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ABSTRACT.  The objective of this study is to visualize high-dimensional data vectors using popular data reduction algorithms. The 
study reports on the effectiveness and expressiveness of a set of data reduction algorithms in the visualization of geospatial data sets 
derived from clinical records of patients. The experiments show that when the SOM algorithm is combined with GIS methods together 
they are even more powerful tools for exploratory analysis than when each is applied separately. The visual approach provides a very 
useful exploration environment to support the formulation of new and better study hypotheses regarding the spatial distribution of a 
particular disease. While it was apparent that the spatial distribution and patterns of asthma were predominately located near the major 
roadways and the Peace Bridge Complex, obstructive sleep apnea is slightly more widespread even in the suburbs and surrounding 
neighborhoods. The spatial patterns discovered between the original features of adult and childhood asthma are consistent with the 
SOM-trained data, but a slight difference emerges for the SOM-trained obstructive sleep apnea data set. This study is successful at 
gaining significant novel insights into the spatial characteristics of patient data in relation to key environmental factors. 
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1. Introduction 

The recent prominence of new methods for exploring lar- 
ge-scale geospatial data provides both opportunities and chal- 
lenges. Some of these methods have adequately incorporated 
spatial techniques [e.g. geographic information systems (GIS)] 
and pattern recognition algorithms [e.g. self-organizing maps 
(SOM)] and are currently being used to extract and discover 
interesting patterns of data. Other opportunities include appli- 
cations for managing vast amounts of data and for visualizing 
data vectors in a high dimensional space within a space of low 
dimensionality, but significant challenges still remain.  

A major requirement in exploring locational data is the 

conduction of some form of clustering. The main goal of clus- 
tering is to categorize these data into meaningful groups, whi- 
ch will provide the data analyst three key opportunities: (1) to 
explore and discover similarities and differences among spatial 
patterns; (2) to reveal the hidden structure present in the data 
or to uncover the underlying and interesting patterns of the 
data; and (3) to derive useful conclusions from the data or 
knowledge that could be useful in spatial data mining.  

In geography, the use of clustering algorithms to solve 
geographical problems is now widespread (Openshaw et al., 
                                                        
* Corresponding author. Tel.: +1 618 4533022; fax: +1 618 4536465. 

E-mail address: tjoyana@siu.edu (T. J. Oyana). 
 
ISSN: 1726-2135 print/1684-8799 online 
© 2009 ISEIS All rights reserved. doi:10.3808/jei.200900138 

1995; Openshaw, 1998; Murray and Estivill-Castro, 1998; Cu- 
adros-Vargas and Romero, 2002; Guo et al., 2003). There are 
elaborate studies (Skupin and Fabrikant, 2003; Guo et al., 2004, 
2006; Bação et al. 2004, 2005; Cuadros-Vargas and Romero, 
2005) in which clustering algorithms have successfully been 
applied to explore multidimensional large-scale data sets.  

Let us briefly focus on the basic mathematical structure 
of clustering. Consider a number of data points or feature vec- 
tors that are to be assigned to clusters. Supposing the feature 
vectors (data points) in the input data set are denoted by Xi, 
where i = 1, …, N are members of set X in a multidimensional 
vector space. Here, members of X must then be assigned to 
clusters or graphically mapped to a target space of low dimen- 
sionality (usually 2-D or 3-D visualization spaces) according 
to specific algorithmic schemes and criteria.  

 

1.1. The SOM Algorithm 

The SOM consists of a regular, usually two-dimensional 
(2-D), grid of map units, or it can simply be stated as a spatial 
organization of map units (centroids) (Kohonen, 1982, 1998, 
2001; Duin et al., 1999; Vesanto and Alhoniemi, 2000; Flexer, 
2001). In the SOM model, the input vector M = [Mk=1, …, 
Mk=n] with d dimensions is represented by an input layer Wij 
containing a grid of units (m × n) with ij coordinates. The main 
goal of SOM is to combine both analytic and graphical techni- 
ques to categorize data into a low-dimensional framework and 
generate a visual representation of the clusters using different 
visualization spaces. It possesses both competitive and coope- 
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rative learning capabilities, and its network typically consists 
of high-dimensional input and low-dimensional output layers. 
The SOM network organizes data items in the input space by 
assigning and adjusting them to output space according to a 
winning neuron and neighborhood weights. Two of its main 
properties are the preservation of original topological relations 
and the maintenance of network relationships among data it- 
ems.  

