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ABSTRACT.  An interval fuzzy bi-level programming (IFBP) approach is developed for planning water resources management 
system. The developed IFBP improves upon the existing bi-level programming by introducing interval mathematical programming 
(IMP) into its framework. The IFBP can handle uncertainties expressed as interval values in the constraints’ left- and right-hand sides, 
as well as in the upper- and lower-level objective functions. Moreover, the decision dimensions of objective functions can be addressed 
through setting different tolerance levels based on the fuzzy set theory, such that tradeoffs corresponding to different upper- and 
lower-level objectives as well as varied system optimality and reliability can be generated. A case study is provided for an application 
to planning a water resources management system, where a number of scenarios are analyzed. For all scenarios under consideration, 
the IFBP method has advantages over the conventional programming methods with single decision maker in reflecting the interactions 
among multi-level objectives and strategies as well as encouraging co-operations among multiple parties under uncertainty. 
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1. Introduction  

Water resources scarcity related to both water quantity 
and quality is increasing on a global scale. The main deter- 
minant of this scarcity is the increasing water use by a steadi- 
ly increasing world population (Uitto and Duda, 2002). Since 
most economic activities consume water, it is desired for the 
authorities to make integrated strategies for effective water 
resources development and utilization among multiple com- 
peting sectors. Generally, decision making problems are often 
compounded by uncertainties related to benefits/costs, water 
availabilities, environmental capacities and objectives. Such 
uncertainties can affect the related optimization processes and 
the generated decision schemes, which should be taken into 
account (Huang et al., 1993; Li et al., 2008; Yeomans, 2008).  

Many methods have been proposed to handle uncertain- 
ties existing in water resources management systems (Huang, 
1998; Huang and Loucks, 2000; Sethi et al., 2002; Sen and 
Altunkaynak, 2009; Zarghami and Szidarovszky, 2009; Li et 
al., 2010; Lu et al., 2010; Verderame et al., 2010). Most of 
them can be categorized into fuzzy, stochastic and interval 
mathematical programming methods, abbreviated as FMP, 
SMP and IMP, respectively (Ping et al., 2010; Yan et al., 2010). 
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Among them, FMP is effective in dealing with decision pro- 
blems under fuzzy goal and constraints (Jairaj and Vedula, 
2000; Zimmermann, 2001; Mujumdar and Sasikumar, 2002; 
Nasiri et al., 2007; Li and Huang, 2009; Li et al., 2009; Liu et 
al., 2009; Guo et al., 2010). In the conventional FMP me- 
thods, the problem is converted to a single-decision-maker 
one with a single composite objective for the whole system 
such as an overall economic or social welfare function or a 
weighted constrained multi-objective function, by encoura- 
ging perfect cooperation of all parties (Madani, 2010); how- 
ever, they often ignore the tolerances among interest obtain- 
ments without giving priority to any parties, and fail to recog- 
nize how the individual decisions affect other parties’ payoffs 
and actions within the system. Therefore, it is more challen- 
ging to illustrate the strategic interactions with respect to the 

preferences of stakeholders, and to suggest innovative solu- 
tions accepted broadly by parties within the system.  

Fuzzy bi-level programming (FBP) with a structure of 
two levels (the upper-level: leader and lower-level: followers) 

can be introduced to deal with the above decision making 
problems (Sakawa et al., 1998; Sinha, 2003; Ahlatcioglu and 
Tiryaki, 2007; Roghanian et al., 2008; Gao et al., 2009). Due 

to the combination of fuzzy tolerance membership functions, 
FBP cannot only reflect the reactions of the lower level deci- 
sion makers (DMs) when the impacts of their decisions are 
too important to be ignored, but also provide satisfactory 
solutions that the upper and lower DMs essentially cooperate 
with each other (Wen and Hsu, 1991; Benayed, 1993; Gao and 

Liu, 2005; Pramanik and Roy, 2007). Lai (1996) developed a 
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fuzzy programming approach, for the re-evaluation of pro- 
blem through redefining the elicited membership values that 

were essentially needed in the solution search process to obtain 
a satisfactory solution for all DMs, which was different from 
that of the Stackelberg solutions where the possibility of re- 
jecting the solutions was given by the upper-level decision 
maker. Shih et al. (1996; 2000) extended Lai’s concept by 
using compensatory or non-compensatory max-min aggrega- 
tion operators for solving FBP problems. Sakawa et al. (2000) 
presented an interactive method for solving a linear bi-level 

programming problem with fuzzy parameters, where the solu- 
tion was derived by updating the satisfactory degrees of DMs 
with considerations of overall satisfactory balance after fuzzy 
goals were determined. More recently, Zhang et al. (2009) 
developed a FBP model for day-ahead electricity market 
strategy making through analyzing the strategic bidding beha- 
vior of generating companies. Aviso et al. (2010) proposed a 
FBP method with the park authority as the upper-level deci- 
sion-maker, which could help the eco-industrial park to ex- 
plore the effect of charging fees for the purchase of freshwater 
and the treatment of wastewater in optimizing the water ex- 
change network of plants. 

One main advantage of the FBP method is that it can be 
solved sequentially through linear submodels, which can ma- 
ke the original problem much more simplified and easier to be 
implemented. Nevertheless, few studies have been reported on 
the application of FBP methods to water resources mana- 
gement and planning. Besides, the conventional FBP methods 
are effective for addressing fuzzy information in decision- 
making problems; however, when it is typically much harder 
to specify uncertain parameters as probability density func- 
tions (PDFs) or membership functions than to present them as 
intervals, interval mathematical programming (IMP) with the 

lower requirements for data collection and solution gene- 
ration is imperative for many practical applications (Huang et 
al., 1992; Lv et al., 2009; Lv et al., 2010). Thus, coupling IMP 

with FBP is promising since uncertainties in left- and/or right- 
hand sides of constraints as well as lower- and upper- level 
objective functions can be handled.  

Thus, an interval-fuzzy bi-level programming (IFBP) ap- 
proach will be developed in response to the above challenges, 
through coupling the interval mathematical programming 
(IMP) with fuzzy bi-level programming (FBP). The develop- 
ed method can handle uncertainties expressed as interval va- 
lues in the constraints’ left- and right-hand sides as well as in 
the upper and lower-level objective functions. It will help 
generate a range of decision alternatives between the upper- 
and lower-level objectives and between system optimality and 
reliability. A case study will then be provided for an ap- 
plication to planning a water resources management system 
with the bi-level and hierarchical configurations among mul- 
tiple decision makers. A number of cases based on different 
solution scenarios will be analyzed to demonstrate the advan- 
tages of the developed method over the conventional single 
decision-maker and/or deterministic programming methods. 
The strategies associated with acceptable solutions through 
cooperation will result in optimal outcomes for all regions 

within the study system. 

2. Interval Fuzzy Bi-level Programming 

Bi-level programming (BLP) is described as a nested op- 
timization model involving two problems that are upper and 
lower ones. Let ( )1, 2in

ix i∈ℜ =  be a vector of decision va- 
riables indicating the first-decision and the second-decision 
level choices, respectively, and ( )1 1, 2in i≥ =  . Let fi: inℜ →  

( )1, 2iN iℜ =  be the first- and the second-level objective func- 
tions, respectively. Let the upper- and lower-level decision 
makers (DMs) have Ni and N2 objective functions which are 
linear and bounded, respectively. Therefore, the linear BLP 
can be formulated as follows (Lai et al., 1996; Bard, 1998; 
Emam, 2006): 
[Upper-level] 
 

( )
1

1 1 2max ,
x

f x x  (1a) 

 
where x2 can be solved from: 
[Lower-level] 
 

( )
2

2 1 2max ,
x

f x x  (1b) 

 
subject to: 
 

( ) ( ){ }1 2 1 2 1 2, , 0,  1,2, , ,  , 0iG x x g x x i m x x= ≤ =  ≥…  (1c) 
 
where the upper-level decision maker (ULDM) has control 
over vector x1 and the lower-level decision maker (LLDM) 
has control over vector x2. The decision mechanism of BLP 
problem is that the ULDM and LLDM adopt the leader-follo- 
wer Stackelberg game, so that fuzzy approach can be used to 
solve the BLP problem (Sakawa, 1993).  

