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ABSTRACT.  An inexact two-stage stochastic quadratic programming (ITQP) model is developed for water resources management 
under uncertainty. The model is a hybrid of inexact quadratic programming and two-stage stochastic programming. It can deal with the 
uncertainties presented as both probabilities and intervals. Moreover, it can deal with nonlinearities in objective function to reflect the 
effects of marginal utility on the benefit and cost components. Using quadratic form in the objective function rather than linear one, the 
ITQP can minimize the unfair competition of water resources among multiple users under uncertain water conditions. In the modeling 
formulation, penalties are imposed when policies expressed as the promised water supply targets are violated. In its solution process, 
the ITQP model is transformed into two deterministic submodels based on an interactive algorithm and a derivative algorithm, which 
correspond to the lower and upper bounds of the desired objective. Interval solutions, which are feasible and stable in the given 
decision space, can then be obtained by solving the two submodels sequentially. The developed method is then applied to a case study 
of water resources management planning. The results indicate that reasonable solutions have been obtained. They can help provide 
bases for identifying desired water-allocation plans with maximized system benefit and minimized system-failure risk. 
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1. Introduction 

Over the past decades, controversial and conflict-laden 
water allocation issues among competing municipal, industrial, 
and agricultural interests have raised increasing concerns 
(Huang and Chang, 2003). The growing population and 
shrinking water availability have exacerbated such compete- 
tions, particularly under varying natural conditions and dete- 
riorating quality of water resources. On the other hand, uncer- 
tainties may exist in a number of the related system compo- 
nents, leading to complexities in generating desired decisions 
of water resources management; furthermore, such uncertain- 
ties may be multiplied by not only interactions among various 
sub-systems but also their associations with economic penal- 
ties if the promised targets are violated. Therefore, it is de- 
sired that effective approaches be developed to address these 
complexities and uncertainties. 

Two-stage stochastic programming (TSP) method is ef- 
fective for problems where an analysis of policy scenarios is 
desired and the right-hand-side coefficients are random with 
known probability distributions. In the TSP, a decision is first 
undertaken before values of random variables are known; then, 
after the random events have happened and their values are 
known, a second-stage decision can be made in order to 
minimize “penalties” that may appear due to any infeasibility 
(Loucks et al., 1981; Li et al., 2006). Previously, a number of 
researchers considered water resources management system 
uncertainties through applications of the TSP approaches 
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(Kovacs et al., 1986; Wang and Adams, 1986; Trezos and Yeh, 
1987; Ruszczynski and Swietanowski, 1997; Ferrero et al., 
1998; Huang and Loucks, 2000; Seifi and Hipel, 2001; Luo, et 
al., 2003; Maqsood et al., 2005; Li et al., 2006; Li and Huang, 
2007). For example, Wang and Adams (1986) proposed a two- 
stage optimization framework for the planning of optimal re- 
servoir operations; Ferrero et al. (1998) examined hydro- 
thermal scheduling of multi-reservoir systems using a two- 
stage algorithm; Huang and Loucks (2000) proposed an in- 
exact two-stage stochastic programming (ITSP) model for 
water resources management where the interval-parameter 
programming (IPP) method was introduced into the TSP 
framework. However, the ITSP method was based on an as- 
sumption that the objective function was linear, resulting in 
difficulties in dealing with such issues wherein marginal 
utility affect the revenue and/or cost coefficients in a TSP pro- 
blem and thus make the relevant objective function nonlinear. 

Quadratic program (QP) is a useful tool for mathematical 
programming and has important application to systems ana- 
lysis. It can reflect nonlinearity in the cost/benefit objectives, 
which exists in many environmental problems, and has global 
optimum under a number of system conditions (Hillier and 
Lieberman, 1986). For example, Rockafellar and Wets (1986) 
proposed a Lagrangian finite generation technique for solving 
linear-quadratic problems in two-stage stochastic program- 
ming; Shil’man (1992) used a stochastic quasigradient method 
for quadratic optimization under dependent observations; 
Huang et al. (1995) proposed an inexact quadratic program 
(IQP) through introduction of interval numbers into the QP 
framework. More recently, Chen and Huang (2001) extended 
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the IQP work of Huang et al. (1995) and proposed a derivative 
algorithm method (DAM) for solving the IQP problem , 
which required much lower computational efforts than the 
previous algorithm and thus facilitated the IQP’s application 
to large-scale problems. However, although the IQP approach 
could handle the interval uncertainties in the model’s left- 
and/or right-hand sides as well as in the objective function, it 
had difficulties in dealing with uncertainties expressed as ran- 
dom variables and was lack of linkages to economic cones- 
quences of violated policies. 

