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ABSTRACT.  In this study, a total of twelve system-condition scenarios are considered for the management system. The scenarios 
correspond on different attitudes of decision makers to the study system. In detail, variations in concerns on objective function values 
(aggressive, conservative, or neutral), the attitude to the constraints (optimistic or pessimistic), and the preferred types of constricting 
ratios (consistent or varied) lead to twelve scenarios. Consequently, twelve planning models and solution methods corresponding to 
different scenarios have been developed. To demonstrate the applicability of the developed methods, a municipal solid waste 
management problem has been provided in the case study section. The inherent mechanism of the study system could be reflected 
through a series of considered scenarios. Thus the decision makers could understand the targeted system comprehensively and identify 
the scenario which best fits the practical condition. Moreover, a number of feasible schemes could be generated under each scenario 
which allows decision makers to further adjust the obtained solutions and indentify a desired one through incorporation of their 
experiences, economic situations, social and cultural conditions. In addition, the possibility of infeasible solutions has been greatly 
reduced with the consideration of twelve scenarios instead of one. 
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1. Overview of Interval Linear Programming and 
Three Step Method  

In this study, an interval linear programming (ILP) model 
will be examined as follows (Huang, 1994, 1998; Sun and 
Huang, 2010; Yan et al. 2010; Cao et al., 2010a, 2011): 

 

Min 
1 1

k n

j j j j
j j k

f c x c x± ± ± ± ±

= = +

= +∑ ∑  (1a) 

Subject to: 

1 1

k n

ij j ij j i
j j k

a x a x b± ± ± ± ±

= = +

+ ≤∑ ∑ , 1, 2,...,i m= . (1b) 

0jx± ≥ , 1, 2,...,j n= . (1c) 

where , , ,j ij i jc a b x R± ± ± ± ±∈ , and R± denotes a set of interval num- 
bers. For interval coefficients in the objective function ( jc± ), 
assume that the former k of them are positive, and the latter 
are negative. 

To solve the ILP problem, a ThSM approach has been 
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developed which includes three procedures: two-step-method 
(TSM), feasibility test, and constricting algorithm (Huang and 
Cao, 2011). In TSM, interval solutions can be obtained through 
solving two linear programming submodels (Huang 1998; 
Huang et al., 2001; Gao et al., 2010; He et al., 2010; Lv et al., 
2010). According to the definition of feasible region for ILP, 
feasibility test can tell whatever the TSM solutions are 
feasible. Then if they are feasible, the solutions of TSM can 
be used to generate a number of schemes for decision makers. 
Otherwise, the non-feasible solutions can be eliminated by 
means of “constricting” the solutions of TSM. In other words, 
there are two cases when ThsM is used to solve ILP. Case 1 is 
that solutions of TSM pass the feasibility test, and thus 
solutions of ThSM and those of TSM are same. Case 2 is that 
solutions of TSM fail the feasibility test, and thus solutions 
obtained through ThSM are “constricting” ones of TSM. 
Under both cases, solutions of TSM are the foundation of 
ThSM. Consequently, TSM should be discussed in detail to 
further explore the solution methods for ILP.  

The main idea of TSM is to solve two sub models instead 
of solving the original ILP model where the submodels are 
linear programs. Models (2) and (3) show the submodels 
(assume that 0ib± > and 0f ± > ): 

 

1 1
Min

k n

j j j j
j j k

f c x c x− − − − +

= = +

= +∑ ∑ ,                      (2a) 
 
subject to: 
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1 1

( ) ( ) 1, 2, ..,
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b i m
+ −± ± − ± ± + +

= = +

+ ≤ , =  ∑ ∑ (2b) 

 
0,jx− ≥ 1, 2, ...,j k=  . (2c) 

 
0,jx+ ≥ 1, 2, ...,j k k n= + +  . (2d) 

 
Solutions of ( 1, 2, ...,  )joptx j k− = and ( 1, 2, ..., )joptx j k k n+ = + +

 
can be obtained through solving submodel (2): 
 

1 1
Min

k n

j j j j
j j k

f c x c x+ + + + −

= = +

= +∑ ∑ , (3a) 

 
Subject to: 
 

1 1

( ) ( ) , 1, 2, ...,
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b i m
− +± ± + ± ± − −

= = +

+ ≤ =  ∑ ∑ (3b) 

 

j j optx x+ −≥ , 1,  2,  ...,  j k= . (3c) 

 
0 j j optx x− +≤ ≤ , 1,  2,  ...,  j k k n= + + . (3d) 

 
Hence, solutions of ( 1,  2,  ...,  )joptx j k+ = and ( 1, 2,joptx j k k− = + +

 ..., )n can be obtained through solving submodel (3). Thus, the 
final solution of [ , ]opt opt optf f f± − += and [ , ]jopt jopt joptx x x± − += can be ob- 
tained. 

The combinations of coefficient ( ija± ) and decision vari- 
able ( jx± ) in models (2) and (3) are indentified through the 
assumption that the products ( ij ja x± ± ) obey specific probability 
distributions (i.e. Normal distributions). Meanwhile, the prin- 
ciples for indentifying the combinations of objective value 
( f ± ) and coefficient ( ib± ) mainly depend on the concerns 
and attitudes of decision makers. To be specific, in the second 
submodel, solutions of the first submodel are incorporated as 
new constraints besides the regular constraints of the original 
ILP model. As a result, the feasible zone of the second sub- 
model could be reduced. In this sense, the two submodels are 
not in parallel, and the first submodel holds priority.  

