
 

120 

Journal of 
Environmental 

Informatics 

  
ISEIS 

 

 

 

Journal of Environmental Informatics 12(2) 120-128 (2008) 

www.iseis.org/jei         
 

An Application of a Shape Function Based Spatiotemporal Interpolation Method to 
Ozone and Population-Based Environmental Exposure in the Contiguous U.S. 

 
L. Li1,*, X. Zhang2, and R. Piltner3 

 
1Department of Computer Sciences, Georgia Southern University, Statesboro, GA 30460-7997, USA 

2The Robert Graham Center for Policy Studies in Family Medicine and Primary Care, Washington, D.C. 20036, USA 
3Department of Mathematical Sciences, Georgia Southern University Statesboro, GA 30460-8093, USA 

 
Received 18 May 2007; revised 15 March 2008; accepted 9 April 2008; published online 1 December 2008 

 
ABSTRACT.  It is important to conduct research on the connection between air pollution and human health using population-based 
spatiotemporal environmental exposure assessment on a large scale with respect to area and population. In our paper, using a set of 
spatiotemporal data with annual ozone concentration measurements in the contiguous U.S. during 1994 and 1999, we address the 
following challenging issues in conducting such research: spatiotemporal interpolation, comparison of spatiotemporal interpolation 
methods, visualization, and analysis of population exposure to ozone. A 3D shape function based spatiotemporal interpolation method 
has been used in this paper to estimate the ozone concentrations at any unmeasured location and time.  Using the leave-one-out 
cross-validation, we compute error statistics to compare the shape function and IDW (Inverse Distance Weighting) methods. For the 
considered case studies it is observed that the shape function method is better than IDW in terms of MAPE (Mean Absolute Percentage 
Error) and algorithm complexity. For generating maps of annual ozone concentrations, we propose a new approach to select locations 
to interpolate and visualize: picking U.S. census block centroids as sample locations. The advantage of this approach is to generate 
more sample points in areas with more intensive human activities. In our experiment, there were about 8,000,000 sample points 
selected per year. Traditional GIS techniques are insufficient in handling such kind of spatiotemporal data. The visualization results of 
ozone concentration distribution at the census tract level in the contiguous U.S. from 1994 to 1999 are illustrated. We also analyze the 
population exposure to ozone in the year 1999 according to different ozone concentration levels following the recommendations given 
by the U.S. EPA on air quality. Our finding is that in the year of 1999, 9.8% total population in the contiguous U.S. has been exposed 
to a high risk ozone level, 78.7% to a moderate risk, and only 11.5% to a low risk. 
 
Keywords: shape functions, spatiotemporal interpolation, ozone, population exposure, leave-one-out cross-validation, geographic 
information systems (GIS)

 
 

 

1. Introduction 

It is important to investigate the association between air 
pollution and human health. For example, despite its complex 
etiology and significant, well-documented sociodemographic 
disparities (Akinbami et al., 2002), the increase in childhood 
asthma may be better explained by environmental changes 
than by genetic or evolutionary changes. Evidence regarding 
the contribution of air pollution is accumulating (Moore and 
Bates, 2001). Increased childhood asthma hospital visits are 
linked to the proximity of local traffic and other polluting 
sites (Oyana and Rivers, 2005; Pandya et al., 2002). Environ- 
mental exposure assessment is a critical analytical tool to con- 
duct such research. Population-based environmental exposure 
modeling and analysis have made significant progress in the 
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last two decades (Nieuwenhuijsen et al., 2006), especially 
with the advances in modern geospatial technologies — Geo- 
graphic Information System (GIS) and Remote Sensing and 
Global Positioning System (GPS), and probability techniques 
— Markov Chain Monte Carlo (MCMC) simulation and Bay- 
esian statistical modeling (Briggs, 2005; Christakos and Serre, 
2000; Elgethun et al., 2003; Jarup, 2004; Nuckols et al., 2004). 

Appropriate interpolation is critical to the environmental 
exposure assessment. Common spatial interpolation methods, 
such as kriging (Deutsch and Journel, 1998; Krige, 1966), in- 
verse distance weighting (IDW) (Shepard, 1968) and splines 
(Goodman and Rourke, 1997; Schoenberg, 1946), are available 

in major GIS software packages. A review and comparison of 
spatial interpolation methods are given in (Lam, 1983). These 
interpolation methods have been used to assess spatial varia- 
tions in environmental risk factors in most environmental epi- 
demiological studies. 

