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ABSTRACT.  In order to improve the contaminant plume prediction in subsurface transport models, a data assimilation scheme 
using the Kalman filter (KF) is developed. The data assimilation scheme is designed to reduce uncertainties in model predictions. 
These uncertainties actually represent all the unpredictable variations due to the unknown or uncertain properties in physical law based 
models and the incomplete knowledge of stochastic fields. Considering the background of subsurface transport is spatially dependent, 
simulation of spatially correlated uncertainties are proposed and integrated into a data assimilation scheme. Sequential instances of 
spatially correlated random fields are simulated in examining the effectiveness of the assimilation system. Results show that this data 
assimilation scheme reduces the uncertainty of predictions from the deterministic model. By assimilating the observations, the 
predictive contaminant plumes from the assimilation system can trace the randomized irregular plume shape of the assumed case more 
closely than a non-assimilation deterministic model. The statistical representation of random noise, such as spatially dependency, is 
critical in improving effectiveness of the statistical optimization process. In two test cases which simulate the scenarios with unknown 
hidden sources or inaccurate hydrologic properties, the regional noise KF scheme demonstrates the potentials to solve the inverse 
problems in environmental transport modeling. 
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1. Introduction  

Subsurface properties vary in space and time. In practices, 
finite properties of the subsurface can be obtained by measur- 
ing them in a limited number of sites during a limited samp- 
ling period. However, the knowledge of the properties can ne- 
ver be considered complete as required by deterministic mo- 
dels that are governed by well-established physical laws. In 
general, the prediction is inevitably uncertain (Heuvelink and 
Webster, 2001) and some random variables must be introdu- 
ced to represent the unpredictable variation. Therefore, sto- 
chastic data assimilation such as Kalman filter (KF) can be in- 
tegrated with deterministic models to give better predictions. 

Many studies (Ghil et al., 1981; Gustafsson, 1981; Hou- 
tekamer and Mitchell, 1998) proposed that the KF (Kalman 
and Bucy, 1961) in sequential estimation theory could be app- 
lied to meteorological data assimilation. KF was also used in 
areas of surface and subsurface hydrologic systems to obtain 
the optimal estimation (Bowles and Greney, 1978; Van Geer, 
1982; Yu et al., 1989; Yangxiao et al., 1991; Ferraresi and 
Marinelli, 1996; Harrouni et al., 1997; Porter et al., 2000). As 
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pointed by Porter et al. (2000), due to the spatial physical and 
statistical relationship of groundwater system, KF should treat 
the computations over space differently from it does over time. 

Statistical representation of this variation of subsurface 
properties is critical for improving effectiveness of the statis- 
tical optimization process. Even though this uncertainty can- 
not be avoided, its spatial and temporal variation pattern can 
be simulated and integrated into the prediction models. Ac- 
tually, the quality of KF greatly depends on the noise struc- 
tures for the measurements and the system. Spatially indepen- 
dent Gaussian noise is easy to obtain and is widely assumed in 
many areas for examining KF properties. For subsurface mo- 
deling, however, it is more reasonable to consider the data and 
noise as regional i.e. spatially correlated instead of spatially 
independent Gaussian (Webster and Oliver, 1992; Conwell et 
al., 1997; Goovaerts, 1999; Brooker, 2001; Ferreyra et al., 
2002). In this study, a KF is constructed as a data assimilation 
scheme for a subsurface contaminant model. Then a spatially 
random field simulation scheme that can be integrated into a 
KF is introduced to examine two specific cases. One is the 
prediction with inaccurate hydrologic parameters and the other 
is the identification of unknown contaminant sources. 

2. Methodology 

This system includes a deterministic physical transport 
model, a KF data assimilation scheme which can be integrated 
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into the transport model, the numerical schemes for models 
and filter, non-Gaussian noise simulators and a test frame 
(Chang and Jin, 2005). For clarity, we describe briefly the 
core of the system as follows. 
 
2.1. Stochastic System 

In order to model transport processes which usually have 
uncertain sources, inaccurate transport parameters or numeric 
errors, the stochastic dynamics can be represented as determi- 
nistic dynamics of transport and a random noise term: 

 
xk + 1 = Axk + pk (k = 0, 1, 2, 3, ...)                         (1) 

 
where xk and xk + 1 are the state variables at time k and k + 1, 
respectively; A is the finite-difference operator that advances 
the xk by one time step; pk is the model system error; the dif- 
ference between the model prediction and the optimal estima- 
te of the true value. The model error vector (pk) is assumed to 
have covariance matrix Qk and zero mean. 