If the first model is to solve f − , it indicates the decision 
makers focus on achieving the lowest value of the objective 
function. In other words, the lower bound of the objective 
function is considered more important than its upper one. In 
real-world applications, for example, the objective is to mini- 
mize the total system cost. Decision makers who determine to 
solve f − first are aggressive and aims to achieve the lowest 
cost. Otherwise, the upper bound of objective function ( f + ) 
should be the first submodel, which means that the decision 
makers are more interested in for a higher value of objective 
function. The decision makers are conservative in this case. 

The values of ib±
 in the first submodel reflect the attitudes 

of decision makers to the constraints. For example, if the first 
submodel employs the values of ib+ , it suggests that decision 
makers are optimistic about the constraints. Moreover, the de- 
cision makers are considered as pessimistic if the values of 

ib− are employed in the first submodel. This is because cons- 
traints with ib+ are loose, while those with ib− are strict. In other 
words, the feasible zone associated with ib+ is larger than that 
with ib− . Thus, when the values of ib+ is used, a more optimal 
value for the objective function could be obtained. 

Therefore, several scenarios indicating different concerns 
and attitudes of decision makers can be generated. ThSM-I 
and ThSM-II are two of the scenarios. In detail, if the ILP model 
is solved through ThSM-I or ThSM-II, it indicates that decision 
makers are aggressive to achieve the lowest system cost, and 
hold an optimistic attitude on the constraints. In ThSM-I, de- 
cision makers assumed that the constrict ratios for all decision 
variables are identical, while such constricting ratios varied in 
ThSM-II. The other possible scenarios, as well as the related 
applications, will also be presented in the following sections. 

 

2. Alternative Solution Methods 

According to the above analysis, TSM presents the com- 
bination of pursuing aggressive objective value and employing 
optimistic constraints. In real-world cases, it is possible that 
decision makers are aggressive to obtain the lowest system cost. 
However, they may be pessimistic on the constraints consider- 
ing the practical situations. For example, in a municipal solid 
waste (MSW) management system, waste flows delivered to 
disposal facilities should not exceed their maximum capacities. 
Although the available capacity of a facility within a range 
which can be presented as an interval, decision makers may be 
pessimistic on the actually capacity with their knowledge of 
overloading operation, outdated maintenance efforts and so on. 
In order to address such a scenario, solution methods of 
SOM2-I and SOM2-II will be developed. The specific steps 
are shown as follows. 

SOM2-I and SOM2-II 
Step 1. Solve the following submodels: 

1 1
Min

k n

j j j j
j j k

f c x c x− − − − +

= = +

= +∑ ∑  (4a) 

subject to: 

1 1

( ) ( ) , 1, 2, ...,
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b i m
+ −± ± − ± ± + −

= = +

+ ≤ =  ∑ ∑ (4b) 

0,jx− ≥ 1, 2, ...,j k=   (4c) 
 

0,jx+ ≥ 1, 2, ...,j k k n= + +   (4d) 

and: 

1 1
Min

k n

j j j j
j j k

f c x c x+ + + + −

= = +

= +∑ ∑  (5a) 
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Subject to: 
 

1 1

( ) ( ) , 1, 2, ...,
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b i m
− +± ± + ± ± − +

= = +

+ ≤ =  ∑ ∑ (5b) 

 

j j optx x+ −≥ , 1,  2,  ...,  j k=  (5c) 
 
0 j j optx x− +≤ ≤ , 1,  2,  ...,  j k k n= + +  (5d) 
 
where ( 1, 2, ..., )joptx j k− = and ( 1, 2, ..., )joptx j k k n+ = + +  are solu- 
tions of model (4). Thus, interval solutions of [ ,  ]opt opt optf f f± − +=  

and [ ,  ]jopt jopt joptx x x± − += can be obtained through solving models 
(4) and (5). 

Step 2. Conduct feasibility test. If pass, then stop. Other- 
wise, go to step 3. 

Step 3. Constricting algorithm. For SOM2-I, assume that 

all constricting ratios are identical (i.e. q), and the objective is 
to maximize q. In SOM2-II, the constricting ratios are varied 
(i.e. q1, q2,…), and the objective is to maximize the product of 
all the nonnegative constricting ratios (

01 2 ... nq q q× × × ).  

Compared with ThSM-I and II, in the first step of 
SOM2-I and II, the value of ib−  is employed in the first sub- 
model instead of ib+ , while the second submodel would take 
the value of ib+ . Step 2 in SOM2-I and II is identical to that 
of ThSM-I and II. Step 3 in SOM2-I is identical with that in 
ThSM-I, while SOM2-II and ThSM-II also have identical in 
step 3. 