Despite the need for traditional spatial interpolation, more 

and more environmental exposure studies require the interpo- 
lation of temporal data. The temporal dimension of datasets is 
often ignored, underemphasized, or isolated from the spatial 
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domain mainly due to the lack of efficient spatiotemporal in- 
terpolation methods. With the additional time attribute, the tra- 

ditional spatial interpolation methods are insufficient, and new 

spatiotemporal interpolation methods must be developed. For 
example, suppose that we have recorded data on carbon mo- 
noxide at different monitoring sites at different times. Some 
spatiotemporal interpolation method is needed to estimate the 
carbon monoxide values at unsampled locations and times to 
determine the range of potential threat. Currently most resear- 
chers assume that time can be incorporated into spatiotempor- 
al interpolation by conducting a sequence of spatial interpola- 
tions and treat space and time separately. For example, a GIS- 
based geostatistical approach used kriging to do spatial inter- 
polation for environmental exposure analysis on a sequence of 
daily ambient particulate matter (PM) concentrations (Liao et 
al., 2006). 

A few exceptions in the literature do investigate spatio- 
temporal interpolation methods that integrate space and time 
simultaneously. Shape functions, which can be viewed as a spa- 

tial interpolation method, are popular in engineering applica- 
tions; for example, in Finite Element algorithms (Zienkiewicz 
and Taylor, 2000). Considering piecewise linear approxima- 
tions, linear shape functions for triangles can be used in a 2D 
mesh, or 3D linear shape functions for tetrahedrons can be used 

in a 3D mesh. Shape function-based spatiotemporal interpola- 
tion methods have been developed since 2003 and are used in 
GIS applications (Li and Revesz, 2004; Li et al., 2004; Li, 
2003). Several methods have been compared (Li and Revesz, 
2002; Li and Revesz, 2004) and applied. For example, shape 
function interpolation methods were applied to a set of ozone 
data in the conterminous United States (Li et al., 2006; Li and 
Zhang, 2007; Li et al., 2007) and a real estate dataset with 
house prices (Li and Revesz, 2004). Another was used to re- 
present West Nile virus data in constraint databases (Revesz, 
2002) and implemented a particular epidemiological system ca- 
lled WeNiVIS that enables the visual tracking of, and reason- 
ing about, the spread of the epidemic in Pennsylvania (Revesz 
and Wu, 2006). 

Furthermore, most of the current research on the relation- 
ship between air pollution and asthma has focused on a speci- 
fic area and study population, such as a small group of asthma- 

tics who reside in downtown areas (Kim et al., 2007), hikers 
in the Great Smoky Mountains National Park (Girardot et al., 
2006), children spending time at swimming pools (Lagerkvist 
et al., 2004), and infants delivered at certain hospitals in sou- 
thwestern Virginia (Triche et al., 2006). The results of these stu- 

dies vary. One indicates that exposure to relatively low con- 
centrations of ozone influences the symptoms of moderate-to- 
severe asthmatics, regardless of changes in pulmonary func- 
tion or medication use (Kim et al., 2007), while another sug- 
gests no significant association of acute changes in pulmonary 
function with ozone (O3) and fine particulate matter (PM2.5) 
(Girardot et al., 2006). The investigation of the relationship 
between air pollution and asthma can be improved by conduc- 
ting environmental exposure analysis in a much larger spatial 
extent. 

In our paper, we investigate human population exposure to 

ozone in the large spatial scale of the contiguous United States 
during 1994 and 1999 using a shape function-based spatiotem- 

poral interpolation method. The rest of this paper is organized 
as follows. Section 2 describes the spatiotemporal ozone data- 
set. Section 3 introduces general approaches of spatiotemporal 
interpolation methods; summarizes the advantages of a parti- 
cular type of method called shape function-based extension 

methods; and describes the 3D shape function-based spatiotem- 
poral interpolation method introduced by Li and Revesz (2004). 
In Section 4, the shape function-based method is compared to 
the IDW-based spatiotemporal interpolation method using the 
leave-one-out cross-validation by applying both methods on 
the ozone dataset to obtain the interpolation results. Several 
types of error statistics are computed to compare the shape 
function-based and IDW-based methods. In the comparison 
the shape function-based method provided better results than 
IDW in terms of MAPE (Mean Absolute Percentage Error) 
and algorithm complexity. In Section 5, we illustrate the con- 
tinuous distribution of annual ozone concentrations by six sta- 
tic maps for the six years during 1994 and 1999. Section 6 gi- 
ves the analysis of population exposure to ozone at the census 
block level based on the shape function-based spatiotemporal 
interpolation result. Finally, in Section 7 we give conclusions. 