The SOM learning procedure closely follows a biological 
understanding of how neurons in the human brain function as 
they process, organize, and store incoming and outgoing in- 
formation. The information, obtained through these learning 
procedures is then used to generalize and can be applied in 
new or unknown situations. This type of learning procedure is 
what embodies the SOM algorithm. SOM provides a versatile 
neural network architecture for data exploration and mining, 
because it utilizes its neurons efficiently and wastes very few 
or none when representing any data. 

 

1.2. A Description of PCA, MDS, and Sammon Mapping 
Algorithms 

While clustering reduces the number of data items by gro- 
uping them, there are well-known “projection” methods that 
could be useful for dimension reduction. The main goals of 
these methods are (1) to represent the input data items in a 
lower dimensional space in such a way that certain properties 
of the structure of the data set are preserved as faithfully as 
possible and (2) to visualize a very large multivariate data set 
using an output with a reduced dimensionality. In this study, I 
wish to investigate two specific data reduction methods: the 
principal component analysis (PCA) and multidimensional sca- 
ling (MDS), particularly sammon mapping, for my proposed 
application domain. These methods are classified as computa- 
tional algorithms and normally draw from statistical analysis. 
They have been characterized to possess excellent properties, 
and I could use the methods to visually explore and analyze 
data items, detect the data structure, and explore underlying 
factors in a multidimensional data set. They have also been 
extensively integrated with SOM, another very popular neuro- 
computational algorithm (Huang et al., 2005), in several do- 
mains. 

PCA is a widely accepted technique for dimension reduc- 
tion (Vesanto and Alhoniemi, 2000; Yang et al., 2003; Huang 
et al., 2005). The main goal of PCA is to look at the covari- 
ance structure of the original and trained SOM data. The prin- 
cipal idea behind PCA is based on establishing the axis direc- 
tion (eigenvector), which maximizes the explanation of vari- 
ance in the dependent variable. The basic structure of a PCA 
assumes a data set X with (n × m) matrix, where n is the 
number of samples and m is the number of dimensions mea- 
sured in each sample. With this (n × m) vector matrix, PCA 
uses the K-leading eigenvectors of the (n × n) covariance ma- 
trix as the axes of the lower k-dimensional space and the lead- 
ing eigenvectors correspond to linear combinations of the ori- 
ginal variables that account for the largest amount of term va- 
riance (Yang et al., 2003; Huang et al., 2005). According to 

Yang and colleagues and Huang and colleagues, a major short- 
coming of PCA is that it has high memory and computational 
requirements: it requires O(n2) memory for the dense covari- 
ance matrix, and O(kn2) for finding the K-leading eigenvec- 
tors, where n is the number of data items. These authors fur- 
ther claim that requirements for running PCA could be unac- 
ceptably high when the number of data vectors is very large, 
for example tens of thousands. Another drawback of PCA is 
that the eigenvectors are usually very difficult to interpret theo- 
retically, although Ding (2000) supports the effectiveness of 
PCA as illustrated by several empirical studies because of its 
key role in the reduction of noise, redundancy, and ambiguity.  

MDS is a set of mathematical techniques that enable a re- 
searcher to uncover hidden structure in the data (Borg and 
Groenen, 1997; Duin et al., 1999; Huang et al., 2005). Sup- 
posedly, I have a set of objects in which a measure of the 
similarity between objects is known, and using this measure I 
could determine how similar or how dissimilar two objects are 
or are perceived to be. Mathematically, I could compute the 
proximity measure of the two objects in multiple ways, for ex- 
ample, using the correlation coefficient or Euclidean distance 
from the vector representation of the original set of objects on 
a feature space of a given reduced dimensionality (Borg and 
Groenen, 1997; Huang et al., 2005). MDS therefore maps from 
a higher dimensional space to a lower dimensional space in 
which each object is represented by a point and the distances 
between points resemble the original similarity information; 
that is, the larger the dissimilarity between two objects, the 
farther apart they should be in the lower dimensional space 
(Yang et al., 2003; Huang et al., 2005). During the mapping, 
the MDS algorithm attempts to preserve all interpoint distances 
and the geometrical configuration of points, consequently re- 
vealing the structure present in the data or the hidden structure 
of the data. This revelation makes it easier to visually explore 
and analyze the hidden structure of the data. A widely estab- 
lished MDS algorithm is the sammon mapping algorithm. Sam- 
mon mapping has been reported to be very efficient and does 
not generalize because new points are not added to the map 
without being recalculated. Other types of MDS algorithms in- 
clude classical scaling and niemann mapping (Duin et al., 1999). 