To address scenarios that the decision makers are conser- 
vative, as well as the combinations with optimistic and pessimi- 
stic attitudes on the constraints, solution methods of SOM3-I, 
SOM3-II, SOM4-I and SOM4-II are developed as follows: 

SOM3-I and SOM3-II  
Step 1. Solve submodels (6) and (7): 

1 1
Min

k n

j j j j
j j k

f c x c x+ + + + −

= = +

= +∑ ∑  (6a) 

Subject to: 

1 1

( ) ( ) , 1, 2, ...,
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b i m
− +± ± + ± ± − +

= = +

+ ≤ =  ∑ ∑ (6b) 

0jx+ ≥ , 1, 2,...,j k=  (6c) 

0,jx− ≥ 1, 2,...,j k k n= + +  (6d) 

and: 

1 1
Min

k n

j j j j
j j k

f c x c x− − − − +

= = +

= +∑ ∑  (7a) 

subject to: 

1 1

( ) ( ) , 1, 2, ...,
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b i m
+ −± ± − ± ± + −

= = +

+ ≤ =  ∑ ∑ (7b) 

0 j j optx x− +≤ ≤ , 1,  2,  ...,  j k=  (7c) 
 

j j optx x+ −≥ , 1,  2,  ...,  j k k n= + +  (7d) 
 
where ( 1,  2,  ...,  )joptx j k− = and ( 1,  2,  ...,  )joptx j k k n+ = + + are 
solutions of model (6). Thus, interval solutions of [ ,opt optf f± −=

 ]optf + and [ , ]jopt jopt joptx x x± − += can be obtained through solving mo- 
dels (6) and (7). 

Step 2. Feasibility test which is the same as that in 
ThSM-I and II. 

Step 3. Constricting methods for SOM3-I and II, which 
are identical to ThSM-I and II, respectively.  

SOM4-I and SOM4-II  

Step 1. Solve submodels (8) and (9): 

1 1
Min

k n

j j j j
j j k

f c x c x+ + + + −

= = +

= +∑ ∑  (8a) 

Subject to: 

1 1

( ) ( ) , 1, 2, ...,
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b i m
− +± ± + ± ± − −

= = +

+ ≤  =  ∑ ∑ (8b) 

0jx+ ≥ , 1, 2,...,j k=  (8c) 
 

0,jx− ≥ 1, 2,...,j k k n= + +  (8d) 
 
and:  

1 1
Min

k n

j j j j
j j k

f c x c x− − − − +

= = +

= +∑ ∑  (9a) 

subject to: 

1 1

( ) ( ) , 1, 2, ...,
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b i m
+ −± ± − ± ± + +

= = +

+ ≤ =  ∑ ∑ (9b) 

0 j j optx x− +≤ ≤ , 1,  2,  ...,  j k=  (9c) 
 

j j optx x+ −≥ , 1,  2,  ...,  j k k n= + +  (9d) 
 
where ( 1,  2,  ...,  )joptx j k− = and ( 1,  2,  ...,  )joptx j k k n+ = + + are 
solutions of model (8). Thus, interval solutions of [ ,opt optf f± −=

 ]optf + and [ , ]jopt jopt joptx x x± − += can be obtained through solving mo- 
dels (8) and (9). 

Step 2. Feasibility test which is the same as that in 
ThSM-I and II. 

Step 3. Constricting methods for SOM3-I and II, which 
are identical to ThSM-I and II, respectively.  

In step 1 of SOM3-I and II as well as SOM4-I and II, the 
upper bound of the objective function ( f + ) is obtained from 
the first submodel. SOM3-I and II take the value of ib+ firstly. 
It indicates the combination of pursuing conservative object- 
tive and holding optimistic constraints. As for SOM4-I and II, 
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since the value of ib− is used in the first submodel, it suggests 
that decision makers hold a pessimistic attitude on the cons- 
traints.  

Besides, the decision makers may regard both the lower 
and upper bounds of the objective function with importance. 
They maybe concerned about both bounds of the objective 
instead of one. In this situation, the decision makers show 
neutral attitude on the objective without preference of lower 
or upper bound. To address such a scenario, the mid-values of 
all coefficients ( ,j ijc a± ± , and ib± ) can be employed to formulate 
a new linear program: 

Min 
1 1

k n

m jm jm jm jm
j j k

f c x c x
= = +

= +∑ ∑   (10a) 

Subject to: 
 

1 1

k n

ijm jm ijm jm im
j j k

a x a x b
= = +

+ ≤∑ ∑ , 1, 2, ...,i m=   (10b) 

 
0jmx ≥ , 1, 2, ...,j n=   (10c) 

 
where , ,jm ijm imc a b are the mid-values of ,j ijc a± ± and ib± , respect- 
tively. Solutions of jmx ( 1, 2, ...,j n=  ) can be obtained th- 
rough model (10). Based on the assumption that j jm jx x x− +≤ ≤ , 

submodels corresponding to the lower and upper bounds of 
objective function (i.e. f − and f + ) can be further formulated. 
Since the values of jmx ( 1, 2, ...,j n=  ) could be taken as new 
constraints, submodels for solving f − and f + would be in pa- 
rallel. In other words, the order of the submodles has no im- 
pact on the solutions. The solution methods of SOM5-I, 
SOM5-II, SOM6-I and SOM6-II are thus further developed 
considering different combinations of f ± and ib± .  