Observation zk, which could be irregularly distributed in 
space at time scale, is represented by data conversion matrix 
H and random errors ok. ok is assumed to be the error of ob- 
servations that has covariance matrix Rk and zero mean: 

 
zk = HxT

k + ok                                       (2) 
 

2.2. Optimal Estimation and Data Assimilation with KF  
The Kalman optimal estimator is expressed as: 
 

xk + 1(+) = xk + 1(–) + Kk + 1[zk + 1 – H xk + 1(–)]           (3) 
 

where xk + 1(+) indicates the estimated value after the KF ad- 
justment, and xk + 1(–) the value before the KF adjustment, i.e. 
the predicted value from the model. The matrix Kk + 1 is deter- 
mined by: 

 
Kk + 1 = Pk + 1(–) HT [H Pk + 1(–) HT + Rk + 1]-1             (4) 

 
where Pk + 1 is the optimal estimate error covariance matrix, 
MT and M-1 denote the transpose and inverse of matrix M, res- 
pectively. Pk + 1 can be obtained by recursive calculation: 
 
Pk + 1(+) = Pk + 1(–) – Pk + 1(–) HT

 [H Pk + 1(–) HT
 + R]

-1
 H Pk + 1(–) 

                                          (5) 
 

and 
 
P

k+1
(–) = AP

k
(+) A

T
 + Q

k                             (6) 
 

where Kk + 1 in Equation (4) is called the Kalman optimal gain 
matrix or Kalman filter. In addition to advancing a time se- 
quence, at the same time, system operator A also applies to a 
space sequence, x[i], i = 0, 1, 2, ..., where index i indicates the 
space positions. Therefore, the KF has the potential for assi- 

milating data in both space and time. KF can be conveniently 
implemented since the model dynamic system itself, Equation 
(1), has already been integrated in the assimilation. 

 
2.3. Spatial Dependence and Spatial Random Noise Simu- 
lation 

Spatial dependence is the inherent nature of most geogra- 
phically related data. Obviously, the properties of the variables 

in subsurface modeling belong to this category. However, the 
major methodologies that have been used to solve the subsur- 
face transport processes, such as the numerical algorithms of 
differential equations and KF, are aspatial or statistical. App- 
lying spatial dependence into subsurface model allows disco- 
vering of the spatial structure of the noise variables and im- 
proving accuracy of the simulations. 

In geographic systems, spatial dependency is usually ex- 
pressed by semi-variogram. Assume we have }:)({ TttZ ∈ , 
where dT ℜ⊆ . Here T is the spatial location index set. Z(.) 
represents the stochastic spatial process. }:)({ Tttz ∈  is used 
to express an instance of the Z(.). Semi-variogram γ  is de- 
fined as: 
 

TttZtZEtZtZtt ∈∀−=−=− },)]()({[
2
1)]()(var[

2
1)( 2

212121γ  

    (7) 
 

If TtmtZE ∈∀= ,)}({  and ( )γ ⋅  exists, Z(·) is called intrinsi- 
cally stationary.  

In a true field situation, Equation (8) could be used to 
obtain the experimental semi-variogram. Given the two loca- 
tions t and (t + h), a measure of one-half of the mean square 
differences between the values z(t + h) and z(t) gives the 
semi-variogram. Here h (known as the lag) is the inter-sample 
distance. If the conditions specified by the intrinsic hypothesis 
are met, the semi-variance can be estimated from sample data 
by:  
 

∑ +−=
n

htztz
n

h 2)]()([
2
1)(γ                         (8) 

 
Once being determined from the field observations, the 

semi-variogram parameters, in turn, can be used in design of 
regional noise scheme for both system and observation errors. 