In the decision making context, both ULDM and LLDM 
are interested in maximizing their own objective functions. 
However, the optimal solution of each DM calculated in isola- 
tion will not be accepted by each other due to the conflicting 
nature of the objectives. In order to obtain satisfactory solu- 
tions, the ULDM should specify preferred values of his/her 
control variables and the associated objective value with allo- 
wable tolerances through membership functions. The LLDM 
then should not only optimize his/her objective but also try to 
satisfy the ULDM’s goal and preference as much as possible 
(Lai et al., 1996; Sakawa and Nishizaki, 2001; Pramanik and 
Roy, 2007). Mathematically, the following ULDM problem 
can be first solved:  
 

( )
1

1 1 2max ,
x

f x x   (2a) 

 
subject to: 

x G∈  (2b) 
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where the solution of model (2) is assumed to be 1 2( , ,U Ux x  
1 )Uf and the LLDM problem can be independently solved: 

( )
2

2 1 2max ,
x

f x x   (3a) 

subject to: 

x G∈  (3b) 
 
where the solution of model (3) is assumed to be 1 2( , ,L Lx x  

2 )Lf . The range of the decision on x1 should be around 1
Ux  

with its maximum tolerance p1. The following membership 
function can specify x1 as follows (Lai et al., 1996; Sakawa 
and Nishizaki, 2001; Pramanik and Roy, 2007): 

  

( )

( )

( )1

1 1 1
1 1 1 1

1

1 1 1 1
1 1 1 1

1

,   

,   

0,                       otherwise

U
U U

U
x U U

x x p
if x p x x

p
x x p x

if x x x p
p

if

μ

⎧ − −
⎪ − < ≤
⎪
⎪= ⎨ + −

≤ ≤ +⎪
⎪
⎪⎩

 (4) 

 
where 1

Ux is the most preferred decision; the ( )1 1
Ux p− and 

1 1( )Ux p+  are the worst acceptable decisions; satisfaction or 
preference can be linearly increased within the interval of 

1 1 1,Ux p x⎡ ⎤−⎣ ⎦ and linearly decreased within 1 1 1,Ux x p⎡ ⎤+⎣ ⎦ , even 
though the other DMs are not acceptable.  

For the ULDM, the objective function can be considered 
under all 1 1

Uf f≥ being acceptable and all ( )'
1 1 1 1 2,L Lf f f x x< =  

being unacceptable, and thus the preference might be fluctu- 
ated within '

1 1, Uf f⎡ ⎤⎣ ⎦ . The LLDM can obtain the optimum at 
( )1 2,L Lx x , which in turn provides the ULDM with the objective 
value of '

1f , leading to any '
1 1f f<  unattractive in practice. 

The following membership function can then be stated as: 
 

( )

( )
( ) ( )

( )

1

1 1

'
1 1 '

1 1 1 1'
1 1

'
1 1

1,                        

,   

0,                       

U

U
f U

if f x f

f x f
f x if f f x f

f f

if f x f

μ

⎧ >
⎪

−⎪= ≤ ≤⎡ ⎤ ⎨⎣ ⎦ −⎪
⎪ <⎩

 (5) 

 
The LLDM may be willing to build a membership func- 

tion for his/her objective so that he/she can assess the satisfac- 
tion of each potential solution. Since 2

Lf is the maximum ob- 
jective value of ULDM, ( )2 2

Lf x f> is impossible while the 
ULDM provides more constraints to the LLDM. Meanwhile, 
the LLDM will not accept any ( ) '

2 2f x f<  due to the same 
reason as the ULDM discussed above. The LLDM then has 
the following membership function for his/her goal: 

( )

( )
( ) ( )

( )

2

2 2

'
2 2 '

2 2 2 2'
2 2

'
2 2

1,                        

,   

0,                       

L

L
f L

if f x f

f x f
f x if f f x f

f f

if f x f

μ

⎧ >
⎪

−⎪= ≤ ≤⎡ ⎤ ⎨⎣ ⎦ −⎪
⎪ <⎩

 (6) 

where ( )'
2 2 1 2,U Uf f x x= . Obviously, the above membership fu- 

nction is a one-to-one mapping within a compact interval of 
'

2 2, Lf f⎡ ⎤⎣ ⎦ . Consequently, the satisfactory solution of model (1) 
that is a Pareto optimal solution with overall satisfaction for 
both the ULDM and LLDM can be obtained. Thus, we have: 
 
max λ     (7a) 
 
subject to: 
 
x G∈        (7b) 
 

( )
1 1x x Iμ λ≥  (7c) 

 
( )

1 1f f xμ λ≥⎡ ⎤⎣ ⎦  (7d) 
 

( )
2 2f f xμ λ≥⎡ ⎤⎣ ⎦  (7e) 

 
1 2, 0x x ≥  (7f) 

 
[ ]0,1λ ∈  (7g) 

 
where λ is the overall satisfactory degree, and I is a column 
vector with all elements equal to ls and the same dimension 
as

1xμ or x1.  
Obviously, the above approach can address the fuzzy 

decisions and the associated objective of the upper-level mo- 
del through possible tolerances, which are described as cons- 
traints for the feasible space of the LLDM. Furthermore, an 
extended consideration is for uncertainties in other parame- 
ters. For example, it may be difficult for the authorities to in- 
vestigate the economic data of the planning horizon in practi- 
cal decision making problems. Moreover, the quality of obtain- 
ed information is often not satisfactory enough to be presented 
as probabilistic distributions or membership functions; besides, 
even if such functions are available, their reflections in large- 
scale optimization models could be extremely challenging 
(Lai and Hwang, 1994). Therefore, to deal with uncertainties 
in the constraints and cost/revenue parameters in the objective 
function, interval-parameter programming (IPP) is introduced 
into the BLP framework, which will lead to an interval fuzzy 
bi-level programming (IFBP) model as follows: 
[Upper-level] 
 

( )
1

1 1 2max ,
x

f x x
±

±  (8a) 

where 2x±  can be solved from: 

[Lower-level] 

( )
2

2 1 2max ,
x

f x x
±

±  (8b) 

subject to: 

( ) ( ){ }1 2 1 2 1 2, , 0,  1,2, , ,  , 0iG x x g x x i m x x± ± ± ± ± ± ± ±= ≤ =  ≥…  (8c) 
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Then, an interactive solution algorithm can be used to 
solve the above problem through analyzing the interrelation- 
ships between parameters and variables and between objecti- 
ve functions and constraints. For the objective functions of 
both ULDM and LLDM are to be maximized, the submodel 
corresponding to the upper bounds of 1f

+ and 2f
+ can be for- 

mulated firstly, where 1x+ and 2x+  can be obtained from the 
following model:  
[Upper-level] 
 

( )
1

1 1 2max ,
x

f x x
+

+ + +  (9a) 

 
[Lower-level] 
 

( )
2

2 1 2max ,
x

f x x
+

+ + +  (9b) 

 
subject to: 
 

( ) ( ){ }1 2 1 2 1 2, , 0,  1,2, , ,  , 0iG x x g x x i m x x+ + + + + + + += ≤ =  ≥…  (9c) 

 
Let ( )1 2 1, ,U U Ux x f+ + + be the solutions from Equations (9a) 

and (9c), and ( )1 2 2, ,L L Lx x f+ + + be the solutions from Equations 
(9a) and (9c), respectively. Accordingly, '

2f
+ and '

1f
+ can also 

be obtained. Therefore, 1x+ and 2x+ can be solved based on 
model (7) with details shown as follows: 
 
max λ +  (10a) 
 
subject to: 
 

1 2,x x G+ + +∈  (10b) 
  

( )
1

1x
x Iμ λ+

+ +≥  (10c) 

 
( )

1
1 1 2,

f
f x xμ λ+

+ + + +⎡ ⎤ ≥⎣ ⎦  (10d) 

 
( )

2
2 1 2,

f
f x xμ λ+

+ + + +⎡ ⎤ ≥⎣ ⎦  (10e) 

 
1 2, 0x x+ + ≥  (10f) 

[ ]0,1λ+ ∈  (10g) 

where:  

( )

( )

( )1

1 1 1
1 1 1 1

1

1 1 1 1
1 1 1 1

1

,   

,   

0,                       otherwise

U
U U

U
x U U

x x p
if x p x x

p
x x p x

if x x x p
p

if

μ +

+ + +
+ + + +

+

+ + + +
+ + + +

+

⎧ − −
⎪ − < ≤
⎪
⎪= ⎨ + −

≤ ≤ +⎪
⎪
⎪⎩

 (10h) 

( )

( )
( ) ( )

( )

1

1 1 2 1

'
1 1 2 1 '