SOM5-I and SOM5-II  
Step 1. Solve the model with mid-values of the coeffi- 

cients [model (10)]. 
Step 2. Solve the following submodels: 

1 1
Min

k n

j j j j
j j k

f c x c x− − − − +

= = +

= +∑ ∑  (11a) 

subject to: 

1 1

( ) ( ) , 1, 2, ...,
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b i m
+ −± ± − ± ± + +

= = +

+ ≤ =  ∑ ∑ (11b) 

j jmx x− ≤ 1, 2,...,j k=  (11c) 

j jmx x+ ≥ 1, 2,...,j k k n= + +  (11d) 

and: 

1 1
Min

k n

j j j j
j j k

f c x c x+ + + + −

= = +

= +∑ ∑  (12a) 

Subject to: 

1 1

( ) ( ) , 1, 2, ...,
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b i m
− +± ± + ± ± − −

= = +

+ ≤ =  ∑ ∑ (12b) 

 

j jmx x+ ≥ , 1,  2,  ...,  j k= . (12c) 
 

j jmx x− ≤ , 1,  2,  ...,  j k k n= + + . (12d) 
 
Solutions of ( 1,  2,  ...,  )joptx j k− = and ( 1, 2, ..., )joptx j k k n+ = + +

 can be obtained through solving model (11) while solutions of 
( 1,  2,  ...,  )joptx j k+ = and ( 1,  2,  ...,  )joptx j k k n− = + + can be ob- 

tained through solving model (14). Thus, the final solution of 

optf ± =
 

[ ,  ]opt optf f− + and [ ,  ]jopt jopt joptx x x± − += can be obtained. 
Step 3. Feasibility test which is the same as that in 

ThSM-I and II. 
Step 4. Constricting methods for SOM3-I and II, which 

are identical to ThSM-I and II, respectively.  

SOM6-I and SOM6-II  
Step 1. Solve the model with mid-values of the coeffi- 

cients [model (10)]. 
Step 2. Solve the following submodels: 

1 1
Min

k n

j j j j
j j k

f c x c x− − − − +

= = +

= +∑ ∑  (13a) 

subject to: 

1 1

( ) ( ) , 1, 2, ...,
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b i m
+ −± ± − ± ± + −

= = +

+ ≤ =  ∑ ∑ (13b) 

j jmx x− ≤ 1, 2,...,j k= . (13c) 

j jmx x+ ≥ 1, 2,...,j k k n= + + . (13d) 

and: 

1 1
Min

k n

j j j j
j j k

f c x c x+ + + + −

= = +

= +∑ ∑ , (14a) 

Subject to: 

1 1

( ) ( ) , 1, 2, ...,
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b i m
− +± ± + ± ± − +

= = +

+ ≤ =  ∑ ∑ (14b) 

j jmx x+ ≥ , 1,  2,  ...,  j k= . (14c) 
 

j jmx x− ≤ , 1,  2,  ...,  j k k n= + + . (14d) 
 
Solutions of ( 1,  2,  ...,  )joptx j k− = and ( 1,  2,  ...joptx j k k+ = + +

 ,  )n can be obtained through solving model (13) while solu- 
tions of ( 1,  2,  ...,  )joptx j k+ = and ( 1,  2, ...,  )joptx j k k n− = + +  

 can be obtained through solving model (14). Thus, the final 

solution of optf ± = [ ,  ]opt optf f− + and [ ,  ]jopt jopt joptx x x± − += can be ob- 
tained. 

In SOM5-I and II, the value of ib+ is taken when solving 
f − , while the value of ib− is taken in SOM6-I and II. It is con- 
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Table 1. Twelve Scenario-Based Solution Methods for ILP 

Solution method Objective  Constraints Constricting ratio
ThSM-I aggressive optimistic consistent 
ThSM-II aggressive optimistic varied 
SOM2-I aggressive pessimistic consistent 
SOM2-II aggressive pessimistic varied 
SOM3-I conservative optimistic consistent 
SOM3-II conservative optimistic varied 
SOM4-I conservative pessimistic consistent 
SOM-II conservative pessimistic varied 
SOM5-I neutral optimistic consistent 
SOM5-II neutral optimistic varied 
SOM6-I neutral pessimistic consistent 
SOM6-II neutral pessimistic varied 
 
sidered that SOM5-I and II represent an optimistic attitude 
since the values of f − obtained through SOM5-I and II are 
smaller than those through SOM6-I and II. It must be pointed 
that the criteria of optimistic level used in SOM5-I to SOM6- 
II are different from those used in ThSM-I to SOM4-II. If the 
first submodel takes the value of ib+ in ThSM-I to SOM-II, 
the corresponding solution method is considered as optimistic. 
However, in the solution methods of SOM5-I to SOM6-II, the 
order of two submodels in step 1 can be changed. Thus, if the 
submodel corresponding to f − takes the value of ib+ (SOM5-I 

and II), it is considered optimistic.  
In step 1 of SOM6-I and II, the value of ib− is used in the 

submodel of solving f − ; thus this suggests that the decision 
makers hold a pessimistic attitude. In general, twelve solution 
methods are developed for the ILP problem as shown in Table 
1. 

3. Numerical Example 

A simplified example of an ILP problem is presented as 
follows: 
 
Max 1 2 3[2, 2.4] [1,1.3] [1.5,1.8]f x x x± ± ± ±= − +   (15a) 
 
(Min 1 2 3[ 2.4, 2] [1,1.3] [ 1.8, 1.5]f x x x± ± ± ±= − − + + − − ) 
 
subject to: 
 

1 2 3[2.6, 3.5] [2, 2.4] [3.2, 3.8] [18, 22]x x x± ± ±+ + ≤  (15b) 
 

1 2 3[4.6, 5.5] [3, 3.6] [1.3,1.6] [8, 9]x x x± ± ±+ − ≤  (15c) 
 

1 2 3[1,1.3] [6, 6.5] [2, 2.5] [2.2, 2.6]x x x± ± ±− + ≤  (15d) 
 

1 2 3, , 0x x x± ± ± ≥  (15e) 
 

The results of step 1 for ThSM-I to SOM4-II, as well as 
those obtained through steps 1 and 2 for SOM5-I to SOM6-II, 
are presented in Table 2. The final solutions through the twelve 
solution methods are shown in Table 3. Compare Tables 2 and  
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Figure 1. Solutions of upper bound, lower bound, mean and 
width values of objective function from developed methods. 
 