 
2.4. Regional Noise Field Simulation 

For the state-space estimate problem, system noise is us- 
ually denoted as a vector pk where pk is q-by-1 column vector 
with covariance matrix Q. The statistical structure of Gaussian 
noise with time independence is usually described as:  
 

0}{ =kpE                                        (9) 
 

and  
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)1,0(}'{ lkiflkifQppE klklklrlk ==≠== δδδ         (10) 

 
where Q is q-by-q symmetric and positive semi-definite. There 

are several ways to introduce the spatial dependence into the 
noise field. Since the noise will be integrated into KF, the 
most convenient way is to create the noise that satisfies given 
error covariance structures or given semi-variogram struc- 
tures. 

Let pk(t) be a 2-D random noise state vector, 2ℜ⊆∈ sGt , 
with given covariance matrix Q(h) that represents a certain 
spatial dependence of the pk(t): 

 
)()( ijijij hQttQQ =−=                               (11) 

 
where t is space location index, Gs is grid of system noise in- 
jection, hij is distance between the space location ti and tj. 
 

 
 
Figure 1. Numeric model grid and observation locations. 
 

Assuming that the spatially-dependent pk(t) has a reason- 
able decomposition with components of a spatially-indepen- 
dent unit Gaussian vector gk(t) and a linear transformation L: 

 
)(Lg)(p tt kk =                                    (12) 

 
with I)gg( =TE , the linear transformation matrix L can be 
solved as the lower triangular of Cholesky decomposition of 
Q if Q is positive definite, i.e. 
 

TLLQ =               (13) 
 
Basic spatially dependent noise can be used in various 

noise models to simulate more complicated error structures. 
This noise simulation scheme is applicable to observation err- 

or simulations. 

3. Experiments 

A two-dimensional numerical scheme is constructed in 
the horizontal plane (x-y plane) for simulating the contami- 
nant advection-dispersion-adsorption process in a subsurface 
transport system: 
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where C is the concentration (mass of solute per unit mass of 
solution), Dx and Dy are the longitudinal and transverse dis- 
persion coefficients, respectively, R is the retardation factor, 
and V is the average linear pore liquid velocity. 

An initial spontaneous point mass source and a constant 
boundary condition were assumed: 

 
C(x, y, t) t o=  = CI(x0, y0)                          (16a) 

 
and 

 
C(x, y, t)|Ω

 = CB                                  (16b) 
 

where Ω  is chosen as a square boundary and CB is the boun- 
dary value. 

The model grid Gm is defined on a 2-D plane domain. 
The pollution scenario is assumed as an instantaneous conta- 
minant source injected into a location with coordinates (5, 6) 
in test case 1, (5, 5) in test case 2, with contamination back- 
ground at 20 ppm. The details for setting domain (Figure 1) 
and other hydrologic parameters can be found in reference 
(Chang and Jin, 2005).  

The simulated “true” data for the assumed pollution at 
the end of the time step are used to compare with the KF re- 
sults. The purpose of this experiment is to demonstrate the ef- 
ficiency of the regional noise that is used in KF assimilation. 
To eliminate the uncontrolled error directly introduced by the 
numerical frame, “true” data is simulated based on the same 
numerical model used in the prediction. Using this design, the 
system error pk can be completely under control and KF qua- 
lity will therefore only show the impact of error structures that 
it relies on. Note in the experiments, true field is assumed as a 
realization of a stochastic process and used only in evaluating 
the impact of KF and regional field noise. That is, the pre- 
diction model and KF are not supposed to have knowledge of 
the “true” fields except through the limited observation sites. 
The true field has no fixed pattern and its contour shape varies 
from time to time for each different run due to the designed 
random noise scheme. 

To implement the KF filter in the subsurface transport 
model, the model noise covariance matrix Q must be deter- 
mined before operation of the filter. Q is the covariance ma- 
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trix of the model error vector which is calculated based on the 
difference between the prediction of system model and the 
true solution at each cell. Q represents the inaccuracy of the 
prediction by the system model. It should also be pointed out 
that by simply injecting enough system error through the se- 
lection of Qk we could simulate the uncertainties, unknowns 
and incomplete knowledge of the transport process that results 
in system prediction error. In reality, since the true solution 
cannot be obtained, Q could usually be determined from the 
estimated model error by statistical or numerical analysis. In 
our testing cases, the reality is represented as different reali- 
zations of the stochastic process. Also, since the transport pro- 
cess and its predictions are actually occurring in a geographi- 
cally specific subsurface area, it is obvious that to utilize a re- 
gional error frame to simulate the uncertainty is more reason- 
able than to use a geo-independent error frame. Therefore, a 
time-independent regional Q based on the Gaussian error with 

sysσ  = 8 ppm (Conwell et al., 1997; Webster and Oliver, 1992) 
were specified in test. 

