on the image. A previous study by Chen (2007) showed 
that the NIR band has the most significant effect in the gene- 

 
 

Figure 3. The near infrared (NIR) band of IKONOS image covering the study area. 
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ration of the variance band. Therefore, the variance from the 
NIR band is used in this study. Several different window sizes 
including 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, and 13 × 13 are 
tested. The highest overall accuracy is achieved using a 7 × 7 
window size. Thus, the variance band generated by the 7 × 7 
window is used in the following comparison. 

The wavelet-based feature set is derived from one or two 

level wavelet decomposition bands. The wavelet bands are de- 
rived from the spectral bands image. We create a one-level 
wavelet-based feature set, and a two-level wavelet-based fea- 
ture set, respectively. 

The feature sets used in this study are composed of indi- 
vidual feature sets or combinations of the three feature sets. 
Table 2 lists the different feature combinations and feature 

Table 1. Land-Cover/Land-Use Classes in the Study Area 

Class No.  Class Name Normalized Homogeneity 
Value (0-1) 

Description  

1 Road /Transportation 0.69 Main street/transportation 

2 Residential 0 Mainly single houses in the study area  

3 Commercial  0.45 Dominated by commercial building roof, parking lots, and industrial 
complexes 

4 Coniferous forest 0.68 Vegetative communities dominated by evergreen coniferous trees 

5 Agriculture 0.72 Crops actively cultivated and irrigated 

6 Irrigated grassland 0.89 Big patches of land having grass only 

7 Wetland 0.58 Areas dominated by saturated soils and often standing water 

8 Cleaned/Vacant land 0.64 Vacant land or unused land 

9 Water body 1 Mostly represented by Lake Ontario and creeks, as well as ponds 
north of highway 401 

10 Deciduous forest 0.66 Areas dominated by trees where the tree species shed foliage 
simultaneously in response to seasonal change 

* The calculation of Normalized Homogeneity Value is described in Section 3.4. 

 
Table 2. Different Feature Combinations Used in This Study  

Feature 
set No. 

Feature set Description Abbr. of 
feature set 

Length of 
feature vector 

A1 Spectral features  Use of the spectral-based feature set (B1-B4) only S 4 

A2 One-level Wavelet 
features 

Use of one-level wavelet-based feature set (B1-B4) W(I) 16 

A3 Two-level wavelet 
features 

Use of two-level wavelet-based feature set (B1-B4) W(II) 32 

A4 Spectral + one-level 
wavelet feature 

Use of combination of the spectral-based feature set (B1-B4) 
and one-level wavelet-based feature set (B1-B4) 

SW(I) 20 

A5 Spectral + two-level 
wavelet features 

Use of the combination of the spectral-based feature set and 
two-level wavelet-based feature set (B1-B4) 

SW(II) 36 

A6 Variance features Use of the variance-based feature set only (near infrared  
band) 

V 1 

A7 spectral +Variance 
features 

Use of combination of spectral-based (B1-B4) and 
variance-based feature set (single band) 

SV 5 

A8 Variance + one-level 
wavelet features 

Use of the combination of the variance-based feature set (single 
band) and one-level wavelet-based feature set (B1-B4) 

VW(I) 17 

A9 Variance + two-level 
wavelet features 

Use of the combination of the variance-based feature set and the 
two-level wavelet-based feature set (B1-B4) 

VW(II) 33 

A10 Spectral + one-level 
wavelet + Variance 
features 

Use of the combination of the variance-based feature 
set(B1-B4), one-level wavelet-based feature set (B1-B4), and 
the spectral-based feature set (single band) 

 

SW(I)V 

21 

A11 Spectral + two-level 
wavelet + Variance 
features 

Use of the combination of the spectral-based feature set, 
two-level wavelet-based feature set, and the variance-based 
feature set (B1-B4) 

SW(II)V 

 

37 

* B1-B4 represents the four spectral bands of the image 
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vector length tested in this study. In total, there are 11 classi- 
fications based on various feature sets. 

 
3.4. Training 

We use a minimum distance classifier (also called the 
nearest-neighbor classifier) (Duda et al., 2001). In the training 
stage, feature values are measured on training data, and these 
feature values are stored as a set of feature vectors for each 
class. To classify an unknown sample, the sample's feature 
vector is compared to all the stored feature vectors to find the 
closest one. The training samples are obtained by selecting 4- 
by-4 image blocks for each class. Our choice of small block 
size is due to the limitation that it is very difficult to collect 
the Road class training sample with a size larger than 4-by-4, 
and we use the same training sample size for all classes. For 
wavelet-based features, the wavelet decomposition coefficient 
values of training samples are extracted using a one-level or 
two-level wavelet decomposition.  