Thus, as an extension of the previous works, this study 
aims to develop an inexact two-stage quadratic stochastic pro- 
gramming (ITQP) method for water resources planning under 
uncertainty. This is a hybrid in which approaches of inexact 
quadratic programming (IQP) and two-stage stochastic pro- 
gramming (TSP) will be integrated within a general optimiza- 
tion framework. The ITQP method can handle uncertainties 
expressed as both probability density functions and discrete 
intervals; moreover, it can deal with nonlinearities in objec- 
tive function to reflect the impacts of marginal utility under 
stochastic conditions. A hypothetical case study will then be 
provided for demonstrating applicability of the developed 
method. The results will help water resources managers not 
only make decisions of water allocation but also identify de- 
sired water-allocation policies under maximized system bene- 
fit and minimized system-failure risk. 

2. Formulation of the ITQP Model 

Consider a problem wherein a water-resource manager is 
responsible for allocating water to multiple users under uncer- 
tainty. The total water supply available during the planning 
period has random features, and the users need to know how 
much water they can expect in order to make appropriate 
decisions to support their various activities and investments. 
Based on the local water resources management policy, a pro- 
jected quantity of water can be allocated to each user. If this 
projected target is diverted, it will result in net benefits to the 
local economy; otherwise, penalties will be incurred. More- 
over, in such a water resources management system, the im- 
pacts of marginal utility are desired to reflect since the benefit 
and penalty are expressed as inexact linear functions of water 
demand and shortage. This may lead to the relevant objective 
function nonlinearity (i.e. quadratic forms). 

Consequently, the technique of interval-parameter qua- 
dratic programming (IQP) will be incorporated within a two- 
stage stochastic programming (TSP) model to tackle the un- 
certainties expressed as interval and/or random and nonline- 
arities existing in the objective function. This may lead an 
inexact two-stage quadratic stochastic programming (ITQP) 
model. In the ITQP, a decision of water allocation target needs 
to be made before deterministic information about the future 
water flows is available, which is called the first-stage deci- 
sion. Along with the time, when the actual water flows be- 
come available, a recourse action should then be taken; this is 
named the second-stage decision. The second-stage decision 
variables will be determined after the values of random vari- 

ables are available, so as to minimize penalties that may ap- 
pear due to any infeasibility. Thus, we have: 

 

1 1 1
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m m n

i i i i j it ij it ij
i i j

f T T p D D        
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,),(
1
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i
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

                                    (1b) 

jiDTT ijii ,,0max   .                          (1c) 

 
where f = expected net system benefit; 

ijD = amount by 
which water-allocation target 

iT  is not met when the seaso- 
nal flow is 

jq  with probability 
jp  (decision variables); i  

= water user, i = 1, 2, …, m; j = the level of water availability, 
j = 1, 2, …, n; jp = the probability of occurrence for sea- 
sonal flow 

jq ; 
jq = random variable equal to total water avai- 

lable with probability
jp ; 

iT = fixed water-allocation target 
that is promised to user i; 

maxiT = maximum allowable allo- 
cation amount for user i; 

it   = the slope of benefit curve for 
water demand for user i during period t (

it  <0);
it
  = the 

intercept on the benefit axis for user i during period t (
it
 >0); 

it   = the slope of penalty curve for water shortage for user i 
during period t (

it  >0); 
it
  = the intercept on the penalty 

axis for user i during period t (
it
 >0). It is indicated that the 

relationship between benefit and demand is expressed as a 
monotonic decreasing inexact linear function, while the rela- 
tionship between penalty and shortage is presented as a mono- 
tonic increasing one. 

Symbols of 
it  , 

it
 ,

it  , 
it  , 

iT , 
maxiT and 

ijD  de- 

note interval parameters and variables, and superscripts‘−’ 
and ‘+’ represent lower and upper bounds of a parameter or 
variable. For example, letting 

iT  and 
iT  be lower and up- 

per bounds of 
iT , respectively, we can have ],[   iii TTT .  

Moreover, in model (1), water supply targets 
iT  (i.e. water- 

allocation target that is promised to user i by the authority) 
need to be determined at the first-stage before the inflows are 
known, while water deficits 

ijD  will be identified at the se- 

cond-stage when the actual inflows are known. Thus, in this 
study, it is proposed that an optimized set of target values can 
be obtained by introducing 

iy  as decision variables. Accord- 

ing to Huang and Loucks (2000), let 
iT  have a deterministic 

value of 
iii yTT  , where   iii TTT  and  1,0iy . 