 

 
Figure 2. Prediction without KF data assimilation. 

4. Results and Discussions 

4.1. Test Case 1 – Prediction with Inaccurate Hydrologic 
Parameters 

Although finite knowledge of hydrodynamic process in 
subsurface can be obtained by measuring them in the speci- 
fied places at designed sampling times, the sampling places 
and times are restricted in practice. Description of the hydro- 
logic parameters can never be considered complete and accu- 
rate as required by subsurface transport models. More effort 
in continuously pursuing completeness and accuracy in the 
labs and sites may reduce the errors caused by these hydrolo- 
gical parameters, but this is usually very costly due to highly 
heterogeneous subsurface environment. Applying KF data as- 
similation scheme can provide another cost-effective way to 
improve accuracy by merging finite observations.  

In this experiment, we simulate the scenario that has one 
inaccurate hydrologic parameter in the prediction model and 

test the impact of regional noise R. For simplicity, the average 
linear pore liquid velocity, V, is assumed inaccurate in the pre- 
diction model. V is increased by 20% when the true fields 
were simulated. However, a deterministic model without the 
correct input still employs the given V in its prediction.  

To test the impact of error covariance structure on the co- 
rrection process of the KF scheme, a 2D regional observation 
noise field (Chang and Jin, 2005) is created according to the 
specified covariance matrix R and applied to the data assimi- 
lation scheme in this experiment. The characteristics of re- 
gional noise can also be clearly shown from its covariance 
matrix. Compared to SIG R, the observation errors’ statistical 
structure has been given a geospatial nature, i.e. at closer ob- 
servation sites errors tend to be more covariant. Actually, in  

 

 

Figure 3. Prediction improved by (a) KF data assimilation 
with SIG covariance R and (b) data assimilation with 
regional covariance R in Case 1. 
 
order to obtain more comparable results, the KF (with region- 
al error covariance matrix R) data assimilation scheme is test- 
ed using the same settings for the non-KF and KF with SIG R. 
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The prediction from the numerical model that has no da- 
ta assimilation scheme is shown in dash line in Figure 2. Note 
that the pollutant plume in the prediction field moves behind 
the plume of the true field due to the inaccurate V, in down- 
ward direction, used in prediction model. 

Both Figures 3a and Figure 3b give KF filtered results of 
pollutant plume at 6.4 day. With the data assimilation scheme, 
the qualities of model predictions are improved. However, by 
comparing the two filtered results, the KF using regional noi- 
se structure (Figure 3b) is able to follow the irregular shapes 
of true plume more accurately due to a more effective data as- 
similation process. In Figure 3b, the prediction contours in the 
significant pollution areas (with pollutant concentration great- 
er than 100 ppm) follow the true contours more closely than 
what has shown in Figure 3a (KF using SIG noise structure). 

For quantitatively comparing the results from the models 
with and without the KF, the Root Mean Squared Error 
(RMSE) was chosen as the error parameter. )(RMSE k  is de- 
fined as: 

 

∑ −
−

=
ji

E

ij

kjiCkjiC
N

k
,

2)],,(),,([
1

1)(RMSE           (14) 

 

 
 

Figure 4. Prediction error (RMSE) for data assimilation with 
regional noise covariance R in Case 1. 

 
The correction effect of different KFs can be seen more 

clearly in Figure 4, in which the comparison of the average 
prediction errors (RMSE) for the three schemes, the deter- 
ministic model scheme without the KF filter, the model with 
the KF filter, and the KF model with the regional error struc- 
ture are calculated at different time steps. As shown in Figure 
4, by employing the regional noise KF data assimilation sche- 
me, RMSE, an average deviation to the true stochastic system, 
is reduced to 20 ppm at 6.4 day. This is a 60% decrease of 
RMSE compared to the estimate from the model without KF 
and about 25% less compared to the model with KF using SIG 
noise structure. This correction process of KF involved in pre- 

diction is very effective in correcting the error that is caused 
by inaccurate hydrologic parameters. Even without knowing 
which parameter is inaccurate, this correction process occur- 
red by sampling from only nine sites and applying appropriate 
observation error covariance matrix R in KF. As a comparison, 
Figure 4 suggests that the stochastic model with KF data assi- 
milation is more accurate than the non-KF deterministic mo- 
del; moreover, the accuracy can be greatly improved by se- 
lecting the correct noise statistic structure in the KF scheme. 
 