3, it indicates that solutions obtained in step 1 of ThSM-I and 
II and SOM5-I and II fail in the feasibility test, thus we will 
move to step 3 of constricting algorithm. The results of step 1 
from the other solution methods all pass the feasibility test. 

Since the object is to achieving the maximum value, so- 
lution methods with the first submodel containing f + are 
considered aggressive. As for SOM5-I to SOM6-II, the first 
submodel is to solve the linear program with mid-value co- 
efficients. The submodels of solving f +

 and f − are inde- 
pendent; thus the order of solving submodels 2 and 3 does not 
matter. For model (15), solution methods with submodel co- 
rresponding to f + and b+ represent an aggressive attitude. 
Similarly, if combinations of f − and b+ are adopted, the re- 
lated solution methods are considered conservative. 

Considering the upper bound of the objective function 
( f + ), its values obtained through the developed solution 
methods in a descending order should be ThSM-II > ThSM-I 
> SOM4-I and II > SOM5-II > SOM5-I > SOM2-I and II > 
SOM6-I and II > SOM3-I and II, as shown in Figure 1(a). Thus 
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Thus, ThSM-II could be an appropriate solution method if the 
decision makers desire to get aggressive results. Mean- while, 
when the lower bound of the objective function value is 

considered, the f − values from these scenario- based solution 
methods in a descending order should be SOM3-I and II > 

SOM6-I and II > SOM2-I and II > SOM5-I > SOM5-II > 
SOM4-I and II > ThSM-I >ThSM-II, as shown in Figure 1(b). 
In accordance, SOM3-I would be the preferred solution method 

if the decision makers are conservative and concerned much 
about the lower bound of the objective function. 

It is interesting that the ranking of solution methods with 
f + being considered is totally opposite of that with f − being 

concerned. The developed solution methods are based on di- 
fferent scenarios, with each owning both advantages and dis- 
advantages. It is meaningless to say that one solution method 
is better than another one. According to different criteria or 
standards, different ranking results for the solution methods 
can be acquired. For example, if the decision makers consider 
the means of f + and f − be the most important element, so- 
lutions obtained through ThSM-II should be adopted. This is 
because values for the means of f + and f − obtained through 
ThSM-I to SOM6-II in a descending order are: ThSM-II > 
ThSM-I > SOM5-II > SOM4-I and II > SOM5-I > SOM2-I 
and II = SOM3-I and II = SOM6-I and II. Figure 1(c) shows 
the results for the means of f + and f − . Besides, the decision 
makers may consider the range between f + and f − as a critical 

point. Accordingly, solutions of ThSM-II would be adopted if 
the decision makers prefer large values for the ranges. If small 
values for the range are desired, results of SOM3-I and II 
could be used, as shown in Figure 1(d). 

Then the constricting algorithm would be discussed. In 
ThSM-I and SOM5-I, the constricting ratios are assumed to 
be identical; in comparison, in ThSM-II and SOM5-II, it is 
assumed that each decision variable has its own constricting 

ratio. Results in Table 3 indicates that ThSM-II could get 
larger value for f + and smaller value for f − , compared with 

ThSM-I. Similar characteristics exist in the solutions of SOM5-I 

and II. Thus, if the decision makers prefer large values for 
f + or the range of f + and f − , ThSM-II and SOM5-II should be 

adopted. Otherwise, the solution methods of ThSM-I and 
SOM5-I could be used, since they hold an advantage that 
linearity is guaranteed in the solution process. 

In general, different concerns and attitudes of decision 
makers can lead to different scenarios. The results for the 
numerical example demonstrate that the twelve solution me- 
thods correspond to different scenarios. In real-world cases, 
desired scenarios and the related solution methods should be 
identified through analyzing the practical economic, social and 
political situations. Moreover, to evaluate the developed me- 
thods, the criteria or standards must be determined first. With- 
out them, the preferential order of the solution methods means 
nothing. 

4. Case Study 

A MSW management case is developed to demonstrate 
applicability of the above scenario-based solution methods. 
The study area is assumed to include three cities. An existing 
landfill and a waste-to-energy (WTE) facility are available to 
serve the waste disposal needs for the three cities. A planning 
horizon of 15 years is considered which is further divided into 
three periods with each having a time interval of 5 years. The 
cost and technical data used in this study are based on his- 
torical literature of solid waste management (Huang et al., 
1992, 1995, 1998, 2001; Cheng et al., 2009; Liu et al., 2009; 
Cao et al., 2010b). Table 4 shows the waste generation rates in 
the three cities, the operation costs of the two facilities, and 
the transportation costs for shipping waste flows between the 
cities and the facilities in the three periods. The capacities of  