Thus, model (1) can be converted to: 
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max 0, ,i i i i ijT T T y D i j                            (2c) 

 

0 1,iy i                                      (2d) 

 

When 
iT  approach their upper bounds (i.e. yi = 1), a  

high system benefit can be obtained if the water demands are 
satisfied, but a high penalty may have to be paid when the 
promised water is not delivered. Conversely, when 

iT  reach  

their lower bounds (i.e. yi = 0), we may have a lower benefit 
but, at the same time, a lower risk of violating the promised 
targets (and thus lower penalty). This optimized set may cor- 
respond to the highest possible system benefit and reliability 
given the uncertain water-allocation targets. 

When 
iT  are known as deterministic values, model (2) 

can be transformed into two deterministic submodels which 
correspond to the upper and lower bounds of the desired 
objective-function value, respectively. The transformation 
process is based on the methods of interactive and derivative 
algorithms (Huang et al., 1995; Huang, 1996; Chen and 
Huang, 2001). In this study, since the penalty coefficients of 

i
  and 

i
  that are related to the interval decision variables 

(
ijD ) have same sign (i.e. 0i

  and 0i
  ), according to 

Chen and Huang (2001), all 
ijD  correspond to f , and all 

ijD  correspond to f  . Consequently, interval solutions, 

which are feasible and stable in the given decision space asso- 
ciated with different system-failure risk levels, can then be 
obtained by solving the two submodels sequentially. Since the 
objective is to maximize net system benefit, submodel (1) cor- 
responding to f  (i.e. most desirable system objective) can 

be firstly formulated as follows: 
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1

( ),
m

j i i i ij
i

q T T y D j  



                             (3b) 

 

max 0, ,i i i i ijT T T y D i j                            (3c) 
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where 

ijD  and 
iy  are decision variables. Let optijD  and 

optiy  be solutions of submodel (1). The optimized water-allo- 

cation targets are 
opt opti i i iT T T y    , which correspond to 

the extreme upper bound of system benefit under the uncer- 
tain inputs of water-allocation amounts. Then, we have the 
following submodel corresponding to f : 

2
opt opt
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where 
ijD are decision variables. Let 

optijD  be solutions of 

submodel (2). Thus, solutions for the ITQP-primal model un- 
der the optimized water allocation plan are: 

 

opt opt opt[ , ], ,ij ij ijD D D i j                               (5a) 

 

opt opt opt[ , ]f f f                                       (5b) 

 

Then, the optimal water allocation plan and the expected 
net system benefit can be calculated as follows: 

 

opt opt opt , ,ij i ijA T D i j                               (5c) 

 

3. Case Study 

Consider a case in which a water manager is responsible 
for allocating water in a dry season from an unregulated reser- 
voir to three users: a municipality, an industrial concern, and 
an agricultural sector. All users want to know how much water 
they can expect over the planning period. If the promised wa- 
ter is delivered, a net benefit to the local economy will be ge- 
nerated for each unit of water allocated. However, if the pro- 
mised water is not delivered, either the water must be obtain- 
ed from higher priced alternatives or the demand must be cur- 
tailed by reduced production, resulting in a reduced net sys- 
tem benefit. Consequently, it is necessary for the available 
water to be effectively allocated to minimize any or all of the 
associated penalties or negative consequences. Tables 1 and 2 
present the water resources available, target demands, and 
economic data. 

The problem under consideration is how to effectively 
allocate water to the three users to achieve a maximum benefit 
under uncertainty, while incorporating water policies with the 
least risk of system disruption. Uncertainties exist in terms of 
intervals and probability distributions, and a link to a prede- 
fined policy is desired; moreover, nonlinear relationships may 
exist among many of the system components. Thus, the ITQP 
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method is considered to be a feasible approach for this type of 
planning problem. 

4. Result and Discussion 

Table 3 presents the solutions obtained through the ITQP 
method. It is indicated that the solutions for the objective 
function value and most of the non-zero decision variables are 
intervals. Generally, solutions presented as intervals demon- 
strate that the related decisions should be sensitive to the un- 
certain modeling inputs. Deficits would occur if water re- 
sources available from the reservoir do not meet the user de- 
mands. In case of insufficient water, the allotment to the farm- 
ers should be first decreased but guaranteeing the minimum 
promised target. The municipal use should be first guaranteed 
since it brings the highest benefit when water demand is satis- 
fied; meanwhile, it is subject to the highest penalty if the pro- 
mised water is not delivered. In comparison, the industrial and 
agricultural uses correspond to the lower benefits and penal- 
ties. Figure 1 presents the water allocation targets and opti- 
mized water allocation patterns under different water-avai- 
lability levels (

jq ). 