Sammon mapping (Sammon, 1969; Jain and Dubes, 1988) 
in contrast with the PCA method is a nonlinear projection map- 
ping technique that attempts to optimize a cost function des- 
cribing how well the pairwise distances in a data set are pre- 
served. It maps vectors in high-dimensional input (original) 
space to a target space of a lower dimensionality, typically to 
a plane. The algorithm tries to preserve all distances between 
input vectors, emphasizing local distances, and arranges vec- 
tors in lower dimensionality according to the distance struc- 
ture between the vectors of the original space by minimizing a 
quadratic function of the mapping error, also known as stress. 
The method is iterative and computationally very intensive. 
However, when applied to the weight vectors of a SOM as 
opposed to the whole original data set, the computing times of 
the algorithm stay reasonable.  

The introduction to this study describes a set of multivar- 
iate data reduction techniques (cluster analysis, SOM, PCA, 
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and sammon mapping), and the remainder is divided into four 
parts. Part 1 gives the statement of the problem and briefly ex- 
plains on the need for such systems; Part 2 provides the expe- 
rimental design; Part 3 presents and illustrates the results; and 
Part 4 provides some conclusions and directions for future re- 
search.  

 

1.3. Rationale for Applying SOM, PCA, MDS, Sammon 
Mapping, and GIS Methods to Spatially Enabled High-Di 
mensional Patient Data 

While many studies have applied SOM with GIS in other 
problem domains, there are few studies (Manduca, 1994; Ta- 
mminen et al., 2000; Sugiyama and Kotani, 2002; Koua and 
Kraak, 2004) available in the biomedical and disease informa- 
tics subfields. Visual exploration of data within SOM and GIS 
are essential in gaining fundamental insights into complex spa- 
tial relationships of large data sets that may consist of many 
different variables (Oyana et al., 2005a, b). In fact, visualiza- 
tion can effectively be used to make sense of the data and ex- 
pose any existing associations among variables in a large vo- 
lume of multivariate data for purposes of knowledge develop- 
ment and construction. Current demand for novel approaches 
with a wide potential to visualize or discover unknown facts 
and knowledge from a very large patient data set has motiva- 
ted this work. A major contribution of this paper was to inte- 
grate a number of popular tools including GIS, SOM, PCA, 
and MDS with a computational framework and applied to geo- 
spatial data analysis. These tools can easily facilitate data re- 
duction by summarizing and classifying large data sets into 
manageable information nuggets. Indeed, the visual outcomes 
are indispensable for verifying earlier findings and establish- 
ing superior study hypotheses. The methods applied in this stu- 
dy have revealed new interesting spatial patterns and associa- 
tions from the analysis of subsets (clusters) that were previous- 
ly unclear or unknown in previous studies (Oyana and Lwebu- 
ga-Mukasa, 2004; Oyana et al., 2004; Oyana and Rivers, 2005). 
The study was able to identify and delineate representative sub- 
sets of the original data where fundamental insights regarding 
the spatial patterns of asthma and obstructive sleep apnea were 
gained leading to the verification and formulation of superior 
study hypotheses.  

They were two core goals for conducting this study. The 
first goal was to visualize very large-scale and multidimen- 
sional data sets, pre- and post-process SOM data, in a GIS and 
to apply a powerful graphing method (box plot) to analyze re- 
sulting clusters. I visualized n-dimensional unit data vectors 
of spatially dependent data collected over geographic domains 
to advance epidemiological and biomedical computations. The 
second goal was to further uncover and confirm core characte- 
ristics of the data that are suggestive of any mathematical and 
statistical properties of the underlying structure in the original 
experimental datasets. This study also introduced a new signi- 
ficant feature that has not been reported elsewhere: the use of 
SPSS K-means clustering algorithm and applied a graphical 
technique, a box plot to analyze and compare SOM-trained 
data with the classes obtained from the SOM toolbox’s Davi- 

es-Bouldin Validity Index (Davies and Bouldin, 1979).  