We define a homogeneity value, to describe the degree of 
similarity of pixel values within a class (or a region). The ho- 
mogeneity value is measured as the inverse of the average va- 
riance value of training samples using the following formula: 

 





M

i

sampletrainingianceavg

yValueHomogeneit

1

)__var(

1
  (1) 

 
where i represents the ith sampling block for a class; the vari- 
ance_training_sample is the variance of the spectral values of 
the one training sample; M represents the total number of 
sampling blocks for a class. The homogeneity value is calcu- 
lated separately for each class. The homogeneity values are 
normalized and linearly scaled into the range of 0 to 1, with 
the effect that the homogeneity values of Residential class and 
Water class are set to 0 and 1, respectively. The normalized 
homogeneity values for each class are listed in Table 1. The 
homogeneity value for the Commercial class is the average of 
the homogeneity values for its three sub-classes (commercial 
building roof, parking lots, and industrial complex). 

 

3.5. Classifier 

A minimum distance (MD) classifier is employed in all 
the classifications due to its simplicity. The ranges of values 
in the three feature sets are different. In order to meet the re- 
quirement of the MD classifier, all values in three feature sets 
are scaled (normalized) into the range 0 to 2047. A pixel is 
classified by measuring its feature values, and comparing 
them to those from training data (Duda et al., 2001). The 
Euclidean distances in feature space between a pixel and dif- 
ferent classes are calculated, and then ordered. The pixel is 
assigned to its closest class. 

 

3.6. Accuracy Assessment  

The accuracy assessment is conducted by comparing the 
classified result of reference data with ground truth. In this 

study, the collection of the reference data includes sampling, 
visually interpreting the sampling points, and field-checking 
for reference data. First, 80 random points for each class were 
generated over the study area using a stratified random sam- 
pling method. In total, 800 points were generated. Visual in- 
terpretation and on-site field checking was conducted for each 
point. Due to changes in ground cover between dates of data 
acquisition and field-checking, some points can not be label- 
led with enough confidence. These points are removed. In the 
end, 706 points are kept. 

An error matrix is generated for each classification. The 
overall accuracy and kappa coefficient, as well as user’s and 
producer’s accuracy of individual classes are derived from the 
error matrix. 

4. Result Analysis 

The overall accuracy and kappa coefficient for each clas- 
sification set (A1 to A11) derived are listed in Table 3. Both 
overall accuracy and kappa coefficient show the same trend. 
The use of the wavelet-based feature set increases the overall 
accuracy for classes both with high homogeneity value and 
with low homogeneity value. Adding the variance-based fea- 
ture set also dramatically increases the discrimination power 
for classes with low homogeneity. 

 
Table 3. Overall Accuracy and Kappa Coefficient of 
Classifications with Different Feature Sets 

No. Abbr. of Feature 
sets 

Overall accuracy 
(%) 

Kappa 
Coefficient (%) 

A1 S 75.4 72.3 

A2 W(I) 79.7 77.1 

A3 W(II) 79.9 77.4 

A4 SW(I) 79.6 77.1 

A5 SW(II) 79.9 77.4 

A6 V 37.9 30.3 

A7 SV 79.1 76.4 

A8 VW(I) 85.5 82.9 

A9 VW(II) 86.7 85.1 

A10 SW(I)V 86.0 84.2 

A11 SW(II)V 89.1 87.7 

 

Tables 4 and 5 list the user’s accuracy and producer’s ac- 
curacy of classification with different feature sets (A.1 to A.11) 
for each individual class. In Tables 4 and 5, each column re- 
presents one of the 10 pre-defined classes, and each row re- 
presents classifications with different feature sets. 

From the classification results, we see that most of the 
Road class is misclassified into Commercial class. The reason 
for this is that the Road class is composed of similar material 
as a commercial building roof or parking lot, such as concrete. 
The Road is linear in most cases, while the Commercial class 
is usually a polygonal region formed by a block of pixels. 
This is a very important feature to distinguish the Road class 
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from the Commercial class. Algorithms specified for linear 
features can be used to separate the Road class and the 
Commercial class. However, this is not the focus of this paper, 
and we did not investigate this. 

The spectral-based feature set has high discrimination 
power for classes with middle or higher homogeneity value, 
especially the Water class. For example, using only the spec- 
tral-based feature set, we achieve 92.1% user’s accuracy and 
99.4% producer’s accuracy for class Water; we also achieve 
76.0% user's accuracy and 85.3% producer’s accuracy for De- 
ciduous forest. However, the spectral-based feature set is 
weak for detecting classes with low homogeneity value, such 
as the Residential class. Only 44.7% user’s accuracy and 
15.5% producer’s accuracy are achieved for the Residential 
class. 

The wavelet-based feature set improves the discrimina- 
tion power for classes with low homogeneity value, compared 
with the spectral-based feature set. It also improves the over- 

all accuracy for classes with high homogeneity value. Com- 
pared with the spectral-based feature set, using the wavelet- 
based feature set alone achieves 5% accuracy improvement 
for classes with high homogeneity values and 3% overall ac- 
curacy improvement for classes with low homogeneity values. 
The experimental results demonstrate that there is no signi- 
ficant difference between the use of the one-level wavelet- 
based feature set and the two-level wavelet-based feature set. 