Table 2. Results of Step 1 or 2 

Solution method 
1x±  2x±  3x±  f ±  

ThSM-I and II [1.56, 2.18] 1.22 [2.66, 4.18] [5.51, 11.55] 
SOM2-I and II [1.86, 1.91] [0.98, 1.36] 3.33 [6.96, 9.61] 
SOM3-I and II [1.87, 1.89] [0.98, 1.37] 3.35 [6.98, 9.59] 
SOM4-I and II [1.63, 2.17] 1.09 [2.66, 3.77] [5.83, 10.9] 
Mid-value 1.88 1.17 3.34 8.31 
SOM5-I and II [1.59, 2.17] 1.17 [2.66, 4] [5.65, 11.25] 
SOM6-I and II [1.87, 1.9] [0.98, 1.36] 3.34 [6.97, 9.6] 
 
Table 3. Solutions for the Numerical Example 

Solution method 
1x±  2x±  3x±  f ±  

1 2 3( , , )q q q  

ThSM-I [1.61, 2.13] 1.22 [2.78, 4.06] [5.804, 11.2] (0.84, 0, 0.84) 
ThSM-II [1.63, 2.11] 1.22 [2.73, 4.11] [5.769, 11.242] (0.77, 0, 0.91) 
SOM2-I and II [1.86, 1.91] [0.98, 1.36] 3.33 [6.96, 9.61] -- 
SOM3-I and II [1.87, 1.89] [0.98, 1.37] 3.35 [6.98, 9.59] -- 
SOM4-I and II [1.63, 2.17] 1.09 [2.66, 3.77] [5.83, 10.9] -- 
SOM5-I [1.76, 2] 1.17 [3.06, 3.6] [6.589, 10.11] (0.41, 0, 0.41) 
SOM5-II [1.59, 2.17] 1.17 [3.14, 3.52] [6.369, 10.374] (1, 0, 0.28) 
SOM6-I and II [1.87, 1.9] [0.98, 1.36] 3.34 [6.97, 9.6] -- 
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Table 4. Waste Generation, Transportation, and Facility- 
Operation Costs 

Time period 
 k = 1 k = 2 k = 3 

Waste generation rate, jkWG±  (t/d): 

City 1 [200,250] [225,275] [250,300] 
City 2 [350,400] [375,425] [400,450] 
City 3 [275,325] [300,350] [325,375] 

Cost of transportation to landfill, 1 jkTR±  ($/t): 

City 1 [12.1,16.1] [13.3,17.7] [14.6,19.5] 
City 2 [10.5,14.0] [11.6,15.4] [12.8,16.9] 
City 3 [12.7,17.0] [14.0,18.7] [15.4,20.6] 
WTE [9,11] [11,13] [13,15] 

Cost of transportation to WTE facility, 2 jkTR±  ($/t): 

City 1 [9.60,12.8] [10.6,14.1] [11.7,15.5] 
City 2 [10.1,13.4] [11.1,14.7] [2.20,16.2] 
City 3 [8.80,11.7] [9.70,12.8] [10.6,14.0] 

Operation costs, ikOP±  ($/t): 

Landfill [30,45] [40,60] [50,80] 
WTE [55,75] [60,85] [65,95] 

 
the landfill and WTE are [3.5, 4] 610× t and [600, 700] t/d, res- 
pectively. The WTE facility generates residues of approxi- 
mately 30% (on a mass basis) of the incoming waste flow. The 
benefit of WTE is approximately [15, 25] $/t combusted 
(Huang, 1994, 1998). 

The problem under consideration is how to effectively 
allocate the waste flows under a number of environmental and 
waste disposal constraints in order to minimize the total system 
cost. An ILP model can thus be formulated. The decision va- 
riables represent waste flows from city j to waste disposal fa- 
cility i in period k, denoted as ijkx .The objective is to achieve 
minimum system costs through effectively allocating the waste 
flows from the three cities to the two waste disposal facilities, 
and the constraints involve the relationships between the deci- 
sion variables and the waste generation/treatment conditions. 
Model (16) presents the formulated ILP model (Huang et al., 
1992, 1995, 2001; Liu et al., 2009; Cao et al., 2010b; Xu et al., 
2010): 

( ) ( )
3 3 2

2
1 1 1

Min 1825 { [

]}

ijk ijk ik jk k ik
j k i

k

f x TR OP x FE FT OP

RE

± ± ± ± ± ± ±

= = =

±

= + + +

−

∑∑ ∑

 
(16a) 

subject to 

( )
3 3

2
1 1

1825 ijk jk
j k

x x FE TL± ± ± ±

= =

+ ≤∑∑
 

(16b) 

(Landfill capacity constraint) 
3

2
1

,jk
j

x k± ±

=

≤ ΤΕ ∀∑  (16c) 

(WTE facility capacity constraint) 

2

1
, ,ijk jk

i
x WG j k± ±

=

= ∀∑  (16d) 

(Waste disposal demand constraint) 

0, , ,ijkx i j k± ≥ ∀
 

(16e) 

(Non-negativity constraint) 

where 
FE      residue flow from the WTE facility to the landfill 

(% of incoming mass to WTE facility); 
kFT ±     transportation costs of waste flow from the WTE 

facility to the landfill in period k ($/t); 
ikOP±     operating costs of facility i in period k ($/t); 
kRE ±     revenue from the WTE facility in period k ($/t);  
±ΤΕ     maximum capacity of the WTE facility (t/d); 

TL±      capacity of the landfill (t); 
ijkTR±     transportation costs from city j to facility i during 

period k ($/t); 
jkWG±    waste generation rate in city j to facility i during 

period k (t/d); 
ijkx±      waste flow rate from city j to facility i in period k 

(t/d), i = 1, 2; j = 1, 2, 3; k = 1, 2, 3; 
I       index for facility (i=1 for the landfill, and i = 2 for 

the WTE facility); 
J       index for the three cities (j = 1, 2, 3); 
K      index for the time period (k = 1, 2, 3). 
 

