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ABSTRACT.  With rapid urbanization and economic development, anthropogenic activities have brought stressors on urban water 
resources. This study aims to develop a robust statistical approach for analyzing pollutant loadings in urban rivers to support water 
management decisions and practices. In order to test the developed approach and demonstrate its feasibility and robustness, a case 
study was conducted in two urban rivers in eastern Canada. The results indicated that the changes of lead (Pb) concentration in both 
rivers were not statistically significant among different sites over years; the upward or downward monotonic trend of Pb concentration 
in each site was also not significant; no significant step trend was found by using Mann-Whitney test; interval analysis verified that the 
Pb concentration in 2009 and 2010 met the local surface water quality guideline; the self-purification capacities of the two rivers were 
much limited to reduce the concentrations of Pb in the water; Moreover, the adaptation of the probability plotting method shows the 
robustness and effectiveness in investigating multiply censored water quality datasets rather than simple substitution procedures 
commonly used in practice. 
 
Keywords: pollutant loadings, two-way ANOVA analysis, trend analysis, interval analysis, bootstrapping method, multiply censored 
data analysis

 
 

 

1. Introduction  

Fresh water is fundamental to human development as well 
as ecosystem function. With accelerating urbanization and eco- 
nomic development, anthropogenic activities especially under 
inappropriate management impact urban water quality and vo- 
lume (BRAGA, 2001). A great number of studies have been 
conducted to assess water quality compliance with regulatory 
guidelines as well as the impact of contaminants on water bo- 
dies (Buelna and Riffat, 2007; Warner et al., 2007; Chen, 
2008; Montgomery and Eames, 2008; Müller et al., 2008; 
Awuah et al., 2009; Mkandawire and Banda, 2009; Ipeaiyeda 
and Onianwa, 2009; Qin et al., 2009; Li et al., 2010; Pedusaar 
et al., 2010).  

Although comprehensive with respect to water quality as- 
sessment, most previous studies usually used their own data, 
and thereby eliminating much of the uncertainty in sampling; 
otherwise, the influence of uncertainties associated with the 
factors affecting sampling results should be statistically evalu- 
ated when using other researcher’s data. Some key factors in- 
clude timing, frequency, equipment used in field and lab, lo- 
cation, and environmental conditions. Given that most samples 
are grabbed in a specific location and time. Multiple samples 
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are usually needed over a period of time and different locations 
in order to obtain an overall picture of the water body. How- 
ever, over this time period, the equipment used may change, 
sample locations may vary, and/or sampling teams may be di- 
fferent. To account for the variations, basic statistical methods 
(average, minimum/maximum, standard deviation, etc.) have 
been employed previously to analyze sampling results, which 
may lead to loss of valuable information (Ahmed et al., 2000; 
D'Vera, 2005; Montgomeryand and Eames, 2008; Jin et al., 
2009; Wiatkowski and Paul, 2009; Munabi et al., 2009). Fur- 
ther, different analytical instruments used to measure the same 
contaminant may bias the results due to different detection li- 
mits. Readings may be simply ignored or replaced in report- 
ting, (Buelna and Riffat, 2007; Town of Markham, 2009; 
Town of Newmarket, 2009). The influence of sampling/mea- 
surement methods and instruments, environmenttal conditions, 
and even sampler’s behaviours on the quality of results are 
seldom studied. For example, many studies failed to take into 
account the influence of various sampling seasons, different 
samplers and measurement methods to the sample results 
(Canter and Maness, 1995; Ahmed et al., 2000; Buelna and 
Riffat, 2007; Awuah et al., 2009; Mkandawire and Banda, 
2009).  

To address the above challenges, more systematic and ro- 
bust statistical approaches are desired for supporting water ma- 
nagement. This study aims to develop an integrated water qua- 
lity analysis approach, which will be able to a) examine the 
influences caused by the variations of both site conditions and 
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timing of sampling; b) determine the trend and distribution of 
contaminant concentrations; c) determine impacts due to varia- 
tion in sampling methods and teams; d) quantify uncertainties 
associated with the compliance assessment; e) investigate the 
self-purification capacity; and f) assess the test results obtained 
from the equipment with different detection limits. 