 
Figure 5. Prediction improved by KF data assimilation (in 
Case 2: Unknown hidden source). 
 

 
Figure 6. True values and predictions by data assimilation 
with regional covariance R (in Case 2). 
 

 
4.2. Test Case 2 – Data Assimilation to Reveal Unknown 
Release Source 

In order to further examine the impact of using a regional 
noise structure in KF data assimilation scheme, another 
experiment was conducted using the same transport model 
with the same level of system/observation errors but with a 
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hidden contaminant release source. In addition to a sponta- 
neous release of 3200 ppm, a constant contaminant release 
source, 800 ppm at gridpoint (15, 8), which is designed as an 
unknown source to the hydrodynamic model and KF, is added 
to the true field.  

Three different prediction models, deterministic hydrody- 
namic prediction without KF, KF using SIG, and KF using re- 
gional noise covariance matrix are examined in this test case. 
KF filtering results (using SIG and using regional noise) can be 

seen in Figures 5 and 6, respectively. As expected, the predict- 
tion with KF using regional noise covariance matrix gives a 
better result than that with KF using SIG R (Figures 5 and 6).  

The revealing process for the hidden source is serialized 
in Figure 7. By design, the hydrodynamics model and KF are 
operated without any information about the hidden source. 
The KF correction process depends only on the very limited 
indirect information through nine observation sites. At t = 1, a 
given contaminant injection is shown as the only release 
source in the estimated field. As more observation data are 
assimilated by the regional KF, the hidden source can be seen 
from the area with growing concentration at t = 32. At t = 56, 
the hidden source has been clearly demonstrated by the data 

assimilation process. The location and the magnitude of the 
hidden source in the estimate field that are not seen within the 
initial simulated period appears at this stage and that this in- 
verse process will eventually show the true field. Figure 8 
gives the RMSE for the three prediction models described 
above. Again, the prediction with KF correction using region- 
al R is the best of the three. At t = 64, the RMSE of KF with 
regional R is about 70% lower than the prediction without KF 
correction, and about 30% lower than prediction with KF 
using SIG R. 

5. Conclusions 

A two-dimensional advection-dispersion-adsorption sub- 
surface transport model is described and constructed to pre- 
dict the evolution of contaminant plume. A regional random 
noise simulation scheme was designed to create “observation” 
data and system noise. The effectiveness of the Kalman filter 
(KF) scheme with regional noise covariance matrix was de- 
monstrated by two typical data assimilation applications. Test 
case 1 has an inaccurate hydrologic parameter and test case 2 
has a hidden contaminant release source.  

Figure 7. Predictions by data assimilation with regional covariance R (in Case 2). 
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Figure 8. RMSE for data assimilation with regional noise 
covariance R (in Case 2). 

 
The KF scheme successfully identifies the correct hydro- 

logic parameters and hidden contaminant sources. The results 
indicate that the prediction error (RMSE) of the KF scheme 
using a regional noise covariance matrix is much smaller than 
that from the model’s prediction without KF or that from the 
KF using a SIG noise matrix. The results from test cases also 
show the potential applications of a regional noise structure in 
environmental transport modeling. Applying a regional noise 
structure in KF data assimilation improved the KF correction 
process for inaccurate hydrologic parameters. Furthermore, it 
improved the inversing process in revealing the location and 
magnitude of a hidden contaminant source. 

 
Acknowledgments. This work was sponsored by the Department of 
Energy’s Samuel Massie Chair of Excellence Program under grant 
number DE-FG01-94EW11425. The views and conclusions contain- 
ed herein are those of the authors and should not be interpreted as 
necessarily representing the official policies or endorsements, either 
expressed or implied, of the funding agencies. 
 

References 
Bowles, D.S., and Greney, W.J. (1978). Steady state river quality 

modeling by sequential extended Kalman filters, Water Resour. 
Res., 12, 3281-3291. 