2. Spatiotemporal Ozone Dataset 

The spatiotemporal ozone data we are interested in this 
paper is a set of AIRS (Aerometric Information Retrieval Sys- 
tem) data with annual ozone concentration measurements in 
the contiguous United States (website http://www.epa.gov/ 
airmarkets/cmap/data/category1.html). AIRS is a computer ba- 
sed repository of information about airborne pollution in the 
United States and various World Health Organization (WHO) 
member countries. The system is administered by the U.S. 
Environmental Protection Agency (EPA). 

We obtained several datasets from the U.S. EPA website 
(http://cfpub.epa.gov/gdm) and reorganized them into a data- 
set with schema (x, y, t, w), where x and y attributes are the 
longitude and latitude coordinates of monitoring sites where 
the ozone concentrations were collected; t is the year when the 

ozone concentrations were taken; w records the annual ozone 
concentration measurements O34MAX (4th max of 1-hour 
values for O3). 

The reorganized dataset initially has no ozone concentra- 
tions at 2904 monitoring sites, which means no measurements 
was available at those sites. After filtering out the entries at 
those sites from the dataset, there are 1209 sites left with mea- 
surements. Among the 1209 monitoring sites with measure- 
ments, some sites have complete measurements of yearly ozone 

values from 1994 to 1999, while the other sites have only par- 
tial records. For example, some sites only have measurements 
of ozone values from 1998 to 1999. In total, there are 6135 
ozone concentration measurements recorded. Each measure- 
ment corresponds to the ozone value at a spatiotemporal point 
(x, y, t), where (x, y) is the location of one of the 1209 moni- 
toring sites, and t is a year between 1994 and 1999. Table 1 
shows instances of ozone measurements at two sites. Figure 1 
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shows the locations of the 1209 monitoring sites with mea- 
surements. 

 
Table 1. Ozone (x, y, t, w) 

x y t w 

-80.6833 25.3883 1994 0.068 
-80.6833 25.3883 1995 0.068 
-80.6833 25.3883 1996 0.067 
-80.6833 25.3883 1997 0.083 
-80.6833 25.3883 1998 0.086 
-80.6833 25.3883 1999 0.08 

… … … …

-82.5461 27.632799 1998 0.085 
-82.5461 27.632799 1999 0.097 

… … … …

 
 

 
Figure 1. 1209 AIRS monitoring sites with measurements in 
the contiguous United States. 

3. Shape Function-Based Spatiotemporal 
Interpolation 

3.1. Spatiotemporal Interpolation 

There are two fundamentally different ways for spatiotem- 

poral interpolation: reduction and extension (Li and Revesz, 
2002). 

 Reduction. This approach reduces the spatiotemporal in- 
terpolation problem to a regular spatial interpolation case 
using two steps. First, interpolate (using any 1-D interpo- 
lation in time) the measured value over time at each sam- 
ple point. Second, get spatiotemporal interpolation results 
by substituting the desired time instant into some regular 
spatial interpolation functions. 

 Extension. This approach deals with time as another di- 
mension in space and extends the spatiotemporal interpo- 
lation problem into a one-higher dimensional spatial in- 
terpolation problem. 

In general, any spatial interpolation method, such as IDW, 
kriging, and shape function-based methods, can be developed 
to a spatiotemporal interpolation method either using the reduc- 

tion or the extension approach. 

Table 2. Difference Coordinate Scales 

x-dimension y-dimension time-dimension 

Meter Meter minute 
Foot Foot hour 
Meter Foot second 

 

3.2. Advantages of 3D Shape Function-Based Extension 
Methods 

The ozone dataset described in Section 2 is in the domain 
of 2D space (x, y) and 1D time (t). In this paper, we choose to 
use the 3D shape function-based spatiotemporal interpolation 
method introduced in (Li and Revesz, 2004) based on the ex- 
tension approach. This is because the 3D shape function-based 

extension interpolation method has the following advantages: 

 Invariance to coordinate scales. The 3D shape function- 
based spatiotemporal extension method is invariant to co- 
ordinate scales, which means the results will remain the 
same even if the scale of a dimension (or dimensions) chan- 

ges. We will not have to worry about what space and time 
units should be used. For example, using the following 
three sets of scales on a dataset in 2D space and 1D time 
as shown in Table 2 will produce the same interpolation 
results if a shape function-based method is used. 
However, all the reduction approach based methods and 
other extension approach based methods, for example us- 
ing IDW and kriging, are not invariant to coordinate sca- 
les. The proof of the invariance of shape function-based 
interpolation methods and the noninvariance of other me- 
thods can be found in (Li and Revesz, 2004). 