2. Methods and Materials 

The main goal in this experimental phase is two-fold: (1) 
to use SOM with GIS to visually explore multidimensional da- 
ta vectors; and (2) to conduct post-processing analysis and to 
evaluate the quality of SOM-trained data using nonlinear and 
linear mapping techniques (sammon mapping and PCA) and 
box plots. Three data sets were used for performing the expe- 
riments. 

 

2.1. Data Sets I and II 

There are 4,910 and 10,289 data points of adult and child- 
ren patients, respectively, diagnosed with asthma or gastroen- 
teritis. Case and control subjects consisted of asthma patients 
(International Classification of Diseases, 9th Revision [ICD-9] 
code 493) and gastroenteritis patients (ICD-9 code 558), res- 
pectively, residing in Buffalo neighborhoods during the same 
period. The patient database was obtained from Kaleida Health 
Systems, a major provider of healthcare in western New York. 
The two data sets are available at individual and group (aggre- 
gate) levels — point and polygon vector formats. Vectors con- 
sisting of six components (X, Y, case_control/code, IN500, 
IN1000, and PM1000) were visualized using a two-dimen- 
sional SOM. In this case, X and Y represent the coordinates of 
the patients; the case_control/code indicates whether the pa- 
tient has asthma (case) or gastroenteritis (control); the IN500 
indicates whether the patient is within 500 m of the highway; 
IN1000 indicates whether the patient is within 1,000 m of a 
pollution source; and PM1000 indicates whether the patient is 
within 1,000 m of the sampling site of measured particulate 
matter concentrations.  

 

2.2. Data Set III 

The third data set consists of obstructive sleep apnea (OSA) 
subjects who were identified by the following 9th Revision 
codes: ICD-9CM 780.51, .53, and .57. There are 3,943 data 
points of OSA subjects available at individual and group (ag- 
gregate) levels — point and polygon vector formats. Vectors 
consisting of seven components (X, Y, INPOS, INNEG, LOS, 
INFF, and AGE) were visualized using a two-dimensional SOM. 
In this case, X and Y represent the coordinates of the patients; 
the INPOS indicates whether the patient is within 1,000 m of 
a positive health promotion factor (such as recreational facili- 
ties, fitness centers, sightseeing areas, sport clubs and fields, 
and amusement parks); INNEG indicates whether the patient 
is within 1,000 m of a negative health promotion factor (such 
as pubs, airports, nightclubs, fast-food restaurants, and liquor 
stores); LOS indicates the length of stay at the hospital for the 
patient; INFF indicates whether the patient is within 1,500 m 
of a fast-food restaurant; and AGE indicates the patient’s age 
at time of admission to the hospital.  

The experiments were conducted in SOM Toolbox 2.0 for 
Matlab (SOM Project, Hut, Finland), Matlab 7.0 (MathWorks  
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Figure 1. Data flow in the system implemented using a 
loosely-coupled strategy. 

 
Figure 2a. The spatial distribution of normalized adult asthma 
data set.  
 
Inc., Natick, Massachusetts), ArcGIS 9.1 (ESRI Inc., Redlands, 
California), and SPSS 13 (SPSS Inc., Chicago, Illinois). These 
computational tools support substantial topological data struc- 
tures, which are capable of handling complex geocomputation- 
al processes, and the integration of separate data sets to produce 
new spatial information is also possible. The environments al- 
so allow with greater ease the formulation and compilation of 
complex mathematical equations for visual modeling. Figure  

 
Figure 2b. The spatial distribution of normalized childhood 
asthma data set. 
 

 

Figure 2c. The spatial distribution of normalized obstructive 
sleep apnea data set. 

 
1 illustrates the data flow system conceived for visualizing high- 
dimensional clinically acquired geospatial data. 

The first phase of the experiments was to train the SOM 
using the experimental data sets; this involved several steps 
such as normalizing and defining training parameters as illu- 
strated in Figure 1. To determine whether the data sets should 
be normalized, I tried two methods (algorithms) using the range 
and variance of the data sets. The range method normalizes va- 
lues between 0 and 1, while the variance method normalizes 
to one using a linear operation. In both situations, the data lo- 
ok very stable and well distributed, suggesting that normali- 
zed data have a very minimal effect on the outcome. Figures 
2a through 2c illustrate the original and normalized data with 
range and variance algorithms. As these figures illustrate, it 
does not matter whether experimental data sets are normalized  
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Figure 3a. Projected adult asthma data set with PCA (upper 
and lower panels). 
 
or not normalized because the outcomes in both situations were 
not significantly different. 