1 1 1 2'
1 1 2 1 1

1

'
1 1 2 1

1,                              ,

,
,   ,

,

0,                             ,

U

U
f

U

if f x x f

f x x f
if f f x x

f x x f f

f

if f x x f

μ +

+ + + +

+ + + +
+ + + +

+ + + + +

+

+ + + +

⎧ >
⎪
⎪ −
⎪ ≤⎡ ⎤ = −⎨⎣ ⎦
⎪

≤⎪
⎪ <⎩

 (10i) 
 

( )

( )
( ) ( )

( )

2

2 1 2 2

'
2 1 2 2 '

2 2 1 2'
2 1 2 2 2

2

'
2 1 2 2

1,                              ,

,
,   ,

,

0,                             ,

L

L
f

L

if f x x f

f x x f
if f f x x

f x x f f

f

if f x x f

μ +

+ + + +

+ + + +
+ + + +

+ + + + +

+

+ + + +

⎧ >
⎪
⎪ −
⎪ ≤⎡ ⎤ = −⎨⎣ ⎦
⎪

≤⎪
⎪ <⎩

 (10j) 
 

Thus, solutions of 1optx+ and 2optx+ can be obtained through 
submodel (10), and the objective values of the upper and lo- 
wer levels are 1optf + and 2optf + , respectively. Correspondingly, 
the submodel corresponding to 1f

+ and 2f
+ can be formulated 

as follows: 
[Upper-level] 
 

( )
1

1 1 2max ,
x

f x x
−

− − −  (11a) 

 
[Lower-level] 
 

( )
2

2 1 2max ,
x

f x x
−

− − −  (11b) 

 
subject to: 
 

( ) ( ){ }1 2 1 2 1 2, , 0,  1,2, , ,  , 0iG x x g x x i m x x− − − − − − − −= ≤ = ≥…  (11c) 

 

1 1optx x− +≤  (11d) 
 

2 2optx x− +≤  (11e) 
 
Similarly, by calculating ( )1 2 1, ,U U Ux x f− − − , '

2f
− , 1 2( , ,L Lx x− −  

2 )Lf − and '
1f

− , the submodel corresponding to lower bounds of 
the objectives can be formulated sequentially as shown in the 
following model: 
 
max λ −  (12a) 
 
subject to: 

1 2,x x G− − −∈  (12b) 

( )
1

1x
x Iμ λ−

− −≥  (12c) 
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( )
1

1 1 2,
f

f x xμ λ−
− − − −⎡ ⎤ ≥⎣ ⎦  (12d) 

 
( )

2
2 1 2,

f
f x xμ λ−

− − − −⎡ ⎤ ≥⎣ ⎦  (12e) 

 
1 2, 0x x− − ≥  (12f) 

 

1 1optx x− +≤  (12g) 
 

2 2optx x− +≤  (12h) 
 

[ ]0,1λ− ∈  (12i) 
 
where ( )

1
1x

xμ −
− , ( )

1
1 1 2,

f
f x xμ −

− − −⎡ ⎤⎣ ⎦ and ( )
2

2 1 2,
f

f x xμ −
− − −⎡ ⎤⎣ ⎦ can be 

specified as:  
 

( )

( )

( )1

1 1 1
1 1 1 1

1

1 1 1 1
1 1 1 1

1

,   

,   

0,                       otherwise

U
U U

U
x U U

x x p
if x p x x

p
x x p x

if x x x p
p

if

μ −

− − −
− − − −

−

− − − −
− − − −

−

⎧ − −
⎪ − < ≤
⎪
⎪= ⎨ + −

≤ ≤ +⎪
⎪
⎪⎩

 (12j) 

 

( )

( )
( ) ( )

( )

1

1 1 2 1

'
1 1 2 1 '

1 1 1 2'
1 1 2 1 1

1

'
1 1 2 1

1,                              ,

,
,   ,

,

0,                             ,

U

U
f

U

if f x x f

f x x f
if f f x x

f x x f f

f

if f x x f

μ −

− − − −

− − − −
− − − −

− − − − −

−

− − − −

⎧ >
⎪
⎪ −
⎪ ≤⎡ ⎤ = −⎨⎣ ⎦
⎪

≤⎪
⎪ <⎩

 (12k) 
 

( )

( )
( ) ( )

( )

2

2 1 2 2

'
2 1 2 2 '

2 2 1 2'
2 1 2 2 2

2

'
2 1 2 2

1,                              ,

,
,   ,

,

0,                             ,

L

L
f

L

if f x x f

f x x f
if f f x x

f x x f f

f

if f x x f

μ −

− − − −

− − − −
− − − −

− − − − −

−

− − − −

⎧ >
⎪
⎪ −
⎪ ≤⎡ ⎤ = −⎨⎣ ⎦
⎪

≤⎪
⎪ <⎩

 (12l) 
 

Solutions of 1optx− and 2optx− can be obtained through sub- 
model (12), and the associated objective values are 1optf − and 

2optf − . Therefore, we can obtain the general solutions for the 
IFBP model as follows: 
 

1 1 1,opt opt optx x x± − +⎡ ⎤= ⎣ ⎦  (13a) 

 

2 2 2,opt opt optx x x± − +⎡ ⎤= ⎣ ⎦  (13b) 

 

1 1 1,opt opt optf f f± − +⎡ ⎤= ⎣ ⎦         (13c) 

 

2 2 2,opt opt optf f f± − +⎡ ⎤= ⎣ ⎦  (13d) 

 

Table 1. Stream Inflows and Technical Data 

 Value Unit 
Stream inflow and the associated probability 
Region A: i = 1   
Dry period (probability = 30%) 218.8 106 m3 
Normal period (probability = 50%) 273.6 106 m3 
Wet period (probability = 20%) 328.3 106 m3 
Region A: i = 2   
Dry period (probability = 30%) 104.6 106 m3 
Normal period (probability = 50%) 149.4 106 m3 
Wet period (probability = 20%) 194.3 106 m3 
Other regions: i = 3   
Dry period (probability = 30%) 437. 8 106 m3 
Normal period (probability = 50%) 515.1 106 m3 
Wet period (probability = 20%) 597.5 106 m3 
Maximum storage volume of the reservoir  
Region A: i = 1 31.2 106 m3 
Region A: i = 2 22.8 106 m3 
Other regions: i = 3 115.2 106 m3 
Development capacity of groundwater 
Region A : m = 1 [15.0, 18.0] 106 m3 
Other regions: m = 2 [89.0, 106.8] 106 m3 
Minimum size of the embankment [20.0, 24.0] 106 m3 
Flood-warning water level [1800.0,2160.0] 106 m3 
Downstream water requirement [600.0, 720.0] 106 m3 
Depth of groundwater removed 4.0 m 
Proportion of surface runoff 0.2 m 
Size of turbine (portion of storage) 0.4 m 

3. Application to Water Resources Management 

3.1. Overview of the Study System 
Consider a water resources system consisting of multiple 

regions, wherein the local authority is willing to make a wa- 
ter resources management scheme from an overall viewpoint 
over the planning horizon. Water supplies to different regions 
are used for irrigation and hydroelectric power, by which 
benefits of water usages can be gained. In addition, the 
retaining water level should be adequate to satisfy ship navi- 
gation. Meanwhile, when the stream flow is high, flood con- 
trol is required to avoid the water exceeding the predefined 
flood-warning level. Among all regions, Region A which plays 
a significant role in facilitating economic development of the 
study area from a long-term consideration, will invest two 
reservoirs and one groundwater well. For the other regions, 
they will pay the development costs for surface water storage, 
groundwater exploitation and embankment construction. Sin- 
ce the total water resources are limited, the shortage will beco- 
me the major obstacle to the regional economic development. 
Consequently, conflicts arise in the allocation of water resour- 
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ces among multiple competing interests, because each region 
prefers to maximize its own net benefit (net benefits = total 
benefits – investment costs). It is particularly critical for the 
local authority to contemplate and propose ever more compre- 
hensive decisions on the capacities of the reservoirs, the size 
of the embankment construction, and the amounts of pumped 
groundwater; at the same time, the demands for flood control 
at the critical reach and navigation on the stream can be satis- 
fied. Thus, the system can receive the maximum net benefits 
of the irrigation water and of power produced at the surface 
storage sites, in which Region A should be given priority for 
its prominent contribution to economy.  
 