 Accuracy. The 3D shape function-based spatiotemporal 
interpolation method was compared with other extension 
approach based methods such as IDW and kriging using 
a set of real estate data. The comparison results show that 
the shape function-based method is the most accurate in 
terms of MAE (Mean Absolute Error) and RMSE (Root 
Mean Square Error) and the overall best spatiotemporal 
interpolation method for the discussed examples (Li and 
Revesz, 2004). 

 Fast performance. Since the 3D shape function-based ex- 
tension method is only linear (Li and Revesz, 2004), the 
simulations are very efficient. For example, when the 3D 
shape function-based spatiotemporal interpolation method 

was used to interpolate the annual ozone concentration va- 

lues at more than 8,000,000 census block centroids per 
year in the contiguous United States (Li and Zhang, 2007), 
it took a regular desktop computer with 2.26 GHz CPU 
and 760 MB RAM no more than four minutes to execute 
a Matlab program with the shape function algorithm. On 
the other hand, other extension approach based methods, 
for example using IDW and kriging, are non-linear. Spatio- 
temporal interpolation methods based on the reduction 

approach are at least quadratic (Li and Revesz, 2004). 
Therefore they are not as efficient as the 3D shape func- 
tion-based extension method. 

 Easy storage in constraint databases. The interpolation 
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results of the 3D shape function-based extension method 
can be accurately and efficiently stored in constraint data- 
bases (Revesz, 2002), which can yield powerful solutions 
to useful queries (Li and Revesz, 2002; Li and Revesz, 
2004; Li et al., 2006; Li, 2003). 

 

3.3. 3D Shape Function-based Spatiotemporal Interpola- 
tion Method 

For datasets in the domain of 2D space and 1D time such 
as the ozone dataset in Section 2, we can apply the 3D shape 
function based extension method to interpolate. Interpolation 
by the 3D shape functions requires dividing the (x, y, t) do- 
main into a finite number of tetrahedra with the sampled data 
points as corner vertices. Figure 2 illustrates one tetrahedron 
in the tetrahedral mesh. Assume the unmeasured point (x, y, t) 
is located inside the tetrahedron and we would like to inter- 
polate the value at this point based on the measured values w1, 
w2, w3, w4 at the corner vertices. The spatiotemporal interpola- 
tion equation is (Li and Revesz, 2004): 

 

1 1 2 2 3 3( , , ) ( , , ) ( , , ) ( , , )w x y t N x y t w N x y t w N x y t w    

        4 4( , , )N x y t w                            (1) 

 
where 1N , 2N , 3N  and 4N  are the following 3D shape func- 

tions: 

 

( , , ) , 1, 2, 3, 4i
i

V
N x y t i

V
                           (2) 

 
where 1V , 2V , 3V  and 4V  are the volumes of the four 
sub-tetrahedra ww2w3w4, w1ww3w4, w1w2ww4, and w1w2w3w, 
respectively, as shown in Figure 2; V is the volume of the out- 
side tetrahedron 1 2 3 4w w w w . 

 

w2(x2,y2,t2) 

w4(x4,y4,t4) 

w3(x3,y3,t3)

w1(x1,y1,t1) 

w(x,y,t) 

 
Figure 2. Spatiotemporal interpolation using 3D shape 
functions.  

4. Comparison with IDW Interpolation 

Li and Revesz (2004) compare different spatiotemporal 
interpolation methods such as shape functions, IDW (Inverse 

Distance Weighting), and kriging methods based on a set of 
actual real estate data set with house prices. The comparison 
criteria include interpolation accuracy, error-proneness to time 
aggregation, invariance to scaling on the coordinate axes, and 
the type of constraints used in the representation of the inter- 
polated data. The experimental results indicate that the exten- 
sion method based on shape functions is the most accurate 
and the overall best spatiotemporal interpolation method. 

In this section, we discuss the IDW based spatiotemporal 
interpolation method and compare the shape function method 
and the IDW method based on the ozone dataset introduced in 
Section 2. 