    Using a two-dimensional grid, I projected the vectors in 
the input space onto the output space while preserving the to- 
pological relations observed in the input space. I constructed 
several experiments using a number of training samples rang- 
ing from 75% of the available data to 1%, with the learning 
rate going from 0.5 in the rough-tuning phase to 0.05 in the 
fine-tuning phase. The initial neighborhood radius was set to 
half of the map size and was gradually reduced during the trai-  

 

Figure 3b. Projected childhood asthma data set with PCA 
(upper and lower panels).  
 
ning phase until it reached 1, with the minimum value of the 
neighborhood radius set at 1 throughout the training. The trai- 
ning regimes followed well-established SOM recommended 
standards as described in the technical notes of the SOM tool- 
box.  
    Visual exploration of potential patterns was achieved 
through the use of various visualization spaces. The most po- 
pular techniques for SOM visualization are based on distance 

matrices, which map the distances between neighboring neu- 
rons, one of these being the U-Matrix. The U-Matrix shows 

Table 1. SOM Training Parameters 

Data Set Map size NhradiusR** NhradiusF*** Elapsed Time Qe/Te(linear&sequential) Qe/Te(linear&batch)* 

I—Adult 23X13 5.75 1.4375 1.943 s 433.9; 0.039 211.71; 0.048 
II—Child 20X20 5 1.25 4.166 s 942.6; 0.064 521.76; 0.05 
III—Sleep 20X20 5 1.25 3.245 s 1433.6; 0.05 722.12; 0.079 

*There is a general improvement in map quality (quantization error/topological error (qe/te)) in the last column when separate functions for 
initialization and training the SOM. This is because I can adjust and specify the radius and training length, whereas in the second last column 
I used the neighborhood radius and training length defaults as defined in the som_make function. 
**Initial neighborhood radius (NhradiusR) for rough-tuning phase = max(msize)/4.  
***Initial neighborhood radius (NhradiusF) for fine-tuning phase = (max(msize)/4)/4 until it reaches 1, where max is the maximum value of 
the map size matrix, for example in data set I it is [23 13], so max is 23. 
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the distances from each neuron’s center to all of its neighbors, 
with the dark coloring between the neurons corresponding to 
large distance in the input space, while the light coloring be- 
 

 
Figure 3c. Projected obstructive sleep apnea data set with 
PCA (upper and lower panels). 

 
tween neurons specifies that the vectors are close to each 
other. A cluster is visualized as a group of units with light co- 
loring surrounded by units with dark coloring as I will illus- 
trate later. To delineate cluster boundaries following the visua- 
lization process, I used the K-means clustering algorithm with 

Best Davies-Bouldin Validity Index provided within the SOM 
toolbox. 

In order to verify the general applicability of the SOM te- 
chniques for classifying disease features, the results of SOM- 
trained data were imported into ESRI ArcGIS 9.1 as illustra- 
ted in Figure 1. The pre- and post-processing of geospatial and 
SOM-trained data were conducted using ArcGIS. The SOM 
network and the original data files were mapped and compa- 
red to visualize and generate the geographic maps pertaining 
to the spatial distribution of patient data. These geographic maps 
were compared with the maps obtained from earlier studies 
(Oyana and Lwebuga-Mukasa, 2004; Oyana et al., 2004; Oya- 
na and Rivers, 2005). The results were consistent with the ones 
previously obtained, suggesting that these maps from the SOM 
network clearly illustrated similar spatial patterns and distri- 

butions of the disease, thereby resolving the idea that the SOM 
algorithm captures the data set effectively as well as repre- 
sents the original data accurately. The final geographic maps 

  

 
Figure 4a. Projected adult asthma data set with sammon 
mapping (upper and lower panels). 
 
illustrate the visual effectiveness of SOM in capturing the 
structure of the data and new significant insights were also 
gained from this study. 

I used box plots for post-processing analysis and validity 
purposes. The box plot is a very important graphing method, 
which allowed me to visually explore general types of stati- 
stics within each cluster, for example, the minimum, maxi- 
mum, median, lower and upper quartiles, and outliers. I was 
also able to compare different clusters of SOM-trained data. 
By being able to analyze whether outliers were present in any 
of these SOM feature subclasses, I was able to determine the 
appropriateness and validity of each cluster in relation to other 
classes and separate the good clusters from the bad ones.   