Table 2. Intervals of Benefit and Cost Coefficients 

Benefit  Value 
Net benefit of irrigation water from the reservoir ($106 m-3): 
Region A  (i = 1) [56.5, 67.8] 
Region A (i = 2)  [68.0, 81.6] 
Other regions (i = 3) [75.0, 90.0] 
Net benefit of groundwater for irrigation ($106 m-3): 
Region A (m = 1) [59.0, 70.8] 
Other regions (m = 2) [63.0, 75.6] 
Hydroelectric benefit ($106 m-3) [144.0, 172.8] 
Cost 
Water storage cost at the reservoir ($106 m-3) [20.4, 24.5] 
Development cost of groundwater ($106 m-2) 
Region A (m = 1) [9.0, 10.8] 
Other regions (m = 2) [8.3, 10.0] 
Embankment construction cost ($106 m-3) [20.0, 24.0] 

 
Systems analysis techniques could be used for planning 

water resources system in a more efficient and environmen- 
tally benign way, which may be helpful for generating a de- 
sired compromise between the overall economic objective and 
individual development requirements. Moreover, it is indica- 
ted that a variety of complexities exist in the study system, such 

as uncertainties in parameter inputs, allowances in environ- 
mental capacities, and limitations in available resources. 
These complexities could become further compounded by not 

only interactions among system components but also their 
economic implications, which may affect the relevant analy- 
sis of water resources management scheme and thus the asso- 
ciated decision making. Therefore, it is deemed necessary to 
develop effective methods to deal with these problems, and to 
support developing water resources management plans with a 
maximized system benefit. 

The schematic study system is presented in Figure 1. The 

modeling parameters are provided in Table 1. The stream 
inflows with the associated probabilities of occurrence can 
fluctuate with seasonal variations due to the uneven distribu- 
tions of precipitation. According to the availabilities of water 
resources, three inflow seasons (dry, normal and wet) are con- 
sidered. Meanwhile, the capacity constraints and predefined 
development requirements, as well as system parameters are 
tabulated in Table 1. Table 2 shows the related benefit and cost 
coefficients in intervals. These data mainly come from govern-  

Figure 1. Schematic of the study system. 
 
mental reports and public surveys (Rogers, 1969; Ananda- 
lingam, 1991). 
 
3.2. Modeling Formulation 

The problem under consideration is how to allocate wa- 
ter resources and plan reasonable investments to maximize the 
expected net benefits over the entire system. The system plan- 
ner acting as the leader controls the capacities of reservoirs, 
the size of the embankment, the amounts of surface water and 
groundwater resources use (i.e., for irrigation and hydro-elec- 
tricity). The decisions made by Region A (the follower) are on 
how much water to use for local irrigation (both from surface 
and groundwater) and how much electricity to generate. Since 
Region A both plays an important role in economic develop- 
ment of the system and can hardly monopolize water resour- 
ces of the system, the leader has to incorporate the follower's 
reaction and maximize its benefits as much as possible. 
Therefore, the IFBP model can be formulated for the above 
problem as follows: 
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subject to: 
 
(1) Release from storage less than inflows:  
 

,  ij ijR I j≤ ∀∑ ∑  (14c) 
 
(2) Storage less than capacity:  
 

,  ,ij i ijR V I i j±+ ≥ ∀  (14d) 
 
(3) Flood control:  
 

,   ijR B F j± ±− ≤ ∀∑  (14e) 
 
(4) Water amount requirement:  
 

( )1 ,   ij ij mjR XI XG N jη η± ± ±− − + ≥ ∀∑ ∑ ∑  (14f) 
 
(5) Flow for surface irrigation:  
 

0,   ,ij ijR XI i j±− ≥ ∀  (14g) 
 
(6) Flow through turbines less than or equal to capacity of tur- 
bines: 

0,   ,i i ijV XH i jε ± ±− ≥ ∀  (14h) 
 
(7) Flow through turbines constrained by water releases:  
 

0,   ,ij ijR XH i j±− ≥ ∀  (14i) 
 
(8) Groundwater pumped constrained by recharge:  
 

0,   ,mj mXG G m jγ± ±− ≤ ∀  (14j) 
 
(9) Upper limit on surface water storage: 
 

 max ,   i iV V i± ≤ ∀  (14k) 
 
(11) Upper limit on size of groundwater field:  
 

 max ,m mG G m± ±≤ ∀  (14l) 
 
(12) Requirement for building the embankment: 
 

minB B± ±≥  (14m) 
 
where: 
i = name of reservoir, i = 1 and 2 for Region A, and i = 3 for 
the other regions; 

m = name of groundwater location;  
j = number of period, j = 1, 2 and 3 representing dry, normal 
and wet periods, respectively; 
pj = occurrence probability of period j； 
Rij = release from reservoir i in period j (m3)； 
Iij = inflow into reservoir i in period j (m3)； 
F± = flood capacity at control on river system (m3); 
η = proportion of irrigation water returning to stream; 
N±

 = water amount required by the downstream user in terms 
of flow units (m3); 
εi = capacity of turbines at reservoir i expressed as a propor- 
tion of storage; 
γ = depth of groundwater removed, in meter of water (m); 
Vi max = maximum volume of reservoir i in terms of flow units 
(m3); 

maxmG± = maximum size of tube well field of location m (m2); 

minB± = minimum size of embankment in terms of flow units 
(m3); 

_ iNB I ± = net benefit of irrigation water per unit of flow from 
reservoir i ($106·m-3);  

_ mNB G± = net benefit per unit of pumped groundwater from 
location m for irrigation ($106·m-3);  
NB_H ±= net benefit of hydropower per unit of flow ($ 
106·m-3); 

iCRS ± = regular cost per unit volume of storage at reservoir i 
($106·m-3); 
CD ± = investment per unit of building the embankment 
($106·m-3);  

mCG± = cost per unit of groundwater development at location 
m ($106·m-2);  

mG± = size of tube well field of location m (m2)； 

iV ± = volume of reservoir i in terms of flow units (m3); 
B± = size of embankment at flood control point in terms of 
flow units (m3); 

ijXI ± = agricultural diversion from reservoir i in period j (m3)； 

mjXG± = pumped groundwater at location m in period j (m3)； 

ijXH ± = flow through turbines at site i in period j (m3)； 
In model (14), the iV ± ,B±, ijXI ± , mjXG± and ijXH ± are deci- 

sion variables. The objective function equals benefits from 
water usages for hydroelectricity generation and agricultural 
irrigation minus the costs for reservoir investment. For exam- 
ple, the upper-level objective includes the payments from the 
regions that are assumed to tied to the hydroelectricity gene- 
rated ( ijXH ± ), amounts of surface water ( ijXI ± ) and ground- 
water ( mjXG± ) used for irrigation, and the investment costs for 

the surface water storage ( iV ± ), groundwater well develop- 
ment ( mG± ) and the embankment construction (B±).  

 
3.3. Solution Method 

The above IFBP model can be transformed into two de- 
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terministic submodels through the proposed interactive algo- 
rithm, which correspond to the upper and lower bounds of the 
desired objective function values, respectively (Huang et al., 
1992, 1993, 1995). The resulting solution can provide stable 
intervals for the objective function values and decision vari- 
ables, and can be easily interpreted for generating decision 
alternatives. The submodel corresponding to 1f

+ and 2f
+  can 

be formulated in the first step when the system objectives are 
to be maximized; another submodel (corresponding to 1f

−  
and 2f

− ) can then be formulated based on the solution of the 
first submodel. Thus, the upper-bound submodel is formula- 
ted as follows: 
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subject to 
 

,  ij ijR I j≤ ∀∑ ∑  (15c) 
 

,  ,ij i ijR V I i j−+ ≥ ∀  (15d) 
 

,   ijR B F j− +− ≤ ∀∑  (15e) 
 

( )1 ,   ij ij mjR XI XG N jη η+ + −− − + ≥ ∀∑ ∑ ∑  (15f) 
 

0,   ,ij ijR XI i j+− ≥ ∀  (15g) 
 

0,   ,i i ijV XH i jε − +− ≥ ∀  (15h) 
 

0,   ,ij ijR XH i j+− ≥ ∀  (15i) 
 

0,   ,mj mXG G m jγ+ −− ≤ ∀  (15j) 
 

 max ,   i iV V i− ≤ ∀  (15k) 

 max ,m mG G m− +≤ ∀  (15l) 
 

minB B− −≥  (15m) 
 

0,  iV i− ≥ ∀  (15n) 
 

0B− ≥  (15o) 
 

0,  ,ijXI i j+ ≥ ∀  (15p) 
 

0,  ,ijXH i j+ ≥ ∀  (15q) 
 