2. Methodologies 

Figure 1 shows the framework of the developed approach. 
The development will be based on a) two-way ANOVA ana- 
lysis method to determine the potential trend of contaminant 
concentrations associated with the change of time and space; 
b) trend analysis to investigate the trend of contaminants du- 
ring the sampling period and the step trend caused by sampling 
methods and teams as well as sample analysis facilities; c) con- 
fidence interval in the data analysis to test its compliance with 
urban water quality guideline; d) a balanced ANOVA to assess 
the difference on self-purification capability of each river; e) 
probability plotting method to assess collected water quality 
data with under different detection limitations. 
 

Trend Analysis 

Uncertainty Impact 
Evaluation 

Multiply Censored 
Detection Limit Analysis 

Confidence Interval Analysis

Sample Data Collection 

Probability Plotting Method

Bootstrapping Method 

Self-purification 
Capacity Assessment 

Balance ANOVA 

Test Changes Over Years

Test Changes Among Sites

Mann-Kendall Trend Analysis 

Temporal and Spatial 
Variation Analysis 

Mann–Whitney–Wilcoxon 
Step Trend Analysis 

 
Figure 1. Framework of robust statistical analysis approach 
for pollutant loadings in urban rivers. 
 
2.1. Temporal and Spatial Variation Analysis 

Water quality data varies with time and location, particu- 
larly in rivers. The first step is to determine if there are signifi- 
cant changes in contaminant concentrations over a given time 
period or among different sites. A two-way analysis of variance 
(ANOVA) was employed in this study. In statistics, analysis of 
variance (ANOVA) is a collection of statistical models, and 
their associated procedures, in which the observed variance is 
partitioned into components due to different sources of varia- 
tion. One-way ANOVA measures significant effects of one fac- 
tor only, while two-way ANOVA measure the effects of two 
factors simultaneously. Two-way ANOVA can therefore assess 
both time and site in the same test, and determine if there is an 
interaction between the parameters. A two-way test generates 

three p-values, one for each parameter independently, and one 
measuring the interaction between the two parameters. 

 
2.2. Trend Analysis 

Trend analysis looks for changes in environmental para- 
meters over time or in space. Mann-Kendall (MK) trend ana- 
lysis (McLeod et al., 1990) determines whether there is a mo- 
notonic (single-direction) trend over time. It is a nonparame- 
tric test, determining trend regardless of whether that trend is 
linear or whether data follow a normal distribution. On the o- 
ther hand, significant changes might exist in the contaminant 
concentration as a result of different samplers, various samp- 
ling methods, as well as climatic conditions. To account for 
this, the Mann–Whitney–Wilcoxon (MWW) test was used on 
conjunction with MK analysis, to determine if the two indepen- 
dent samples of observations have equally large values. The 
MWW is virtually identical to performing an ordinary parame- 
tric two-sample t test on the data after ranking over the combi- 
ned samples. 

 
2.3. Uncertainty Impact Evaluation  

The measured concentrations of contaminants vary from 
year to year at each site, which complicates assessment of com- 
pliance with local water quality guidelines. A confidence inter- 
val (CI) is a particular kind of interval estimate of a population 
parameter used to account for the variability (Smithson, 2003). 
Taking the water quality data analysis as an example, if the 
water quality regulations indicated that the 90th percentile con- 
centration of contaminants should not exceed guidelines due 
to the uncertainties of environmental data, the interval analysis 
determines if the standard has been violated by the 90th percen- 
tile of concentrations at the 90% confidence level. Instead of 
estimating the parameter by a single value, an interval likely to 
include the parameter is given. Thus, confidence intervals are 
used to indicate the reliability of an estimate. How likely the 
interval is to contain the parameter is determined by the confi- 
dence level.  

Bootstrapping is a computer-intensive, general purpose 
approach to statistical inference, falling within a broader class 
of re-sampling methods (Davison and Hinkley, 2006). It is o- 
ften used as an alternative to inference based on parametric 
assumptions when those assumptions are in doubt, or where 
parametric inference is impossible or requires complicated for- 
mulas for the calculation of standard errors. Compared with o- 
ther analytical methods, it is straightforward to apply the boot- 
strap to derive estimates of standard errors and confidence in- 
tervals for complex estimators of complex parameters of the 
distribution, such as percentile, proportions, odds ratio, and co- 
rrelation coefficients. In the water quality analysis, bootstrap- 
ping can be incorporated into interval analysis for reflecting 
the uncertainties. 