The variance-based feature set alone has poor ability to 
discriminate most of the pre-defined classes except the Resi- 
dential class, because it uses only the variance as the feature. 
Classes with middle or higher homogeneity value have similar 
variances. Therefore variance is not a good feature to distin- 
guish classes with middle or higher homogeneity values. 

However, adding the variance-based feature set to the 
wavelet-based feature set dramatically improves the classifi- 
cation accuracy for classes with low homogeneity value, espe- 
cially the Residential class. The user’s accuracy of Residential 

Table 4. User’s Accuracy of Classification with Different Feature Sets 

 Road Residential Commercial Coniferous Agriculture Grassland Wetland Vacant Water Deciduous 

A1 0.193 0.447 0.678 0.820 0.721 0.787 0.761 0.773 0.921 0.760 

A2 0.222 0.662 0.762 0.907 0.702 0.903 0.752 0.852 0.996 0.722 

A3 0.198 0.697 0.760 0.906 0.706 0.905 0.758 0.845 0.996 0.719 

A4 0.145 0.489 0.706 0.884 0.698 0.905 0.767 0.845 0.997 0.701 

A5 0.196 0.695 0.760 0.904 0.709 0.904 0.755 0.843 0.996 0.719 

A6 0.024 0.649 0.155 0.483 0.410 0.159 0.056 0.099 0.589 0.407 

A7 0.172 0.762 0.746 0.644 0.907 0.929 0.885 0.756 0.991 0.724 

A8 0.201 0.788 0.798 0.835 0.909 0.945 0.881 0.851 0.998 0.846 

A9 0.227 0.852 0.791 0.918 0.866 0.940 0.850 0.874 0.998 0.830 

A10 0.213 0.795 0.794 0.861 0.905 0.942 0.877 0.859 0.998 0.848 

A11 0.203 0.914 0.802 0.937 0.924 0.961 0.868 0.874 0.998 0.869 

* Feature sets A1 to A11 are defined in Table 2 

 
Table 5. Producer’s Accuracy of Classifications with Different Feature Sets 

 Road Residential Commercial Coniferous Agriculture Grassland Wetland Vacant Water Deciduous 

A1 0.184 0.155 0.766 0.909 0.785 0.930 0.811 0.840 0.994 0.853 

A2 0.236 0.234 0.784 0.990 0.820 0.943 0.821 0.881 0.993 0.928 

A3 0.189 0.232 0.795 0.991 0.839 0.944 0.826 0.881 0.993 0.928 

A4 0.167 0.273 0.756 0.989 0.822 0.944 0.787 0.892 0.993 0.740 

A5 0.185 0.231 0.794 0.991 0.838 0.945 0.826 0.881 0.993 0.927 

A6 0.065 0.697 0.455 0.014 0.429 0.072 0.006 0.153 0.865 0.251 

A7 0.370 0.724 0.584 0.701 0.863 0.856 0.740 0.834 0.989 0.862 

A8 0.349 0.738 0.687 0.899 0.893 0.900 0.816 0.881 0.991 0.945 

A9 0.289 0.717 0.768 0.947 0.899 0.919 0.824 0.882 0.9937 0.936 

A10 0.349 0.738 0.705 0.909 0.896 0.906 0.820 0.880 0.992 0.947 

A11 0.367 0.880 0.721 0.995 0.903 0.915 0.809 0.882 0.992 0.937 
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class rises from 44.7 to 91.4%, and the producer’s accuracy 
rises from 15.5 to 88.0% with the adding of the variance 
features. 

5. Conclusions 

In this paper, we investigate the effectiveness of three 
individual feature sets and various combinations of the three 
feature sets for the classification of remotely-sensed images. A 
set of experiments are devised to provide a qualitative evalua- 
tion of classification results. Based on the experimental results, 
we draw the following conclusions: 

1) The spectral-based feature set can achieve basic satis- 
factory results for classes with middle or higher homogeneity 
value. However, it has low discrimination power for classes 
with low homogeneity, especially the Residential class. 

2) Compared with the spectral-based feature set, the wa- 
velet-based ones (one-level or two-level) can slightly impro- 
ve the classification accuracy. This is because wavelets have 
the capability to distinguish classes with different homoge- 
neity value. 

3) We did not find a significant difference in classifica- 
tion accuracy between one-level wavelets and two-level wa- 
velets in this study. 

4) The variance-based feature set alone has little discri- 
mination power for all the classes. However, it plays a sig- 
nificant role in detecting classes with low homogeneity value 
when combined with other feature sets, such as the wavelet- 
based feature set. Adding the variance-based feature set can 
dramatically improve the classification accuracy for classes 
with low homogeneity value. 
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