0,  ,mjXG m j+ ≥ ∀  (15r) 
 

Model (15) can be solved through the fuzzy approach as 
described from models (9) to (12). Solutions for the objective 
function values of both ULDM and LLDM ( 1f

+ and 2f
+ ) pro- 

vide the extreme upper bounds of expected benefits. Let 
i optV − , optB− ,  ij optXI + ,  ij optXH + and  mj optXG+ be the solutions of 

model (15). Then, the second submodel corresponding to 
1f
− and 2f

− can be established as follows: 
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Lower level:  
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subject to 
 

,  ij ijR I j≤ ∀∑ ∑  (16c) 
 

,  ,ij i ijR V I i j++ ≥ ∀  (16d) 

,   ijR B F j+ −− ≤ ∀∑  (16e) 

( )1 ,   ij ij mjR XI XG N jη η− − +− − + ≥ ∀∑ ∑ ∑  (16f) 
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0,   ,ij ijR XI i j−− ≥ ∀  (16g) 
 

0,   ,i i ijV XH i jε + −− ≥ ∀  (16h) 
 

0,   ,ij ijR XH i j−− ≥ ∀  (16i) 
 

0,   ,mj mXG G m jγ− +− ≤ ∀  (16j) 
 

 max ,   i iV V i+ ≤ ∀  (16k) 
 

 max ,m mG G m+ −≤ ∀  (16l) 
 

minB B+ +≥  (16m) 
 

 ,  i i optV V i+ −≥ ∀  (16n) 
 

optB B+ −≥  (16o) 
 

 0 ,  ,ij ij optXI XI i j− +≤ ≤ ∀  (16p) 
 

 0 ,  ,ij ij optXH XH i j− +≤ ≤ ∀  (16q) 

 

 0 ,  ,mj mj optXG XG m j− +≤ ≤ ∀  (16r) 

 
where iV + , B+ , ijXI − , ijXH − and mjXG− are decision variables. 
Let  i optV + , optB+ ,  ij optXI − ,  ij optXH − and  mj optXG− be solutions of mo- 
del (16).  

Thus, the final solution for the primal problem [i.e. 
model (14)] is: 
 

   , ,  i opt i opt i optV V V i± − +⎡ ⎤= ∀⎣ ⎦        (17a) 

 
,opt opt optB B B± − +⎡ ⎤= ⎣ ⎦         (17b) 

 

   , ,  ,ij opt ij opt ij optXI XI XI i j± − +⎡ ⎤= ∀⎣ ⎦       (17c) 

 

   , ,  ,ij opt ij opt ij optXH XH XH i j± − +⎡ ⎤= ∀⎣ ⎦      (17d) 

 

   , ,  ,mj opt mj opt mj optXG XG XG m j± − +⎡ ⎤= ∀⎣ ⎦      (17e) 

 
The objective function values for the ULDM and LLDM 

are 1 1 1,opt opt optf f f± − +⎡ ⎤= ⎣ ⎦ and 2 2 2,opt opt optf f f± − +⎡ ⎤= ⎣ ⎦ , respectively. In 
detail, the solution process for model (14) with both the 
upper- and lower-level objectives being maximized can be 
summarized as shown in Figure 2.  

 

 
Figure 2. Flowchart of solving the IFBP model. 

4. Result Analysis 

The nine scenarios related to the study system are in- 
vestigated through solving the water resources allocation pro- 
blem (Table 3). The obtained optimal solutions under each sce- 
nario can provide the local authorities possible options for 

water resources development strategies. For example, Scenario 

1 (the basic one) represents the optimal scheme generated 
through the IFBP method as solved through models (15) and 
(16) subsequently. In detail, the upper-bound submodel is 
given priority to be solved and then the lower-bound submodel, 
while the objectives are to maximize the net benefits of the 
upper and lower levels. Scenarios 2 and 3 show the situations 
of planning a water resources system with conventional me- 
thods related to single decision maker. Scenarios 4, 5 and 6 
present the solutions corresponding to different sets of tole- 
rances which are decided by the authorities. Meanwhile, se- 
veral extreme scenarios such as best/worst case analysis are 
presented as Scenarios 7 and 8. Under Scenario 9, model (14) 
is converted to a deterministic one by letting interval para- 
meters be their mid-values.  

The results indicate that the optimal water resources al- 
locations to parties would vary with the interval inputs under 
Scenario 1 (as shown in Table 4). The reservoir capacities de- 
cided by the local authorities appear to reach their maximum 
sizes, which would be 31.2 × 106 m3 for reservoir 1 and 22.8  
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Table 3. Descriptions of Solution Scenarios 

Scenario Description 
1 Obtaining the interval solutions from the IFBP 

method 
2 Optimizing Region A separately to gain the maximum 

expected benefits 
3 Optimizing the whole system to gain the maximum 

expected benefits without negotiation with Region A 
4 Solving the IFBP model by letting the tolerances be 

2% of the decision variables controlled by the ULDM
5 Solving the IFBP model by letting the tolerances be 

5% of the decision variables controlled by the ULDM
6 Solving the IFBP model by letting the tolerances be 

20% of the decision variables controlled by the 
ULDM 

7 Obtaining the deterministic solutions under worst case 
analysis 

8 Obtaining the deterministic solutions under best case 
analysis 

9 Obtaining the deterministic solutions through the 
conventional fuzzy bi-level programming (FBP) 
method 

 
× 106 m3

 for Reservoir 2 in Region A; Reservoir 3 for the other 
regions would be 115.2 × 106 m3. The construction of the 
embankment at the flood control point would be at least [20.0, 
24.0] ×106 m3 to prevent the river overflowing, which would 
be particularly crucial in the wet season. Irrigation water is 

supplied by the conjunctive use of surface and ground water 
resources. For example, the agricultural area in Region A is 
surrounded by two surface water sources (i.e., reservoirs 1 and 
2) and one groundwater well. During the dry season, there 
would be [80.2, 251.0] × 106 m3 of the surface water for 
irrigation released from reservoir 2. No water would be 
available from reservoir 1. In comparison, with the increase of 
stream inflows, the irrigation water from the two reservoirs 
would be [126.3, 297.1] × 106 m3 and 340.7 × 106 m3 during 
the wet season, respectively. The groundwater is profitable so 
that there would be [60.0, 72.0] × 106 m3 of groundwater 
pumped in Region A for irrigation (despite of inflow levels). 
Meanwhile, the surface water resources can also be used for 
hydroelectricity generation, which would be 7.8 × 106 m3, 5.7 

× 106
 m3

 and 28.8 × 106 m3 for the three reservoirs respec- 
tively, despite of inflow levels.  

Table 4 also presents the results obtained under Scenarios 
2 and 3. Under Scenario 2, Region A could make an optimal 
plan of full utilization of available resources. For example, the 
irrigation water from reservoir 1 would be [0, 75.4] × 106 m3 
in the dry season, [80.8, 242.4] × 106 m3

 in the normal season 

and [263.4, 297.1] × 106 m3 in the wet season, respectively. For 
reservoir 2, the allocations of irrigation water during the three 
seasons would be [155.6, 251.0] × 106, 295.8 × 106 and 340.7 
× 106 m3, respectively. Under such a situation, the other re- 
gions can be allocated little water from reservoir 3. In fact, the 
increasing possession of water for any individual regions 
would definitely entail losses for the other regions. Apparently, 
the local authorities can optimize the entire system indepen- 
dently through conventional single-objective programming me- 

Table 4. Solutions Obtained from the IFBP Model 

  By local 
authority 

By Region A    Bi-level 
solutions 

Reservoir capacity (106 m3):  
V1

 31.2 31.2 31.2 
V2

 
22.8 22.8 22.8 

V3
 

115.2 115.2 115.2 
Size of embankment B (106 m3):   
 [20.0, 24.0] [20.0, 24.0] [20.0, 24.0] 
Pumped groundwater XG (m3):  
m = 1, Dry [60.0, 72.0] [60.0, 72.0] [60.0, 72.0] 

 Normal [60.0, 72.0] [60.0, 72.0] [60.0, 72.0] 
 Wet [60.0, 72.0] [60.0, 72.0] [60.0, 72.0] 

m = 2, Dry [356.0, 427.2] [356.0,427.2] [356.0,427.2] 
 Normal [356.0, 427.2] [356.0, 427.2] [356.0, 427.2] 

Wet [356.0, 427.2] [356.0, 427.2] [356.0, 427.2] 
Irrigation water from reservoir XI (106 m3): 
m = 1, Dry 0 [0, 75.4] 0 