 
2.4. Self-purification Capacity Assessment 

Once the contaminant is discharged into environment, it 
could be possibly decomposed or diluted. However, the self- 
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purification capability of water systems varies, depending on 
the characteristics of the water system and type/volume of con- 
taminant loadings. Therefore, it is essential to assess the degra- 
dation capability of each river at different sites. Two-way A- 
NOVA is most powerful when the experiment has the same 
number of replicates in each group defined by the pair of para- 
meters, which is called a “balanced design”. Comparison of a 
certain contaminant between rivers will be made to test whe- 
ther they are statistically significant or not. The results from the 
balanced ANOVA could indicate the levels of self-purification 
capacity when there are significant changes in concentrations 
of the contaminant. 

 
2.5. Descriptive Multiply Censored Detection Limit 
Analysis 

Water quality data often contain "less than" observations. 
Rather than the situation where only one detection limit was 
present, the performance of estimators for data that have mul- 
tiple detection limits should be investigated. Multiple detec- 
tion limits arise because of 1) improvement in analytical me- 
thods over time, resulting in a lowering of the detection limits, 
2) management decisions to reduce costs by use of methods 
with higher detection limits, 3) combination of data from se- 
veral agencies or laboratories having different reporting levels, 
or 4) use of differing laboratory procedures and detection li- 
mits due to differences in sample matrix characteristics. When 
utilized correctly, less than values frequently contain nearly as 
much information for estimating population moments and qu- 
antiles as would the same observations had the detection limit 
been below them. A probability plot is a graphical data analy- 
sis technique for determining how well the specified distribu- 
tion fits the data set. Linearity in the probability plot is indica- 
tive of a good distributional fit. Probability plotting methods 
is used in this study due to its robustness to describe the multi- 
ply censored data. One advantage of the graphical approach 
over quantitative measures (e.g., Kolmogorov-Smirnov test) is 
that it provides an indication of how the distribution is not a 
good fit. This can provide guidance to a better distributional 
model. 

3. A Case Study 

The contaminant of interest in this study is Lead (Pb), 
which can accumulate in individual organisms and even the 
entire food chains. The accumulation of Pb can cause kidney 
damage, brain damage, disruption of nervous systems, and be- 
havioural problems to both human and aquatic life (EPA, 2010). 
Along with the rapid urbanization, Pb can be added to the en- 
vironment from anthropogenic activities such as industrial ope- 
rations (EPA, 2010). In order to test the developed approach 
and demonstrate its feasibility and robustness, a case study was 
conducted in two urban rivers in eastern Canada.  

 
3.1. Overview of the Study Area 

To protect the confidential information of the parties in- 
volved in this study, the identifications and geographical loca- 

tions of the rivers and the city are removed. In this study, Ri- 
vers A and B, located at the western outskirts of City X in eas- 
tern Canada, were selected to assess the Pb loadings in the wa- 
tershed. River A, flowing across an industry zone, is the main 
head-water tributary of River B, which flows through a densely 
populated region. River B is not a drinking water resource, 
but is used recreationally for fishing and swimming. The water 
quality of River A is impacted by industrial activities midway 
along its path through the industrial zone. An intensive field 
investigation especially source identification and historic re- 
cords review have been conducted. The Pb is attributed to a se- 
ries of past and ongoing industrial activities including emis- 
sions from industrial processes and incineration of solid wastes, 
and the surface runoff from mining activities at quarry sites 
(Environment Canada, 2008). The source of Pb contamination 
of River A could possibly pose health risks to the residences 

living along River B, as well as to flora and fauna in the sur- 
rounding area.  
 

Figure 2. Locations of new 6 sites in Rivers A and B (flow 
direction is from south to north). 
 
3.2. Data Acquisition  

The water sampling program was carried out from 2006 
to 2010 at Rivers A and B. Three sites along the River A and 
five sites along the River B were monitored throughout the stu- 
dy period (Figure 2). Among those sites, Site A1 is the head- 
water of A, regarded as a reference representing the natural 
conditions of the water system; Site A2 is located at the down- 
stream of the industrial zone, where water quality may have 
been impacted by various industrial activities; Site A3 is loca- 
ted in the outlet of a gully around 1 km upstream from the junc- 
tion of the two rivers, which represents the water quality of 
River A flow into River B, and can be used to assess the im- 
pact of River A to River B. The other five sites were chosen 



J. Ping et al. / Journal of Environmental Informatics 16(1) 35-42 (2010) 

 

38 

along the River B to evaluate water quality at River B. Site B4 
is located near the junction point of the two rivers and it is used 
to reflect the loading contribution of the tributary of River B. 
Sites B5 ~ 7 are located in the residential area which is more 
vulnerable to the Pb contamination and requires more attention 
during pollution analysis. The results of Pb concentration of 
the eight sites from 2006 to 2010 are summarized in Table 1. 
 