3. Results and Analysis of Clusters 

    The quality of SOM training is summarized in Table 1. 
The data suggests that map quality for the three data sets was 
acceptable and the errors were negligible, thus SOM training 
was adequate, successful, and the topology was well-preser- 
ved. 
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Figure 4b. Projected childhood asthma data set with sammon 
mapping (upper and lower panels). 

 
Figure 2a shows spatial distribution of data set I – adult 

asthma; Figure 2b shows the spatial distribution of data set II 
– childhood asthma; and Figure 2c shows the spatial distribu- 
tion of data set III – obstructive sleep apnea. The stability of 
original data features, as illustrated in Figures 2a through 2c, 
suggested that normalizing the data sets prior to SOM training 
would have not made any significant differences. 

Figures 3a through 3c illustrate SOM visualization of ad- 
ult asthma, childhood asthma, and obstructive sleep apnea da- 
ta sets using the PCA method. The PCA was used to validate 
and display original data space as a linear projection mapping 
technique on a subspace of the original data space that best 
preserves the variance in the experimental data sets. The ori- 
ginal data sets are illustrated using the red circles, while pro- 
totype SOM data are shown by black cross marks with their 
corresponding data. The SOM-trained data are within the ori- 
ginal data points, and the data clouds are ellipse-like, meaning 
that SOM training was effective. Each data vector illustrates 
the principal variables, which significantly contribute to asth- 
ma or obstructive sleep apnea at every location. Overall, the 
PCA method was not only highly effective at revealing the 
structure of the original and SOM-trained data and accounting 
for variability, but it also allowed some conduction of onscre- 

 

Figure 4c. Projected obstructive sleep apnea data set with 
sammon mapping (upper and lower panels). 
 

en visual inspection and exploration of the data sets. The PCA 
results (reduced dimensions) were comparable to the results 
obtained from the SOM clustering algorithm, thus illustrating 
the effectiveness and expressiveness of both methods by visu- 
ally providing exploratory knowledge of the data sets.  

Figures 4a through 4c illustrate sammon plots for the th- 
ree experimental data sets. The sammon plots of the trained 
SOM data revealed that data points, which are close to each 
other in 2-D visualization space, were also close in the origi- 
nal dimensional space. The grid map connects closer points 
by lines, and when the distance between dissimilar points is 
large, I could use these geometrical configurations in lower 
dimensional space to visually expose the hidden structure of 
the data set. The stress factors involved in the computation for 
the adult asthma, childhood asthma, and obstructive sleep ap- 
nea data sets were in the order of 4.1408 × 10-18, 1.5635 × 
10-16, and 3.7421 × 10-12, respectively. These very low values 
suggest that the training was very effective. The results from 
the sammon plots clearly demonstrate successful map folding 
for all the data sets. Figures 5a through 5p illustrate the U- 
Matrices and component planes. Figures 5a through 5e repre- 
sent the adult asthma data set; Figures 5f through 5j represent 
the childhood asthma; and Figures 5k through 5p represent the 



T. J. Oyana / Journal of Environmental Informatics 13(1) 33-44 (2009) 

 

40 

5j 

Figure 5. SOM visualization of adult asthma, childhood 
asthma, and obstructive sleep apnea datasets. 
 

obstructive sleep apnea data sets. Specially, Figures 5a, 5f, 
and 5k represent the U-Matrices for adult asthma, childhood 
asthma, and obstructive sleep apnea data sets, respectively. 
The light blue coloring depicts the clusters in the both the U- 
Matrices and component planes. The U-Matrices and com- 
ponent planes display how each input vector varies over the 
space of the SOM units. Each component plane shows only 
the values of one variable in each map unit based on certain 
color coding. These SOM visualization techniques make it 
possible to visually examine and compare every cell (each cell 
corresponding to each map unit) across all input dimensions. 
These techniques also allow for visual exploration of clusters 
in each unit of SOM data. The light blue color tone in Figures 
5a through 5p indicates that distances are very close and that 
these neurons belong to a similar cluster, while the light yel- 
low color (reddish) tone shows a coarse distance with the neu- 
rons farther apart, signifying cluster boundaries. Using visual 
inspection of the U-Matrices, I observed three major adult as- 
thma clusters, two major childhood asthma clusters, and three 
major obstructive sleep apnea clusters. The component planes 
for the adult and childhood asthma data sets clearly illustrated 
strong associations between cases of asthma and proximity to 

a) 

b) 

c) 

 
 

Figure 6. A mapped example of identified spatial patterns of 
SOM feature subclasses of a) adult asthma data set, b) 
childhood asthma data set, and c) obstructive sleep apnea data 
set. 
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a) 

b) 

c) 

 
 
Figure 7. A box plot illustration of cluster analysis of a) adult 
asthma data set, b) childhood asthma data set, and c) 
obstructive sleep apnea data set. 