 Normal 0 [80.8, 242.4] [0, 18.0] 
Wet 0 [263.4, 297.1] [126.3, 297.1] 

m = 2, Dry 0 [155.6, 251.0] [80.2, 251.0] 
Normal 0 295.8 [271.7, 295.8] 
Wet [0, 123.3] 340.7 340.7 

m = 3, Dry [155.6, 326.4] 0 75.4 
Normal [376.6, 547.4] 0 [104.9, 233.6] 
Wet [604.1, 651.5] 0 137.1 

Water resources for hydroelectricity XH (106 m3): 
m = 1, Dry 7.8 7.8 7.8 

 Normal 7.8 7.8 7.8 
 Wet 7.8 7.8 7.8 

m = 2, Dry 5.7 5.7 5.7 
 Normal 5.7 5.7 5.7 
 Wet 5.7 5.7 5.7 

m = 3, Dry 28.8 0 28.8 
 Normal 28.8 0 28.8 
 Wet 28.8 0 28.8 

Benefit from Region A ($106): 
 [4,000.1, 

8,179.7] 
[27,123.6, 
43,718.2] 

[20,933.4, 
34,577.0] 

Expected system benefit ($106): 
 [52,977.1, 

86,989.3] 
[45.269.1, 
72,378.0] 

[50,913.7, 
83,231.0] 

 

thods by assuming that all the regions will develop equally in 
the future. Their actions thus would form the final develop- 
ment scheme as described under Scenario 3. It is indicated that 

resource allocations among parties within the system are moti- 
vated by economic benefits from the water utilizations. The 
surface water assigned to Region A for irrigation would be [0, 
123.3] × 106

 m3 from Reservoir 2 only during the wet season 
due to lower benefits of both Reservoirs 1 and 2. Comparative- 
ly, the flows for irrigation from reservoir 3 would be [155.6, 
326.4] × 106 m3 in the dry season, [376.6, 547.4] × 106 m3 in 
the normal season and [604.1, 651.5] × 106 m3 in the wet 
season. However, since Region A plays a significant role in 

promoting the local economic growth from a long-term view- 
point, it should be given priority while making development 
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plans. Decisions under Scenario 3 would hamper Region A’s 
use of water resources, and would lead to a low benefit to the 
entire system.  

Moreover, different water resources management strate- 
gies under different scenarios (i.e., Scenarios 1, 2 and 3) wou- 
ld result in varying system benefits. Under Scenario 2, Region 
A would obtain the maximum net benefit of $[27,123.6, 
43,718.2] × 106

 by implementing the optimum plan regardless 
of what the other regions do. The whole system would then 
obtain a net benefit of $[45,269.1, 72,378.0] × 106 over the 
planning horizon. Under Scenario 3, the expected system be- 
nefit would be $[52,977.1, 86,989.3] × 106 which is higher 
than that under Scenario 2. However, benefit losses would 
occur to Region A, which would restrict economic growth wi- 
thin this region. Thus, Region A can only gain the net benefit 
of $[4,000.1, 8,179.7] × 106. Comparatively, the optimum so- 
lutions under Scenario 1 would be generated after all parties 
could discuss their strategies and make binding agreements. 
Then, the beneficial objective function values would be $ 
[50,913.7, 83,231.0] × 106 for the entire system and $ 
[20,933.4, 34,577.0] × 106 for Region A, respectively, with a 
satisfactory level λ of [0.732, 0.743]. Since the local autho- 
rity would take on the leadership role presented as the upper- 
level objective function, it would be ensured that the water 
resources for irrigation (e.g., surface or groundwater) and hy- 
droelectricity would be distributed scientifically among the 
parties throughout the system. The resources could not be 
monopolized by any parties as in the case of a single decision 
maker for the entire system (e.g., Scenario 2). Indeed, the bi- 
level management structure would result in a better system 
behavior than those under any other situations, especially if 
the leader would also subsidize the project investments of 
building reservoirs, developing groundwater wells, as well as 
the construction of the embankment. 

Different tolerance levels would lead to slight variations 
of solutions for the study case. Solving the problem under Sce- 
narios 4, 5 and 6 demonstrates the influences of tolerance 
levels on the model outputs. Under Scenario 1, the capacities 
of reservoirs, the size of embankment and the amount of 
groundwater development for the other regions can be obtain- 
ed through solving the upper-level optimizing problem 
independently. Then the related tolerances assigned in the 
fuzzy bi-level programming model would be 10% of the 
above variables, respectively. For example, in the upper bound 
submodel [i.e. model (15)], the capacities of reservoirs 
optimized by the ULDM (the local authority) would be 31.2 × 
106 m3 for reservoir 1, 22.8 × 106 m3 for reservoir 2, and 115.2 
× 106 m3 for reservoir 3. Accordingly, the tolerances for the 
three reservoirs would be 3.12 × 106 m3, 2.28 × 106 m3 and 
11.52 × 106 m3, respectively. The values of tolerances in the 
lower bound submodel [i.e. model (16)] can be obtained in the 
similar way. In Scenarios 4, 5 and 6, different tolerances that 
are 2%, 5% and 20% of the upper-level decision variables are 

considered. Under Scenarios 4 and 6, only slightly changes 

would happen to the amounts of irrigation water received from 

reservoirs ( ijXI ± ); while the values of objective functions and 
the other decision variables would remain the same as those 

 
Figure 3. Comparisons of solutions for surface water 
irrigation under several scenarios. 
 

 
Figure 4. Amounts of irrigation water released from 
reservoirs under different cases. 
 
under Scenario 1. For example, in the wet season under Sce- 
nario 4, the allocated irrigation water would be 0 from reser- 
voir 1, 340.7 × 106 m3 from Reservoir 2, and [263.4, 434.2] × 

106 m3
 from reservoir 3; whereas, in the same season under 

Scenario 6, the allotments of irrigation water from the three 
reservoirs would be [126.3, 297.1] × 106, 340.7 × 106 and 

137.1 × 106 m3, respectively. The solutions obtained under 
Scenario 5 would not be affected by the inputs of the toleran- 
ces (same as those under Scenario 1). The result comparisons 
for the amounts of surface irrigation water ( ijXI ± ) obtained 
under Scenarios 1, 5, 6 and 7 are shown in Figure 3. The 
tolerances representing the domains for the decision variables 
would be set subjectively, and the variations of tolerances 
might influence the model outputs. However, the differences 
of results among scenarios would be tiny and occur on some
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of the decision variables. Moreover, the objectives of both 
ULDM and LLDM would not be changed despite of various 
inputs of the tolerances. It is indicated that the proposed IFBP 
can provide compromising solutions for the study problem. 

The study problem can be solved under worst/best case 
analysis, where two extreme decisions would be generated 
through conventional fuzzy bi-level programming models 
corresponding to the most pessimistic and optimistic system 
benefits, respectively. For example, under the normal season, 
the optimal flows to irrigation from Reservoirs 1, 2 and 3 wou- 
ld respectively be (i) 0, 295.8 × 106 and 80.8 × 106 m3 under 
the worst case (Scenario 7), and (ii) 18.0 × 106, 295.8 × 106 
and 233.6 × 106 m3 under the best case (Scenario 8). Accor- 
dingly, the objective functions values of the upper and lower 
levels would be (i) $51,158.4 × 106 and $21,667.6 × 106 with 
λ = 0.764 under Scenario 7, (ii) $83,231.0 × 106 and $34,577.0 

× 106 with λ = 0.743 under Scenario 8, respectively. Decisions 
at the worst case would lead to an increased satisfactory level 

in fulfilling the system conditions but with a low system be- 
nefit; decisions at the best case would result in a high benefit, 
but the risk of violating the system constraints would be high 

(i.e. a relative low reliability level of satisfying system con- 
straints). Although the best/worst case analysis is useful for 

judging the system’s capability to realize the desired goals, 
the obtained solutions could only reflect extreme decision 

situations which might not be attained in real-world problems. 
Let the uncertain inputs of Scenario 1 be a set of mid va- 

lues of the intervals, and the problem could be converted into a 
deterministic bi-level programming model. Under Scenario 9, 
inexact information in the capacities of groundwater develop- 
ment, the size of the embankment, the requirements for the 
flood control and downstream water amounts, as well as the 
benefit/cost coefficients were ignored, which would lead to 
different water resources development pattern from that under 
Scenario 1. For instance, during the normal season, the surface 

water amounts allocated from Reservoirs 1 and 2 would be 0 

and 295.8 × 106 m3, respectively, which would be used for 
irrigation in Region A. While the irrigation water supplied by 
reservoir 3 for the other regions would be 166.2 × 106 m3 over 
the planning horizon. Accordingly, the expected system bene- 
fit would be $66,505.0 × 106; meanwhile, Region A could ob- 
tain the net benefit of $28,009.4 × 106 under Scenario 9. 
Figure 4 presents the comparisons of irrigation water amounts 
from reservoirs (XI) obtained under Scenarios 1, 7, 8 and 9. 
The methods according to Scenarios 7, 8 and 9 oversimplified 
the interval information into deterministic values (i.e., the ex- 
treme or mid values), such that the solutions representing one 
of many potential responses to the uncertain parameters could 

be generated. In comparison, IFBP has advantages over the 
conventional bi-level programming methods in terms of its 
capacity for reflecting uncertainties presented as intervals. 