Table 1. Pb Concentrations (ppb) from 2006 to 2010  

Group 1 Group 2 Sampler 
Site 2006  2007  2008 2009  2010  
A1 0.80 0.45 0.11 0.36 0.35 
A2 0.48 1.90 0.57 0.43 1.56 
A3 0.17 0.62 0.17 0.44 0.26 
B4 0.24 0.36 0.37 0.38 0.22 
B5 0.25 0.35 0.12 0.37 0.19 
B6 0.19 0.50 0.08 0.19 0.11 
B7 0.36 0.47 0.16 0.81 0.70 
B8 0.43 0.17 0.25 0.78 0.28 
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Figure 3. Residual plots for Pb concentration in River A. 

4. Results and Discussion 

4.1. Two-way ANOVA Analysis 
In this study, Two-way ANOVA analysis will be conduc- 

ted using Minitab (Version 5.1), provided by Minitab Inc. The 
first step is to check whether there are significant changes in 
Pb concentration during 5 years or among the different sites for 
each river, respectively. The assumptions for 2-factor ANOVA 
in this case are that residual are normally distributed and va- 
riances are constant at α = 5%. Since there is no replication in 
the data set, there is no need to consider the interactions.  

The hypotheses for water quality ANOVA of River A are: 
H01: Pb concentrations during the years are equal;  
H11: Pb concentrations during the years are not equal; 
H02: Pb concentrations among the sites are equal; and 
H12: Pb concentrations among the sites are not equal. 

From the results of the Two-way ANOVA Analysis for River 
A, the R-Sq(adj) value 33.55% is pretty low. Also, the residual 
plots of the original datasets (Figure 3) show funnel pattern, 

which means the variance are not constant, therefore the loga- 
rithm transformation of the Pb concentration is conducted for 
the ANOVA analysis. After logarithm transformation of the 
data, the R-Sq(adj) increased (i.e. 43.74%) and the residuals 
(Figure 4) are fairly well spread out. Assumptions (normality, 
constant variance and randomized residues) are satisfied for 
ANOVA. The results show that both p-values (i.e. 0.19 and 
0.05) are greater or equal than 0.05. Therefore, it can be con- 
cluded that there is no significant changes among different sites 
and over the years in River A. Also the results show there is 
no significant interaction effect between the two factors (i.e. 
sampling site and time).  
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Figure 4. Residual plots for log-transformed Pb concentration 
in River A. 
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Figure 5. Residual plots for Pb concentration in River B. 

 
The hypotheses for water quality ANOVA of River B are 

the same as River A. As what happened in the original data 
analysis of River A, the obtained R-Sq(adj) value 55.02% is 
very low and the residual plots (Figure 5) also show unequal 
variance, thus the logarithm transformation of the Pb concen- 
tration is conducted for the ANOVA again. The two-way A- 
NOVA results after logarithm transformation of the data indi- 
cate that the R-Sq(adj) increased and the residuals (Figure 6) 
are fairly well spread out. Assumptions are satisfied for ANO- 
VA. Also both p-values (i.e. 0.052 and 0.064) are greater than 
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0.05. It can be concluded that there is no significant changes 
among different sites and over years in River B. Also the resul- 
ts show there is no significant interaction effect between the 
two factors.  
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Figure 6. Residual plots for log-transformed Pb concentration 
in River B. 
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Figure 7. Summary of trend analysis by year. 
 