 
4.1. Spatiotemporal Interpolation Based on IDW 

As other spatial interpolation methods, IDW (Inverse Dis- 

tance Weighting) interpolation is based on the assumption that 
things that are close to one another are more alike than those 
that are farther apart. (Revesz and Li, 2002) uses IDW to vi- 
sualize spatial interpolation data. In IDW, the measured values 
(known values) closer to an estimation location will have more 

influence on the estimated value (unknown value) than those 
farther away. More specifically, IDW assumes that each mea- 
sured point has a local influence that diminishes with distance. 
Thus, points in the near neighborhood are given high weights, 
whereas points at a far distance are given small weights. 

The general formula of IDW interpolation is the follow- 
ing: 

 

 
 1

1

1/
( , ) ,

1/

pN
i

i i i N p
i kk

d
w x y

d
 




 


                   (3) 

 
where w(x, y) is the estimated value at location (x, y), N is the 
number of nearest known points surrounding (x, y), λi s are the 
weights assigned to each measured value wi at location (xi, yi), 
di s are the Euclidean distances between each (xi, yi) and (x, y), 
and p the exponent, which influences the weighting of wi on 
w. 

Although IDW is originally a spatial interpolation method, 
we can apply the reduction and extension approaches to IDW 
to obtain spatiotemporal interpolation methods based on IDW 
(Li and Revesz, 2004). In our experiment, we apply extension 
method based on IDW to interpolate our ozone dataset. The 
interpolation formula is of the form of Formula (3) with id   

2 2 2( ) ( ) ( )i i ix x y y t t     . 

 
4.2. Performance Comparison between Shape Function 
and IDW 

For our experimental data, the observation points are the 

spatiotemporal points (x, y, t), where (x, y) is the location of a 
monitoring site and t is the year when the ozone concentration 
was taken. In the end of the process of the leave-one-out 
cross-validation, each of the observation points not only has 
its original ozone concentration, but also has an interpolated 
value. The original and interpolated concentrations at each 
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observation point can be compared for the purpose of an error 
analysis. 

Based on the results of the leave-one-out cross-validation, 

we use the following four types of error statistics to compare 
the performance of the shape function and the IDW interpo- 
lation methods: MAE (Mean Absolute Error), MBE (Mean 

Table 3. Major Statistics of the Shape-Function-Based Spatiotemporal Interpolation Errors for U.S. Ozone Data (1994-1999) 

Year N MIN MAX MAE MBE RMSE MAPE 

1994 941 -0.081 0.089 0.012 0.000 0.017 12.359 
1995 990 -0.099 0.068 0.009 0.002 0.013 9.361 
1996 1000 -0.085 0.064 0.008 -0.003 0.011 9.194 
1997 1041 -0.065 0.039 0.008 -0.001 0.011 9.117 
1998 1063 -0.118 0.080 0.009 0.002 0.013 9.470 
1999 1064 -0.078 0.064 0.008 -0.001 0.012 9.393 

1994 - 1999 6099 -0.118 0.089 0.009 0.000 0.013 9.779 

 
Table 4. Major Statistics of the IDW (with 5 Neighbors and Exponent 2) Spatiotemporal Interpolation Errors for U.S. Ozone 
Data (1994-1999) 

Year N MIN MAX MAE MBE RMSE MAPE 

1994 956 0.045 0.223 0.010 0.000 0.014 10.702 
1995 993 0.036 0.209 0.010 0.000 0.014 10.389 
1996 1004 0.039 0.205 0.009 0.000 0.012 9.187 
1997 1041 0.043 0.172 0.009 0.001 0.012 9.550 
1998 1063 0.032 0.211 0.009 0.000 0.014 10.015 
1999 1078 0.01 0.171 0.008 0.000 0.011 9.134 

1994 - 1999 6135 0.01 0.223 0.009 0.000 0.013 9.813 

 

 
Figure 3. Accuracy comparison of the shape function method and the IDW method. 
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Biased Error), RMSE (Root Mean Squared Error) and MAPE 
(Mean Absolute Percentage Error). The less the error, the bet- 
ter the performance. Each of the error statistics is calculated 
for each year and the whole period. The definitions of MAE, 
MBE, RMSE and MAPE are as follows: 

 

1 1

2 1
1

| | ( )
, ,

| |
( )

, .