The results of the optimized water targets for the three 
users could be obtained through formula 

opt opti i i iT T T y    . 

For example, the results of 
1opty = 

2 opty = 1.0 indicate that the 

optimized water-allocation targets for the municipal and in- 
dustrial users would equal 3.5 × 106 and 5.0 × 106 m3, corres- 
ponding to their upper-bound target values (i.e. 

1T   and 
2T  ). 

This means that the manager is optimistic for water supply to 

the municipal and industrial users, and thus promises an up- 
per-bound water quantity to the two users. Conversely, for 
agricultural sector, the result of 

3opty = 0 indicates that the op- 

timized water-allocation target reaches its lower-bound (i.e. 

3T   = 4.5 × 106 m3); this also implies that the manager has a  

conservative attitude toward water allocation to user 3 despite 
of water flow level. Each optimized water-allocation flow 
(listed in Table 3) is the difference between the fixed demand 
and the probabilistic shortage under a given stream condition 
and with an associated probability (i.e. 

optijA =
optiT  +

opti iT y  

optijD ). 

The solutions of 
ijD  under the given targets reflect po- 

tential system condition variations caused by uncertain inputs. 
The lower-bound of 

ijD  (i.e. ijD ) corresponds to a higher 

system benefit; in comparison, the upper-bound of 
ijD  (i.e. 

ijD ) leads to a lower system benefit. For user 1 (i.e. muni- 

cipal), the solution of 
11optD = [0.0, 0.5] × 106 m3 means that, 

when seasonal flow level is low and associated with a pro- 
bability of 10%, there would be no shortage under advanta- 
geous conditions, and there would be a shortage of 0.5 × 106 
m3 under demanding conditions. The results also indicate that 
there would be no shortage of water (in reference to the opti- 
mized water-allocation target of 3.5 × 106 m3) for the munici- 
pality under low-medium to high flows (i.e. 

12optD  = 
13optD  

= 
14optD  = 

15optD  = 0). For user 2 (i.e. industrial), the solu- 

tions of 
21optD = [2.7, 5.0] × 106,

22optD = [1.0, 3.0] × 106, and 

23optD  = [0.0, 1.2] × 106 m3 indicate that shortages may exist 

Table 1. Distribution of Stream Flows 

Stream flow level Probability (
j

p ) Stream flow, 
j

q   (106 m3) 

Low (j = 1) 0.1 [3.0, 6.5] 

Low-medium (j = 2) 0.2 [6.5, 10.0] 

Medium (j = 3) 0.4 [10.0, 14.0] 

Medium-high (j = 4) 0.2 [14.0, 17.0] 

High (j = 5) 0.1 [17.0, 20.0] 

 
Table 2. Information of Water Allocation and Economic Implication 

Water users Activity 

Municipal (i = 1) Industrial (i = 2) Agricultural (i = 3) 

Maximum allowable allocation (106 m3) [5.0, 7.0] [7.0, 10.0] [12.0, 15.0] 

Water allocation target (106 m3) [2.5, 3.5] [3.0, 5.0] [4.5, 7.5] 

Net benefit when water demand is satisfied ($/m3) 

i
NB   (Lower-bound) -6.428 x + 90 -3.438 x + 55 -2.857 x + 40 

i
NB   (Upper-bound) -8.214 x + 115 -4.375 x + 70 -3.928 x + 55 

Penalty when water is not diverted ($/m3) 

i
C   (Lower-bound) 13.333 x + 120 5.385 x + 70 5.455 x + 60 

i
C   (Upper-bound) 16.667 x + 150 6.923 x + 90 7.273 x + 80 
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under low to medium flow levels, respectively; however, there 
would be no shortage under medium-high and high flow 
levels (i.e.

24optD  = 
25optD  = 0). For user 3 (i.e. agricultural), 

there would be no shortage under medium-high and high 
water-flow levels; however, the results indicate that, under 
low to medium flow levels, the shortages would be [3.8, 4.5] 
× 106, [2.0, 3.5] × 106 and [0.0, 1.8] × 106 m3, respectively. 

The solution of 
optf   = $[173.5, 613.1] × 106 provides 

two extremes of the system benefit under the optimal water 
allocation pattern. As the actual value of each variable or 
parameter varies within its two bounds, the system benefit 
may change correspondingly between 

optf   and 
optf   with 

varied reliability levels. Planning for the lower-bound of the 
objective-function value will lead to a lower system benefit 
with a lower risk of violating the water-allocation target. Con- 
versely, planning with a higher system benefit will correspond 
to a higher possibility of violating the water-allocation target 
when approaching the upper-bound of the objective-function 
value. Therefore, there is a tradeoff between the water-allo- 
cation benefit and the system-failure risk. 