4.2. Trend Analyses 
4.2.1. Mann-Kendall Trend Analysis 

To test whether there is any statistically significant trend 
of the Pb concentration at each site over the years. For n = 5 < 
10, an exact test of the MK trend analysis was used. For in- 
stance, at site A1 the median of all pairwise slopes is negative, 
indicating a possible downward monotonic trend. However, 
from the Table of Quantiles (p-values) for Kendall’s tau corre- 
lation coefficient (Kendall, 1975) n is equal to 5 and S is -6, 
and the p-value is 0.117, greater than 0.05, so the null hypothe- 
sis (H0: The monotonic trend is not significant) cannot be rejec- 
ted. Figure 7 summarized the results of trend analysis by year 
and indicates there is no monotonic trend of the Pb concentra- 
tion at each site over the years.  
4.2.2. Mann–Whitney–Wilcoxon Step Trend Test 

In this study, water samples were collected by one set of 
researchers from 2006 to 2008, and a different set from 2009 
to 2010. Changes in the Pb concentration in samples may be 
caused by different samplers as well as different sampling me- 
thods. Therefore, robust non-parametric method by using LO- 
WESS residuals followed by MWW test was conducted to test 
the possible step trend. The results are list in Table 2. The esti- 
mated difference between the two steps is -0.045 and the 95.2% 
confidence interval of it is from -0.2 to 0.09, which includes 

zero. Also, the resulting P-value is 0.4154, greater than 0.05. 
All the above help conclude that there is no significant step- 
trend caused by different samplers as well as different sampling 
methods, also detected by box-plots of the data (Figure 8). 

 
Table 2. Whitney Test and CI: Pre-2008, Post-2008 

 N Median 
Pre-2008 24 0.3550 

Post-2008 16 0.3650 
Point estimate for ETA1-ETA2 -0.0450 
95.2 Percent CI for ETA1-ETA2 (-0.2000, 0.0900) 

W 462.0 
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.4154;
The test is significant at 0.4150 (adjusted for ties). 
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Figure 8. Boxplot of Pb level collected by different groups. 
 
4.3. Bootstrapping-enhanced Interval Analyses 

Six new sites were added in 2009 and 2010 due to their 
critical locations for pollution investigation (Figure 2). Site 
A2-1 is located in the stream close to the chemical handling 
facility and is at the upstream of the junction of two small tri- 
butaries. Site A2-2 was chosen at a small pond, where two tri- 
butaries meet. Site A2-3 is located at another tributary of River 
A. Site A3-1 is close to the inlet of a gully around 1 km upstr- 
eam from the River A and River B junction. Site B8-1 was cho- 
sen at the mouth of estuary where tide occurred periodically. 
It is suspected the sudden change of water quality in Site B8 
caused by the reflux of sea water. Site BH is located at the 
headwater of River B. Similar as the headwater of River A, this 
site is located in a boggy wetland area, surrounded by high 
population of trees. The water quality at this site can be used 
as a reference for the River B, since no human or industry an 
activity was found around this site.  

According to CCME guidelines for the protection of aqua- 
tic life, the Pb concentration should not exceed 1 ug/L (ppb) 
(CCME, 1999). The measured Pb concentrations vary from 
year to year at each site, which complicates compliance assess- 
ment. Most of water quality regulations indicated that the 90th 
percentile concentration of contaminants should not exceed 
guidelines due to the uncertainties of environmental data (Hel- 
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sel and Hirsch, 2002). Site A1 and Site BH are the headwaters 
of River A and River B, both of which are far away from any 
anthropogenic influence, so those two sites are not considered. 
Site B8-1 is located at the outlet of the estuary of River B to 
the sea and the contaminant level would be strongly affected 
by the sea water. Figure 9 shows the Pb concentrations at the 
14 sites in 2009 and 2010. 

Figure 9. Pb concentration data in 2009 and 2010. 
 

This is a one-side confidence interval analysis aiming at 
finding the lower limit of 90% confidence interval (α = 0.10 
or α/2 = 0.05), then comparing the lower confidence limit with 
the given standard = 1 ppb. The descriptive statistics of the 
data sets for each year are generated by Minitab and summari- 
zed in Table 3, including the number of data points (N), mean 
value of data, minimum and maximum of the data points, squ- 
are error of the mean (SE Mean), standard deviation (StDev), 
variance, 25% quartile and 75% quartile (Q1 and Q3), as well 
as the skewness of the set of data. Bootstrapping method is 
applied to calculate the 90% low Confidence Intervals of both 
year. To conduct the re-sampling method, the two data sets are 
ranked from low to high. For detailed bootstrapping analysis 
of both years. It was found from the results that the 90% low 
confidence intervals of both year are less than 1 ppb (standard), 
the Pb concentration in 2010 is even less than that of 2009.  