The overall system cost includes two parts. One part is 
the transportation cost of waste delivered to the landfill and 
WTE facility. The second part is the operation costs of the 
landfill and WTE facility. As for the WTE facility, its revenue 
should be subtracted, as shown in formula (16a). Constraint 
(16b) indicates that the total waste flow delivered to the land- 
fill should be less than its capacity. The capacity constraint for 
the WTE is shown in (16c). The amount of disposed waste 
should be equal to that of the generated waste as shown in 
constraint (16d). The (16e) is non-negativity constraint which 
means that the waste flow from city j to disposal facility i in 
period k must be non-negative. 

5. Results Analysis 

Table 5 presents solutions based on the proposed solution 
methods. It indicates that no solution can be obtained through 
ThSM-I, ThSM-II, SOM5-I, or SOM5-II. ThSM-I and II stand 
for the scenarios that decision makers hold an aggressive attitude 

on objective and are optimistic in constraints, as shown in 
Table 1. The submodel corresponding the lower-bound system 
cost ( f − ) and the upper-bound facility-capacity ( b+ ) is solved 

first, and the values for the lower-bound waste flow ( ijkx− ) can 
be obtained. Then the submodel corresponding the upper-bound 

system cost ( f + ) could be formulated, where the lower-bound 

facility-capacity ( b− ) is adopted in constraints, values for the 
lower-bound waste flow ( ijkx− ) obtained in the first submodel 
are incorporated as new constraints. As a result, the feasible 
region of the second submodel becomes an empty set, and no 
solution can be obtained. Since the decision makers are agg- 
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ressive and optimistic in the constraints when pursuing the 
lowest system cost, no values for the upper-bound waste flow 
( ijkx+ ) can be obtained. In other words, the aggressive and op- 
timistic attitude of the decision makers may result in no solu- 
tions for the upper-bound system cost. 

As for SOM5-I and II, the submodel formulated with mid- 
value coefficients should be solved first. Take the landfill as 
an example. The constraint of landfill capacity is always bound 

due to its low operation cost. In the solutions of the first sub- 
model, the sum of all the waste flows [i.e. 1( )jk mx ] delivered to 
the landfill is equal to 3.75 610× t (the mid-values of the 
landfill capacity). When solving for the upper-bound system 
cost, the upper bounds of all waste flows ( 1 jkx+ ) delivered to 
the landfill should be obtained. In this submodel, the sum of 

1 jkx+ is required to be less than 3.5 610× t (the lower-bound 
landfill capacity). Obviously, values of 1 jkx+  are no less than 
those of 1( )jk mx , which means that the sum of 1 jkx+  would be 
no less than 3.75 610× t. Thus, the sum of 1 jkx+  is required to 
be no less than 3.75 610× t and no more than 3.5 610× t, re- 
sulting in no solution for submodel with the upper-bound 
system cost. Basically, the result of no solution is due to the 
optimistic attitude of the decision makers. The upper-bound 
landfill capacity is used when solving the submodel of the 
lower-bound system cost since decision makers desire the low- 
est system cost. If they are not so optimistic, then with the 
3.5 610× t landfill capacity when solving for f − and 4× 610 t 
landfill capacity when solving for f + , the case of in- 
feasibility may be avoided. In fact, SOM6-I and II represent 
these scenarios, and interval solutions are obtained as shown 
in Table 5. 

According to all of the obtained solutions, the majority of 
the generated waste in city 2 would be transported to landfill 

during the planning horizon, because city 2 is close to the 
landfill and the operation cost of landfill is relatively low. As 
for city 3, most of the generated waste in the planning periods 
would be shipped to the WTE facility according to results 
obtained through SOM3-I and II, SOM4-I and II, and SOM6-I 
and II. However, solutions of SOM2-I and II indicate that 
most of the generated waste should be delivered to the landfill 
in period 1 and to the WTE facility in periods 2 and 3. The 
allocation of waste generated in city 1 varied according to the 
solutions obtained through different methods. Results of SOM2- 

I and II show that the waste flows should be delivered to the 
landfill in period 1 and to the WTE facility in periods 2 and 3. 
According to solutions of SOM3-I and II and SOM6-I and II, 
the waste flows would be shipped to the landfill in periods 1 
and 2, and to the WTE facility in period 3. In addition, so- 
lutions of SOM4-I and II suggest that most of the waste flows 
would be transported to the WTE facility. Since the operation 
cost of WTE is higher than that of landfill, the total system 
costs from SOM4-I and II are the highest among the solutions 
from the developed solution methods. 