The problem was solved through the ITSP method 
(Huang and Locuks, 2000) without considering the effects of 
marginal utility on benefit and penalty. The main limitation of 
the ITSP is its over-simplification of the relationship between 
benefit and demand, as well as relationship between penalty 
and shortage. The ITSP method is based on an assumption 
that the effects of marginal utility are negligible and, thus, the 
relevant objective function is represented as linear form. 
However, the impacts of marginal utility may be significant 
when the limited water resources will be allocated among 

multiple competing users. This may make the ITSP method 
less realistic, leading to ineffectiveness in achieving the de- 
sired water-allocation schemes for decision-makers. In com- 
parison, the ITQP method can effectively deal with such 
issues wherein marginal utility affect the benefit/cost coeffi- 
cients in a mathematic programming problem. The results ob- 
tained through the ITQP method indicate that, when the de- 
ficit for the agricultural sector reaches a critical level, the 
allotment to the industry begins to decrease, resulting in some 
water allocation to the agricultural sector. It has demonstrated 
that, using quadratic form in the objective function rather than 
linear one, the ITQP can minimize the unfair competition of 
water resources among multiple users especially under water 
scarce conditions. It has advantages in better reflecting system 
benefit and/or cost variations and generating more reasonable 
and applicable solutions for decision makers. Thus, nonlinear 
problems provide more flexibility in the practical applications 
and allow decision-makers to take a more active role in con- 
trolling the system benefit and system-failure risk. 

5. Conclusions 

An inexact two-stage stochastic quadratic programming 
(ITQP) method has been developed and applied to water re- 
sources planning under uncertainty. This method improves 
upon the existing inexact two-stage linear programming ap- 
proaches. It can deal with nonlinearities in the cost/benefit ob- 
jective and uncertainties expressed as probability density 
functions and discrete intervals. Moreover, it can support the 
analysis of policy scenarios that are associated with economic 
penalties when the promised targets are violated.  

Table 3. Optimal Solutions Obtained from the ITQP Model 

Water flow level (106 m3)  

Low              
(j = 1) 

Low-medium  

(j = 2) 

Medium        

(j = 3) 

Medium-high    

(j = 4) 

High             
(j = 5) 

 Target (
opti

T  ): 

 Municipal (i = 1) 3.5 3.5 3.5 3.5 3.5 

 Industrial (i = 2) 5.0 5.0 5.0 5.0 5.0 

 Agricultural (i = 3) 4.5 4.5 4.5 4.5 4.5 

 Shortage (
optij

D ): 

Municipal (i = 1) [0.0, 0.5] 0 0 0 0 

Industrial (i = 2) [2.7, 5.0] [1.0, 3.0] [0.0, 1.2] 0 0 

Agricultural (i = 3) [3.8, 4.5] [2.0, 3.5] [0.0, 1.8] 0 0 

Allocation (
optij

A ): 

Municipal (i = 1) [3.0, 3.5] 3.5 3.5 3.5 3.5 

Industrial (i = 2) [0.0, 2.3] [2.0, 4.0] [3.8, 5.0] 5.0 5.0 

Agricultural (i = 3) [0.0, 0.7] [1.0, 2.5] [2.7, 4.5] 4.5 4.5 

1 opt
y = 1.0, 

2 opt
y = 1.0 and 

3 opt
y = 0 

System benefit ($106):     
opt

f  = [173.5, 613.1] 
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The ITQP method has been applied to a case study of 
water resources management. Based on an interactive algo- 
rithm and a derivative algorithm, the model can be trans- 
formed into two deterministic submodels which correspond to 
the upper and lower bounds of the desired objective-function 
value. Interval solutions, which are feasible and stable in the 
given decision space, can then be obtained by solving the two 
submodels sequentially. They can be used for generating deci- 
sion alternatives and thus help waste managers to identify de- 
sired water-allocation plans with maximized system benefit 
and minimized system-failure risk.  

In general, although this study is the first attempt for 
planning a water-resources management system through the 
developed ITQP approach, the results show that this hybrid is 
applicable and can be extended to other problems that involve 
complexities related to uncertainty, nonlinearity and policy 
analysis. 
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Figure 1. Optimized water allocation patterns under low (L), low-medium (LM), medium (M), 
medium-high (MH), and high (H) flows. 
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