 
Table 3. Descriptive Statistics of Pb concentrations (ppb) 

Variable N Mean SE Mean StDev 
2009 12 0.640 0.109 0.377 
2010 12 0.431 0.115 0.397 
Variable Minimum Median Maximum Skewness
2009 0.193 0.516 1.642 1.78 
2010 0.110 0.292 1.559 2.37 

 
4.4. Balanced ANOVA Analysis 

Since it is essential to assess the degradation capability of 
each river at different sites, the following step is to evaluate 
the self-purification due to dilution and natural degradation 
capacity of the water body. Balanced ANOVA Analysis is ap- 
plied to test whether the Pb level in River 2 is significantly de- 
creased than that of the River 1. Table 4 lists the data for ANO- 
VA Analysis. From the residual plots for Pb data (Figure 10), 
all assumptions are satisfied. All p-values are greater than 0.05. 
Hence, there is no difference between rivers and also no diffe- 
rences among the sites within the chosen river. In other word, 
the Pb purification capability of each river is poor. 

Table 4. Data for Balanced ANOVA Analysis (Pb concentra- 
tion: ppb) 

River A River B 
 2009 2010  2009 2010 
A2-1  0.83 0.30 B4 0.38 0.22 
A2-2  1.64 0.31 B5 0.37 0.19 
A2-3  0.78 0.54 B6 0.19 0.11 
A2  0.43 1.56 B7 0.81 0.70 
A3 0.44 0.26 B8 0.78 0.28 
 
Table 5. Multiply Censored Water Quality Data in 2006 (Pb 
concentration: ppb) 

 
Table 6. Calculated Ai and Bi Value (Pb concentration: ppb) 

 Ai Bi 
A6 = 4 i > 0.7 B1 = 2 < 0.12 
A5 = 1 0.61 < i < 0.70 B2 = 4 < 0.15 
A4 = 1 0.56 < i < 0.61 B3 = 19 < 0.53 
A3 = 1 0.53 < i < 0.56 B4 = 22 < 0.56 

N = 32 
m = 6 
 

A2 = 14 0.15 < i < 0.53 B5 = 26 < 0.61 
 A1 = 1 0.12 < i < 0.15 B6 = 28 < 0.7 
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Figure 10. Residual plots for Pb data. 
 
4.5. Probability Plotting of Multiply Censored Water 
Quality Data 

Previously, procedures were evaluated when no detection 
limit was present. Actually, in 2006, more data were collected 
in other months but with multiple detection limits. The data 
used before are just part of them but consistent with the same 

Site June July August September 
A1 0.80 < 0.56 0.54 0.70 
A2 0.48 < 0.61 0.69 1.76 
A3 0.17 < 0.56 0.28 0.57 
B4 0.24 1.11 0.14 0.15 
B5 0.25 < 0.61 0.19 < 0.15 
B6 0.19 < 0.53 0.25 0.24 
B7 0.36 < 0.70 < 0.12 < 0.12 
B8 0.43 < 0.61 0.29 0.50 
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period as the data collected in other years. The database for 
2006 is summarized in Table 5. Hirsch and Stedinger (1987) 
define a variable Ai as the number of uncensored observations 
above the jth threshold (here the jth detection limit) and below 
the next highest threshold. They also define Bi as the number 
of observations, censored and uncensored, below the jth thres- 
hold. The data set in this case has n = 32 observations and m = 
6 detection limits. The calculated Ai, and Bi are listed in Ta- 
ble 6. In general, the probability of exceeding the jth threshold 
Pe, j is given as: 
 
Pe,j = Pe,j+1 + [Aj/(Aj + Bj)](1 – Pe,j+1) (1) 
 
which is solved iteratively for j = m, m-1, …2, 1. By conven- 
tion, Pe, m+1 = 0.  
 