N N

i i i ii i

N i i
N

i
i ii i

I O I O
MAE MBE

N N
I O

I O O
RMSE MAPE

N N

 




 
 




 

 


           (4) 

 
where N is the number of observations, Ii is the interpolated 
value, and Oi is the original value. Since the ozone concentra- 
tion values are quite small, the error statistics such as MAE, 
MBE and RMSE have small values. We think the MAPE is a 
better statistic error measurement for the ozone dataset since it 
measures percentage errors. 

 

4.2.2. Error Analysis of the Shape Function Interpolation Me- 
thod 

The shape function interpolation method can interpolate 
values inside the convex hull after generating the tetrahedral 
mesh. It cannot interpolate for the points that are outside the 
convex hull. This can be considered as a limitation of the 
shape function-based method. There are 6135 original spatio- 
temporal observation points in the ozone dataset (see Section 
2). The leave-one-out cross-validation method requires gene-r 
ating 6135 different tetrahedral meshes with 6134 vertices for 
each mesh. It is possible that for a particular tetrahedral mesh, 
the point to be estimated is outside the convex hull. In this 
case, the value at this selected point cannot be interpolated. In 
our experiment, the number of such points that cannot be in- 
terpolated is 36. Therefore, the rest 6099 points with interpo- 
lation results are used for our error analysis. 

Applying the error analysis approach described in Section 
4.2.1 to the shape function based extension method, Table 3 
shows that the 1994 spatiotemporal interpolation has the lar- 
gest MAPE as expected, since 1994 is the year with the most 
missing data. There is no significant difference during 1995 ~ 
1999. The overall MAPE during 1994 ~ 1999 is 9.779%.  

 

4.2.3. Error Analysis of the IDW Interpolation Method 

The IDW interpolation method is dependent on the num- 
ber of nearest neighbors and the exponent [see Formula (3)]. 
We applied the following 16 IDW-based extension methods to 
the ozone dataset and performed the leave-one-out cross-vali- 
dation: 

IDW with 3 neighbors and exponent 1, 2, 3 and 4. 

IDW with 4 neighbors and exponent 1, 2, 3 and 4. 

IDW with 5 neighbors and exponent 1, 2, 3 and 4. 

IDW with 6 neighbors and exponent 1, 2, 3 and 4. 

Figure 3 illustrates the overall MAPE (Mean Absolute 
Percentage Error) results of the above 16 IDW methods, com- 
pared with the MAPE of the shape function based interpola- 
tion method. As shown in Figure 3 that the IDW method with 
5 neighbors and exponent 2 has the best performance in terms 
of the overall MAPE, which is 9.813%. Table 4 shows the 
detailed error analysis results of this IDW approach. 

 

4.2.4. Comparison of Shape Function and IDW 

First, it is clear from Figure 3 that the shape function bas- 
ed method is the best in terms of the overall MAPE. The over- 
all MAPE (Mean Absolute Percentage Error) of the 3D shape 
function-based method is 9.779% during 1994 and 1999, com- 

pared to the 9.813% overall MAPE result of the best IDW 
method with 5 neighbors and exponent 2. Second, it is hard to 
find the optimal configuration of n (the number of neighbors) 
and p (exponent) for the IDW interpolation method. After the 
leave-one-out cross-validation, we find out that for our ozone 
dataset, the IDW method with n = 5 and p = 2 is the best IDW 
method. But even this IDW method is still not as good as the 
shape function based interpolation method. Third, the shape 
function based interpolation method is more efficient than the 
IDW method in terms of the algorithm complexity. The shape 
function based extension method is only linear, while the 
IDW interpolation method is polynomial because of the Eu- 
clidean distance calculation and the exponent p in Formula 
(3). 

5. Visualization 

First, we need to select numerous locations in the conti- 
guous U.S. where the ozone values should be interpolated 
based on the set of measured ozone data. The possible exist- 
ing methods of taking sample points are to take random points 
and to take evenly spaced points in the area extent of interest. 
However, these existing methods do not consider the human 
population activities factor on the ground. In our work, we 
propose a new method to pick U.S. census block centroids as 
sample locations to be interpolated, which generates more sa- 
mple points in the areas with more intensive human activities. 
In our experiment, there were about 8,000,000 sample points 
selected per year. Traditional GIS techniques are insufficient 
in handling such kind of spatiotemporal data. Second, we 
applied the shape function based spatiotemporal interpolation 
method to interpolate the ozone concentrations at the selected 
8,000,000 sample locations per year from 1994 and 1999. 
Third, we generated continuously changing maps for each 
year to visualize the interpolation results by ArcGIS. Note that 
in our visualization procedure, the basic interpolation is at the 
census block level. The spatial patterns of population expo- 
sure to ozone could be displayed at multiple scales, such as 
census tracts, counties and states, and linked with the health 
outcomes and other risk factors at different scales. Figures 4 
to 9 show the visualization results of ozone concentration dis- 
tribution at the census tract level in the contiguous U.S. from 
1994 to 1999. 