5. Conclusions 

An interval fuzzy bi-level approach (IFBP) has been de- 
veloped for the planning of water resources management sys- 
tem. The IFBP method improves upon the existing fuzzy bi- 

level programming by introducing interval mathematical pro- 
gramming (IMP) into its framework, such that uncertainties 
presented as interval values and fuzzy sets can be handled. A 
two-step interactive fuzzy approach has been proposed to 
solve the IFBP model. Interval solutions have been obtained 
through solving the upper- and lower-bound submodels se- 
quentially with maximizing the objective-function values of 
both ULDM and LLDM. It can help generate a range of de- 
cision alternatives between the upper- and lower-level objec- 
tives as well as between system optimality and reliability. The 

IFBP method can deal with the water resources management 

problem by addressing the specific factors to formulate the 
bi-level and hierarchical configurations among multiple deci- 
sion makers. A case study has been provided for an application 
to planning a water resources management system. Moreover, 
a number of scenarios have been analyzed. For all scenarios 
under consideration, the IFBP method has advantages over the 

conventional single decision-maker and/or deterministic pro- 
gramming methods not only in respecting the strategic interact- 
tions and encouraging cooperation among parties, but also in 

tackling uncertain information; this can easily reach a win– 
win situation for decision-makers and lead to optimal solu- 
tions for the system.  

Although this study is the first attempt for planning wa- 
ter resources management through development of such an 
IFBP method, there are several assumptions to be taken into 
account in a practical application of the IFBP method. Firstly, 
the study focuses on planning a water resources management 
system where the increasing desire for agricultural water uti- 
lization is considered as main reason for making the scheme 
because of its dominant status in local economic activities. If 
the development proceeds piecemeal as at present, the agri- 
cultural production will not be able to keep pace with the po- 
pulation increase, which would bring serious crises for the 
entire system. Moreover, benefits from the generation of hy- 
droelectricity are also taken into account while making deci- 
sions. Secondly, Region A can be considered as one of the 

representatives which should be given priorities while making 
a development scheme due to the prominent contributions in 
promoting economic development. Thus, a bi-level manage- 
ment structure can be formulated where the decision variables 
are controlled by the upper and lower objective functions to- 
gether. In detail, the local authority (the leader) can only 
control a subset of the decision variables in the hierarchical 
system, but that it would be affected by those variables that are 
controlled by the follower (i.e., Region A in the study), and 

Region A has its own objective function, which would in turn 

be affected by the leader's variables. Since the water resources 
are shared by all regions within the system, cooperation between 
parties are encouraged to support the sustainable development. 
The benefit tradeoff should be made between the ULDM and 
LLDM through collaboration from a long-term point of view, 
so that the system will not lead to development restrictions 
and poor behavior in the future. Thirdly, inexact information 
is reflected as random variables and interval parameters in the 
method. For example, the availabilities of water resources are 
quantified as discrete random variables and assumed to be 
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taken on discrete distributions, such that the IFBP model can 
be solved through linear programming method. As to the other 
uncertain inputs, they can only be expressed as intervals, 
which will lead to a lack of the specification of distribution 

information in the obtained solutions. Generally, although 
there are some assumptions and limitations in the model’s 
development and implementation, the proposed IFBP method 
can provide insight into identifying engineering designs for 
the development of a water recourses management system, 
and reaching significant benefits for the parties under existing 
conditions. 

 
Acknowledgments. This research was supported by the Major State 
Basic Research Development Program of MOST (2005CB724207) 
and the Special Water Project of China (2009ZX07104-004). The 
authors are grateful to the editor and the anonymous reviewers for 
their insightful comments and suggestions.  
 

References 

Ahlatcioglu, M., and Tiryaki, F. (2007). Interactive fuzzy pro- 
gramming for decentralized two-level linear fractional program- 
ming (DTLLFP) problems, Omega-Int. J. Manage. Sci., 35(4), 
432-450. doi:10.1016/j.omega.2005.08.005 

Anandalingam, G. (1991). Multi-level programming and conflict 
resolution, Eur. J. Oper. Res., 51(2), 233-247. doi:10.1016/0377- 
2217(91)90253-R 

Aviso, K.B., Tan, R.R., Culaba, A.B., and Cruz, J.B. (2010). Bi- level 
fuzzy optimization approach for water exchange in eco-industrial 
parks, Process Saf. Environ. Prot., 88(1), 31-40. doi: 10.1016 /j. 
psep.2009.11.003 

Bard, J. (1998). Practical bilevel optimization: algorithms and appli- 
cations, Kluwer Academic Pub, USA. 

Benayed, O. (1993). Bilevel Linear-Programming, Comput. Oper. 
Res., 20(5), 485-501. doi:10.1016/0305-0548(93)90013-9 

Emam, O.E. (2006). A fuzzy approach for bi-level integer non- linear 
programming problem, Appl. Math. Comput., 172(1), 62-71. doi: 
10.1016/j.amc.2005.01.149 

Gao, J.W., and Liu, B.D. (2005). Fuzzy multilevel programming with 
a hybrid intelligent algorithm, Comput. Math. Appl., 49 (9-10), 
1539-1548. doi:10.1016/j.camwa.2004.07.027 

Gao, Y., Zhang, G.Q., and Lu, J. (2009). A Fuzzy Multi-Objective 
Bilevel Decision Support System, Int. J. Inf. Tech. Decis. Making, 
8(1), 93-108. doi:10.1142/S0219622009003284 

Guo, P., Huang, G.H., and Li, Y.P. (2010). An inexact fuzzy-chance- 
constrained two-stage mixed-integer linear programming approach 
for flood diversion planning under multiple uncertainties, Adv. 
Water Resour., 33(1), 81-91, doi:10.10 16/j.advwatres. 2009.10.009 

Huang, G.H. (1998). A hybrid inexact-stochastic water management 
model, Eur. J. Oper. Res., 107(1), 137-158. doi:10.1016/ S0377- 
2217 (97)00144-6 

Huang, G.H., Baetz, B.W., and Patry, G.G. (1992). A Gray Linear- 
Programming Approach For Municipal Solid-Waste Management 
Planning Under Uncertainty, Civ. Eng. Syst., 9(4), 319-335. doi: 
10.1080/02630259208970657 

Huang, G.H., Baetz, B.W., and Patry, G.G. (1993). A Gray Fuzzy 
Linear-Programming Approach for Municipal Solid-Waste Mana- 
gement Planning Under Uncertainty, Civ. Eng. Syst., 10 (2), 123- 
146. doi:10.1080/02630259308970119 

Huang, G.H., Baetz, B.W., and Patry, G.G. (1995). Grey Integer 
Programming - an Application to Waste Management Planning 
under Uncertainty. Eur. J. Oper. Res., 83(3), 594-620. doi:10. 1016 
/0377-2217(94)00093-R 

Huang, G.H., and Loucks, D.P. (2000). An inexact two-stage 
stochastic programming model for water resources management 
under uncertainty, Civ. Eng. Env. Syst., 17(2), 95-118. doi: 10.1080 
/02630250008970277 

Jairaj, P.G., and Vedula, S. (2000). Multireservoir system optima- 
zation using fuzzy mathematical programming, Water Resour. 
Manage., 14(6), 457-472. doi:10.1023/A:1011117918943 

Lai, Y.J. (1996). Hierarchical optimization: A satisfactory solution, 
Fuzzy Sets Syst.77(3), 321-335, doi:10.1016/0165-0114(95)000 
86-0 

Lai, Y.J., and Hwang, C.L. (1994). Fuzzy multiple objective decision 
making:(methods and applications), Berlin, Springer. 