Brooker, P.I. (2001). Modelling spatial variability using soil profiles 
in the Riverland of South Australia, Environ. Int., 27(2), 121-126, 
doi:10.1016/S0160-4120(01)00071-X. 

Chang, S.Y., and Jin, A. (2005). Kalman Filtering with Regional 
Noise to Improve Accuracy of Contaminant Transport Models, J. 
Environ. Eng., 131(6), 971-982, doi:10.1061/(ASCE)0733-9372(2 

005)131:6(971). 
Conwell, P.M., Silliman, S.E. and Zheng, L. (1997). Design of a pie- 

zometer network for estimation of the variogram of the hydraulic 
gradient: The role of the instrument, Water Resour. Res., 33(11), 
2489-2492. 

Ferraresi, M. and Marinelli, A. (1996). An extended formulation of 
the integrated finite difference method for groundwater flow and 
transport, J. Hydrol., 175(1-4), 453-471, doi:10.1016/S0022-1694 
(96)80020-5. 

Ferreyra, R.A., Apezteguia, H.P., Sereno, R. and Jones, J.W. (2002). 
Reduction of soil sampling density using scaled semivariograms 
and simulated annealing, Geoderma, 110(3-4), 265-289, doi:10.10 
16/S0016-7061(02)00234-3. 

Ghil, M., Cohn, S.E., Tavantzis, J., Bube, K. and Isaacson, E. (1981). 
Applications of estimation theory to numerical weather prediction, 
Dynamic Meteorology: Data Assimilation Methods, L. Bengtsson, 
M. Ghil, and E. Kallen, Eds., SpringerVerlag, New York, N.Y., pp. 
139-224. 

Goovaerts, P. (1999). Geostatistics in soil science: state-of-the-art and 
perspectives, Geoderma, 89(1-2), 1-45, doi:10.1016/S0016-7061(9 
8)00078-0. 

Gustafsson, N. (1981). A review of method for objective analysis. 
Dynamic Meteorology: Data Assimilation Methods, L. Bengtsson, 
M. Ghil, and E. Kallen, Eds., SpringerVerlag, New York, N.Y., 
pp.17-76. 

Heuvelink, G.B.M. and Webster, R. (2001). Modelling soil variation: 
past, present, and future, Geoderma, 100(3-4), 269-301, doi:10.101 
6/S0016-7061(01)00025-8 

Harrouni, K.E., Ouazar, D., Wrobel, L.C. and Cheng, A.H.D. (1997). 
Aquifer parameter estimation by extended Kalman filtering and 
boundary elements, Engineering Analysis with Boundary Elements, 
19(3), 231-237, doi:10.1016/S0955-7997(97)00008-8.  

Houtekamer, P. L. and Michell, H. L. (1998). Data assimilation using 
an ensemble Kalman filter technique. Mon. Weather. Rev., 126, 
796-811. 

Kalman, R.E., and Bucy, R.S. (1961). New results in linear filtering 
and prediction theory, Trans. ASME, Ser. D, J. Basic Eng., 83, 95- 
108. 

Porter, D., Bruce, G., Jones, W., Huyakorn, P., Hamm, L. and Flach, G. 
(2000). Data fusion modeling for groundwater systems, J. Contam. 
Hydrol., 42(2), 303-335, doi:10.1016/S0169-7722(99)00081-9. 

Van Geer, F.C. (1982). An equation based theoretical approach to 
network design for groundwater levels using Kalman filters, Int. 
Assoc. Hydrol. Sci., Publ., 136, 241-250. 

Webster, R., and Oliver, M.A. (1992). Sample adequately to estimate 
variograms for soil properties, Eur. J. Soil Sci., 43(1), 177-192, 
doi:10.1111/j.1365-2389.1992.tb00128.x. 

Yangxiao, Z., Te Stroet, C.B.M. and Van Geer, F.C. (1991). Using 
Kalman filtering to improve and quantify the uncertainty of 
numerical groundwater simulations: 2. application to monitoring 
network design, Water Resour. Res., 27(8), 1995-2006. 

Yu, Y.S., Heidari, M. and Guang-Te, W. (1989). Optimal estimation 
of contaminant transport in ground water, Water Resources Bulle- 
tin, 25(2), 295-300.

 