Li et al. / Journal of Environmental Informatics 12(2) 120-128 (2008) 

 

126 

 
Figure 4. Ozone concentration visualization for 1994 at 
census tract level. 
 
 
 

 
Figure 5. Ozone concentration visualization for 1995 at 
census tract level. 
 
 
 

 
Figure 6. Ozone concentration visualization for 1996 at 
census tract level. 
 

 
Figure 7. Ozone concentration visualization for 1997 at 
census tract level. 
 
 
 

 
Figure 8. Ozone Concentration Visualization for 1998 at 
Census Tract Level. 
 
 
 

 
Figure 9. Ozone concentration visualization for 1999 at 
census tract level. 
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6. Analysis of Population Exposure to Ozone 

High ozone concentration level has a series of health eff- 
ects on human population. Ozone is one of air pollutants sig- 
nificantly associated with asthma and other respiratory diseases 

(Donnay, 2004; Girardot et al., 2006; Lagerkvist et al., 2004; 
Thurston and Bates, 2004). Some studies show even exposure 
to relatively low concentrations of ozone influences the symp- 
toms of moderate to severe asthmatics (Kim et al., 2007; 
Triche et al., 2006). According to the recommendations given 
by the U.S. EPA on air quality (website http://www.epa.gov/ 
03healthtraining/aqi.html), we used the block centroid's ozone 
concentration level for the whole block and estimated the po- 
pulation exposed to the following three risks according to dif- 
ferent ozone concentration levels: 

 lower risk: ozone concentration level is below 0.08; 

 moderate risk: ozone concentration level is between 0.08 
and 0.12 ppm; 

 high risk: ozone concentration level is above 0.12 ppm. 

We obtained the 1999 census block ozone levels by the 
shape function interpolation. As shown in Table 5, in the year 
of 1999, 9.8% total population in the contiguous United States 
has been exposed to a high risk ozone level, 78.7% to a mo- 
derate risk, and only 11.5% to a low risk. 

 
Table 5. The Population Exposed to Different Ozone Levels 
in the Contiguous U.S. 

7. Conclusions 

Population-based spatiotemporal environmental exposure 
assessment on a large scale with respect to area and popula- 
tion has been conducted. Spatiotemporal interpolation is a cru- 

cial tool in this kind of research. The 3D shape function-based 
method has been selected as the spatiotemporal interpolation 
method in this paper. This method has been compared with 
the IDW-based method based on the leave-one-out cross-vali- 
dation results. It is shown that the shape function method is 
better than IDW in terms of MAPE (Mean Absolute Percen- 
tage Error) and algorithm complexity. 

Continuous maps of annual ozone concentration distribu- 
tions have been generated for the contiguous United States 
during 1994 and 1999. A new approach to select locations to 
interpolate and visualize has been proposed and implemented: 
picking U.S. census block centroids as sample locations. The 
advantage of this approach is to generate more sample points 
in the areas with more intensive human activities. In our expe- 
riment, there were about 8,000,000 sample points selected per 
year. Traditional GIS techniques are insufficient in handling 
such kind of spatiotemporal data. 

The population exposure to ozone in the year of 1999 has 

been analyzed according to different ozone concentration le- 
vels following the recommendations given by the U.S. EPA 
on air quality. Our finding is that in the year of 1999, 9.8% to- 
tal population in the contiguous U.S. has been exposed to a high 

risk ozone level, 78.7% to a moderate risk, and only 11.5% to 
a low risk. 

In the future, we plan to continue to compare the perfor- 
mances of the shape function-based interpolation method with 
other extension approach-based methods such as using kriging 
and Lagrange, using the same set of ozone concentration data 
and using the leave-one-out cross-validation. 

Based on the interpolation results, we will also further 
explore the scoio-spatial disparities in population ozone expo- 
sure to exam the hypothesis that low socioeconomic and mi- 
nority populations are more likely to be exposed to risky ozone 

concentration levels than other population groups. 
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