Li, Y.P., and Huang, G.H. (2009). Fuzzy-stochastic-based violation 
analysis method for planning water resources management systems 
with uncertain information, Inf. Sci., 179(24), 4261-4276. doi:10. 
1016/j.ins.2009.09.001 

Li, Y.P., Huang, G.H., Wang, G.Q., and Huang, Y.F. (2009). FSWM: A 
hybrid fuzzy-stochastic water-management model for agricultural 
sustainability under uncertainty, Agric. Water Manage., 96(12), 
1807-1818. doi:10.1016/j.agwat.2009.07.0 19 

Li, Y.P., Huang, G.H., and Xiao, H.N. (2008). Municipal Solid Waste 
Management under Uncertainty: An Interval-Fuzzy Two-Stage 
Stochastic Programming Approach, J. Env. Inform., 12(2), 96-104. 
doi:10.3808/jei.200800128 

Li, Y.P., Huang, G.H., Zhang, N., Mo, D.W., and Nie, S.L. (2010). 
ISIP: capacity planning for flood management systems under 
uncertainty, Civ. Eng. Env. Syst., 27(1), 33-52. doi:10.1080/102866 
00802284373 

Liu, K.F.R., Liang, H.H., Yeh, K., and Chen, C.W. (2009). A 
Qualitative Decision Support for Environmental Impact Assess- 
ment Using Fuzzy Logic, J. Env. Inform., 13(2), 93-103. doi:10. 
3808 /jei.200900144 

Lu, H.W., Huang, G.H., and He, L. (2010). Development of an 
interval-valued fuzzy linear-programming method based on infi- 
nite alpha-cuts for water resources management, Env. Model. Soft- 
ware, 25(3), 354-361. doi:10.1016/j.envsoft.2009. 08.007 

Lv, Y., Huang, G.H., Li, Y.P., Yang, Z.F., and Li, C.H. (2009). 
Interval-Based Air Quality Index Optimization Model for Re- 
gional Environmental Management under Uncertainty. Env. Eng. 
Sci., 26(11), 1585-1597. doi:10.1089/ees.2009.0017 

Lv, Y., Huang, G.H., Li, Y.P., Yang, Z.F., and Sun W. (2010). A 
two-stage inexact joint-probabilistic programming me- thod for air 
quality management under uncertainty, J. Env. Manage., doi:10. 
1016/j.jenvman.2010.10.027 

Madani, K. (2010). Game theory and water resources, J. Hydrol., 381, 
225-238. doi:10.1016/j.jhydrol.2009.11.045 

Mujumdar, P.P., and Sasikumar, K. (2002). A fuzzy risk approach for 
seasonal water quality management of a river system, Water 
Resour. Res., 38(1), 1004-1013. doi:10.1029/2000WR00 0126 

Nasiri, F., Maqsood, I., Huang, G.H., and Fuller, N. (2007). Water 
quality index: A fuzzy river-pollution decision support expert 
system, J. Water Resour. Plann. Manage., 133, 95-105. doi:10. 
1061/(ASCE)0733-9496(2007)133:2(95) 

Ping, J., Chen, Y., Chen, B., and Howboldt, K. (2010). A Robust 
Statistical Analysis Approach for Pollutant Loadings in Urban 
Rivers, J. Env. Inform., 16(1), 35-42. doi:10.3808/jei.2010001 76 

Pramanik, S., and Roy, T.K. (2007). Fuzzy goal programming 
approach to multilevel programming problems, Eur. J. Oper. Res., 
176(2), 1151-1166. doi:10.1016/j.ejor.2005.08.024 

Rogers, P. (1969). A game theory approach to the problems of 
international river basins, Water Resour. Res., 5(4), 749-760.doi:10. 
1029/WR005i004p00749 

Roghanian, E., Aryanezhad, M.B., and Sadjadi, S.J. (2008). Inte- 
grating goal programming, Kuhn-Tucker conditions, and penalty 
function approaches to solve linear bi-level programming prob- 
lems, Appl. Math. Comput., 195(2), 585-590. doi:10.1016/j.amc. 



Y. Lv et al. / Journal of Environmental Informatics 16(2) 43-56 (2010) 

 

56 

2007.05.004 
Sakawa, M. (1993). Fuzzy sets and interactive multiobjective optimi- 

zation, Plenum, USA. 
Sakawa, M., and Nishizaki, I. (2001). Interactive fuzzy program- 

ming for two-level linear fractional programming problems, Fuzzy 
Sets Syst., 119(1), 31-40. doi:10.1016/S0165-01 14(99)000 66-4 

Sakawa, M., Nishizaki, I., and Uemura, Y. (1998). Interactive fuzzy 
programming for multilevel linear programming problems, Com- 
put. Math. Appl. 36(2), 71-86. doi:10.1016/S0898-1221(98)00118-7  

Sakawa, M., Nishizaki, I., and Uemura, Y. (2000). Interactive fuzzy 
programming for multi-level linear programming problems with 
fuzzy parameters, Fuzzy Sets Syst., 109(1), 3-19. doi:10.1016 
/S0165-0114(98)00130-4 

Sen, Z., and Altunkaynak, A. (2009). Fuzzy system modelling of 
drinking water consumption prediction, Expert Syst. Appl., 36(9), 
11745-11752. doi:10.1016/j.eswa.2009.04.028 

Sethi, L.N., Kumar, D.N., Panda, S.N.. and Mal, B.C. (2002). 
Optimal crop planning and conjunctive use of water resources in a 
coastal river basin, Water Resour. Manage., 16(2), 145-169. doi:10. 
1023/A:1016137726131 

Shih, H.S., Lai, Y.J., and Stanley Lee, E. (1996). Fuzzy approach for 
multi-level programming problems, Comput. Oper. Res., 23(1), 
73-91. doi:10.1016/0305-0548(95)00007-9 

Shih, H.S., and Lee, E.S. (2000). Compensatory fuzzy multiple level 
decision making, Fuzzy Sets Syst., 114(1), 71-87. doi:10.1016/ 
S0165-0114(98)00409-6 

Sinha, S. (2003). Fuzzy mathematical programming applied to 
multi-level programming problems, Comput. Oper. Res., 30(9), 
1259-1268. doi:10.1016/S0305-0548(02)00061-8 

Sinha, S. (2003). Fuzzy programming approach to multi-level pro- 

gramming problems, Fuzzy Sets Syst., 136(2), 189-202. doi:10. 
1016/S0165-0114(02)00362-7 

Uitto, J.I., and Duda, A.M. (2002). Management of trans- boundary 
water resources: lessons from international cooperation for conflict 
prevention, Geogr. J., 168(4), 365-378. doi:10.1111/j. 0016-7398. 
2002.00062.x 

Verderame, P.M., Elia, J.A., Li, J., and Floudas, C.A. (2010). 
Planning and Scheduling under Uncertainty: A Review Across 
Multiple Sectors, Ind. Eng. Chem. Res., 49(9), 3993-4017. doi: 
10.1021/ie902009k 

Wen, U.P., and Hsu, S.T. (1991). Linear Bi-Level Programming- 
Problems - A Review, J. Oper. Res. Soc., 42(2), 125-133. 

Yan, X.P., Ma, X.F., Huang, G.H., and Wu, C.Z. (2010). An Inexact 
Transportation Planning Model for Supporting Vehicle Emissions 
Management, J. Env. Inform., 15(2), 87-98. 

Yeomans, J.S. (2008). Applications of Simulation-Optimization Me- 
thods in Environmental Policy Planning Under Uncertainty. J. Env. 
Inform., 12(2), 174-186. doi:10. 3808/jei.200800135 

Zarghami, M., and Szidarovszky, F. (2009). Stochastic-fuzzy multi 
criteria decision making for robust water resources management. 
Stochastic Environ. Res. Risk Assess., 23(3), 329-339. doi:10.1007/ 
s00477-008-0218-6 

Zhang, G.Q., Zhang, G.L., Gao, Y., and Lu, J. (2009). A Fuzzy Bilevel 
Model and a PSO-Based Algorithm for Day-Ahead Electricity 
Market Strategy Making. Knowledge-Based and Intelligent Infor- 
mation and Engineering Systems, Pt Ii, Proceedings. J. D. 
Velasquez, S. A. Rios, R. J. Howlett and L. C. Jain. Berlin, 
Springer-Verlag Berlin. 5712: 736-744. 

Zimmermann, H.J. (2001). Fuzzy set theory and its applications, 
Springer Netherlands.

 