 

major roads and point-source respirable particulate air pollu- 
tion or field measurements of particulate matter. The associa- 

tions are particularly evident in the top right corners of Fig- 
ures 5b through 5e; and in the centers and towards the left 
corners of Figures 5g through 5j. The obstructive sleep apnea 
clusters were firmly within the negative health factors, inclu- 
ding the fact that most of cases were located in close proximi- 
ty to fast-food restaurants. The component plane for the leng- 
th of stay and age of patients for obstructive sleep apnea exhi- 
bited two major clusters. The length of stay in one cluster was 
given at slightly more than 2 days, while the age of patients in 
another cluster was between 35 and 40 years. 

Figures 6a through 6c illustrate extracted feature subcla- 
sses of SOM-trained data using a GIS. Figures 6a, 6b, and 6c 
illustrate major and minor subclasses of adult asthma, child- 
hood asthma, and obstructive sleep apnea, respectively. The 
GIS maps clearly demonstrated both major and minor feature 
subclasses of SOM data. These maps have further identified 
meaningful feature subclasses (geographies) of the adult asth- 
ma, childhood asthma, and obstructive sleep apnea data sets. 
The largest cluster for the SOM-trained adult asthma data set 
was observed on Buffalo’s west side and the downtown areas, 
while for childhood asthma there was only one very large clus- 
ter located in similar geographic settings. The other two clus- 
ters located on Buffalo’s north side and south side are minor 
ones if the actual number of SOM hits measured within a dis- 
tance of 1,000 m is quantified. For the SOM-trained obstruc- 
tive sleep apnea data set, the largest cluster was observed in 
Buffalo’s west side and the downtown areas. To some extent, 
the SOM data for asthma and obstructive sleep apnea exhibit- 
ed a similar spatial distribution and pattern. While it was ap- 
parent that the spatial distribution and patterns of asthma were 
predominately located near the major roadways and the Peace 
Bridge Complex, obstructive sleep apnea is slightly more wi- 
despread even in the suburbs and surrounding neighborhoods. 
Overall, the spatial patterns discovered between the original 
features of adult and childhood asthma are consistent with the 
SOM-trained data, but a slight difference emerges for the 
SOM-trained obstructive sleep apnea data set. The newly de- 
rived SOM feature subclasses both for asthma and obstructive 
sleep apnea data sets require further evaluation. 

I also conducted a comparison of clusters of the SOM- 
trained data in both SOM toolbox and SPSS software using 
the K-means clustering approach. Figures 7a through 7c give 
the results of a cluster analysis using box plots as a diagnostic 
tool. Figure 7a shows the adult asthma data set with three ma- 
jor clusters (2, 7, and 8). Figure 7b shows the childhood asth- 
ma data set with two major clusters (1 and 3) and has an out- 
lier in Cluster 7. Figure 7c shows the obstructive sleep apnea 
data set with three major clusters (4, 8, and 9). The others clu- 
sters are minor ones. Overall, there are some slight variations 
in clusters, but all of these distances are reasonable. Indeed, 
according to these box plots, there are two to three very good 
clusters coming both from the SOM and SPSS data. The SPSS 
K-mean clustering and SOM toolbox had a perfect match of 
100% for the largest clusters. For the other clusters, some sli- 
ght differences were observed, but the match was still more 
than 95%. Although the classification results in SOM were 
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stronger than the ones in SPSS (this is partly due to the use of 
Best Davies-Bouldin Validity Index), both the SOM toolbox 
and the SPSS software captured the data sets effectively. 

The box plot for adult asthma feature data set indicates 
that Cluster 8 is the largest cluster, followed by Clusters 7 and 
3. With the childhood asthma feature data set, the largest clu- 
ster is Cluster 3, and the second largest one is Cluster 1. Al- 
though the SOM toolbox identified Cluster 6 as another good 
cluster, further analysis using the box plot does not support this 
feature subclass as a viable cluster. The childhood asthma fea- 
ture data set also has an outlier in Cluster 7. In the obstructive 
sleep apnea feature data set, the largest cluster belonged to Clu- 
ster 4, followed by Clusters 8 and 9.  