Table 7. Plotting Positions for Pb Concentrations (ppb) in 
2006  

Recorded 
uncensored 
observations 

Plotting 
position 

Recorded 
censored 
observations 

Plotting 
position 

0.14 0.153 < 0.12 0.045 
0.15 0.209 < 0.12 0.091 
0.17 0.249 < 0.15 0.085 
0.19 0.289 < 0.53 0.383 
0.19 0.329 < 0.56 0.269 
0.24 0.369 < 0.56 0.537 
0.24 0.408 < 0.61 0.281 
0.25 0.448 < 0.61 0.562 
0.25 0.488 < 0.61 0.842 
0.28 0.528 < 0.7 0.438 
0.29 0.567   
0.36 0.607   
0.43 0.647   
0.48 0.687   
0.50 0.726   
0.54 0.786   
0.57 0.825   
0.69 0.859   
0.7 0.9   
0.8 0.925   
1.11 0.95   
1.76 0.975   

 
The probabilities of exceeding the jth threshold Pe, j is ca- 

lculated (i.e. Pe, 6 = 0.125; Pe, 5 = 0.157; Pe, 4 = 0.194; Pe, 3= 
0.234; Pe, 2 = 0.830; Pe, 1 = 0.864). To assign plotting positions, 
Weibull plotting positions for uncensored observations are 
(Hirsch and Stedinger, 1987): 

 
p(i) = (1 – Pe,j+1) + (Pe,j - Pe,j+1)r/(Aj + 1) (2) 
 
where r is the rank of the ith observation among the Aj obser- 
vations above the jth detection limit. 

In order to "fill in" data prior to estimating moment statis- 

tics, plotting positions for censored observations must be deter- 
mined. In general, Weibull plotting positions for censored ob- 
servations are given by (Hirsch and Stedinger, 1987):  
 
pc(i) = (1 – Pe,j)r/(Cj + 1) (3) 
 
where r is the rank of the ith observation among the Cj censo- 
red values known only to be less than the jth detection limit:  

 
1

0
( )

j

j j k k
k

C B A B
−

=

= − +∑  and Ao= Bo = 0 (4) 

 

 

Figure 11. Plotting positions illustrated for the Pb data in 
2006. 
 

The plotting positions for both uncensored and censored 
Pb Data are calculated and summarized in Table 7. The plot- 
ting positions are illustrated in Figure 11. The probabilities of 
exceeding 6 different detection limits are shown as broken 
linein the figure. All the censored and uncensored observations 
are assigned plotting positions in the figure based on the 
results of calculation. Through the probability plotting method, 
the probability of exceedance for censored observations that 
under various detection limits can be determined.  

5. Conclusions  

This study developed a robust statistical analysis approa- 
ch for pollutant loadings in urban rivers for supporting water 
management. The developed approaches address many exis- 
ting problems in the current water quality research. A case stu- 
dy with real sampling data was carried out using the proposed 
methodology to analyze Pb level in urban rivers, and to assess 
its compliance with local surface water quality guideline. As  
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per the developed approach, a series of analysis works were 
conducted including: a) examine the influences caused by the 
variations of both site conditions and timing of sampling by 
two-way analysis of variance (ANOVA); b) determine trends 
of temporal and spatial distributions of contaminant concentra- 
tions; c) include the impact of different sampling methods and 
teams; d) quantify uncertainties associated with the compliance 
assessment as per urban water quality guidelines by incorpo- 
rating confidence interval concepts; e) explore the self-purifi- 
cation capacity of rivers by balanced two-way ANOVA; and f) 
analyze data obtained under different detection limitations by 
probability plotting method to enhance water quality ana- 
lysis. 

The results indicated that the changes of Pb concentration 
in both rivers were not statistically significant among different 
sites over years; the upward or downward monotonic trend of 
Pb concentration in each site was also not significant; no sig- 
nificant step trend was found by using Mann-Whitney test; in- 
terval analysis verified that the Pb concentration in 2009 and 
2010 met the local surface water quality guideline; the self- 
purification capacities of the two rivers were much limited to 
reduce the concentrations of Pb in the water. Moreover, pro- 
bability plotting method was adopted to investigate multiply 
censored water quality datasets rather than simple substitu- 
tion procedures commonly used in practice. The developed 
approach can overcome some deficiencies of current water 
quality data analysis and be helpful to related management pr- 
actices, particularly for protecting urban river systems. The 
case study demonstrated the feasibility and robustness of the 
approach and also indicated the potential of its application to 
other cases when significant changes and complexity exist in 
the sampling conditions and methods. However, further resear- 
ch is being conducted to more effectively address other uncer- 
tainties during sampling and measuring procedures. 
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