The remaining clusters in the three feature data sets were 
minor ones; they had slight variations, and the distances be- 
tween them were reasonable. The box plot confirmed further 
that all of the clusters representing feature subclasses and sur- 
rounding neighborhoods were within a reasonable distance. 
Overall, the clusters derived using SOM toolbox are consis- 
tent to the ones derived using the SPSS K-means clustering 
method.  

4. Conclusions 

    The SOM provides excellent visualization and explora- 
tion frameworks for analyzing vast quantities of spatially ori- 
ented biomedical data. These experiments show that when the 
SOM algorithm is combined with GIS methods, they are even 
more powerful tools for exploratory analysis than when they 
are applied separately. This novel approach is both robust and 
superior because it enjoys three potential benefits that are lac- 
king in conventional clustering and visualization techniques. 
First, both methods provide a platform for the visual explora- 
tion of multidimensional data. Second, the SOM algorithm is 
computationally very powerful and efficient, and it allows for 
automatic determination of clusters. This algorithm, as I have 
illustrated in this study, was able to identify clusters of similar 
sequences; project and visualize high-dimensional data spaces; 
preserve topological relationships between data vectors during 
training through the use of neighborhood functions. More im- 
portant, it was robust regarding weight vectors initialization. 
The benefits of applying the SOM algorithm to geospatial da- 
ta are valuable because the data often come with multiple at- 
tributes where the dimensionality, complexity, and volume are 
prohibitively large for manual analysis. Third, the methods in 
GIS preserve topological data structures (Samet, 1990, 1995) 
of original spatial features. Through GIS, I mapped both origi- 
nal and SOM data, which revealed the structure of clusters 
and sub clusters and from these I gleaned fundamental insi- 
ghts and characteristics regarding the three data sets. 

The experimental results clearly illustrated the valuable 

properties of a set of data reduction algorithms to visually ex- 
plore and analyze spatially oriented biomedical data. The to- 
ols provide a very useful exploration environment to support 
the formulation of new and better study hypotheses regarding 
the spatial distribution of a particular disease. I gained signifi- 
cant novel insights into the spatial characteristics of patient 

data and I identified three main subsets (geographies) of as- 
thma and OSA in the study region that require further evalu- 
ation. This approach was also essential for improving inter- 
pretations of the previous findings reported in Oyana and 
Lwebuga-Mukasa (2004), Oyana et al. (2004), and Oyana and 
Rivers (2005). I further confirmed that asthma is more preva- 
lent in Buffalo’s west side which is in close proximity to ma- 
jor roadways, the Peace Bridge Complex and pollution sour- 
ces. The spatial distribution and patterns of asthma and OSA 
were similar, suggesting that the two diseases track together. 
Interestingly, I found the clusters to be located at the same geo- 
graphic locations, supporting the hypothesis that the output of 
these data reduction algorithms provides the best representa- 
tive set of the original data features. 

The quantization and topological errors indicate that the 
measure of the quality of the SOM during training was negli- 
gible and that there were greater improvements in the error 
component of trained maps. Such findings suggest that the 
training was adequate and that the topology was well preser- 
ved. However, I would like to reduce the error component fur- 
ther by incorporating a mathematical improvement model. In 
future work, I am going to investigate mathematical adjust- 
ments to the SOM model by improving its learning rate. My 
experience in applying the SOM algorithm has led to a num- 
ber of efficiency and convergence issues, which I plan, to add- 
ress in future studies. These include (1) speed and quality of 
clustering; (2) the number of clusters; (3) the updating proce- 
dure for the output neurons; and (4) the learning rate in the 
SOM model. 

Recent work in applying the SOM model and its suggest- 
ed variants (Cuadros-Vargas and Romero, 2002; Guo et al., 
2003; Skupin and Fabrikant, 2003; Guo et al., 2004; Yang et 
al., 2003; Bação et al., 2004, 2005; Huang et al., 2005; Cua- 
dros-Vargas and Romero, 2005; Oyana et al., 2005a, b; Guo et 
al., 2006) have significant implications with regards to how 
we extract relevant information or gain fundamental insights 
from very large-scale datasets. These studies along with this 
one could be valuable in advancing our understanding of the 
biomedical and epidemiological processes of diseases in rela- 
tion to space and time. 
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