Values obtained for f − obey the following order: SOM2- I 
and II < SOM6-I and II < SOM3-I and II < SOM4-I and II, as 
presented in Figure 2. If achieving the lowest system cost is 
the most important consideration for the decision makers, 
SOM2-I and II should be adopted. However, Figure 2 also 
shows that the upper-bound system costs from SOM2-I and II 
are higher than those from SOM6-I and II and SOM3-I and II. 
Since the overall system cost could fluctuate within its lower 
and upper bounds, it is possible that the total costs take values 
of the upper bounds. In other words, when results of SOM2-I 
and II are used in the MSW management problem, it may 
achieve the lowest system cost. However, this also implies 
risks of attaining the value of f + (obtained from SOM2-I and  

Table 5. Solutions Obtained Through ThSM-I to SOM6-II 

Waste flow SOM2-I and II SOM3-I and II SOM4-I and II SOM6-I and II 
111x ±  [200, 250] [200, 250] 14.73 [200, 250] 
112x ±  [0, 23.53] [225, 275] 25 [225, 274.27] 
113x ±  0 0 75 0 
121x ±  [350, 400] [350, 400] [350, 400] [350, 400] 
122x ±  [375, 425] [375, 425] [375, 425] [375, 425] 
123x ±  [400, 425] [400, 431.12] [400, 450] [400, 425] 
131x ±  257.58 0 0 6.850 
132x ±  0 0 0 0 
133x ±  0 0 0 0 
211x ±  0 0 [185.27, 235.27] 0 
212x ±  [225, 251.47] 0 [200, 250] [0, 0.73] 
213x ±  [250, 300] [250, 300] [175, 225] [250, 300] 
221x ±  0 0 0 0 
222x ±  0 0 0 0 
223x ±  [0, 25] [0, 18.88] 0 [0, 25] 
231x ±  [17.42, 67.42] [275, 325] [275, 325] [268.15, 318.15] 
232x ±  [300, 350] [300, 350] [300, 350] [300, 350] 
233x ±  [325, 375] [325, 375] [325, 375] [325, 375] 

($)f ±  [295754973.2, 495914982.1] [296895562.5, 495074401.8] [307621562.5, 508769062.5] [296673062.5, 495091321.4]

Note: ThSM-I and II as well as SOM5-I and II have no solutions 
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Figure 2. System cost obtained through the developed 
methods. 
 

II) which is higher than that from SOM6-I and II, SOM3-I 
and II. 

SOM4-I and II represent relatively conservative and pe- 
ssimistic scenarios. Figure 2 shows that the lower and upper 
bounds of system costs obtained through SOM4-I and II are 
of the highest values. This is because the submodel corres- 
ponding to f + is solved firstly, and in this submodel the 
lower-bound facility capacities are adopted. Take the capacity 
constraint for WTE as an example. The sum of 2 jkx+ is re- 
quired to be no more than 600 t/d in the first submodel. The 
sum of 2 jkx− must be no more than that of 2 jkx+ , and thus the sum 
of 2 jkx− would be absolutely lower than 600 t/d. Meanwhile, in 
the second submodel which is corresponding to f − and ijkx− , the 
sum of 2 jkx− is required to be no more than 700 t/d (upper-bound 

WTE capacity). The WTE-capacity constraint in the second 
submodel could be not bound. It indicates that the WTE facility 
may be keep idle when the waste generation rates are relatively 
low. In real-world cases, when SOM4-I and II are applied, it is 
possible that the waste disposal facilities are not operated with 
full loads. However, it could assure that all generated waste be 

disposed even when the waste generation rates of the 3 cities 
reach their upper bounds. In this sense, system reliability under 
this scenario is high. Also the total system cost is rather higher 
than those from the other solution methods.  

Similarly, SOM6-I and II represent that the decision makers 

hold pessimistic attitude toward the constraints, being similar 
to SOM2-I and II and SOM4-I and II. The decision makers may 
show aggressive, neutral and conservative attitudes to the ob- 
jecttive in SOM6-I and II, SOM2-I and II, and SOM4-I and II, 
respectively. As a result, the values of f − and z f + in SOM6-I 

and II are between those of SOM2-I and II and those of 
SOM4-I and II. As for scenarios with optimistic attitudes of 
the constraints (i.e. SOM1-I and II, SOM3-I and II, and SOM5-I 

and II), only SOM3-I and II have feasible solutions, since the 
attitudes toward the objective represented in SOM1- I and II, 
SOM3-I and II, and SOM5-I and II are aggressive, conserva- 
tive, and neutral, respectively.  

The solutions under different scenarios can be used for 
helping decision makers to indentify desired management sche- 
mes. When the planning aims towards a lower system cost, 
results of SOM2-I and II can be used to generate desired ma- 
nagement schemes. When the waste disposal requirement is 

considered as the most important target, SOM4-I and II may 
be expedient although the corresponding system cost would be 
high. In other words, when the decision makers choose aggre- 
ssive and optimistic solution methods, low system cost may 
be obtained but with high system-failure risk (e.g. the waste 
disposal requirement may not be adequately met). Planning 
with a high system cost, on the other hand, could guarantee 
high system reliability. Therefore, these solutions could reflect 
tradeoffs between total cost and system reliability. The econo- 
mic, social and political preferences could be incorporated 
when decision makers finalize a desired management strategy. 

6. Discussions 

Through the twelve solution methods, feasible ranges for 
decision variables have been obtained. The decision makers 
could choose the scenario that best fits the practical situations. 
The feasible schemes generated could be potentially adjusted 
through incorporation of implicit knowledge of decision makers, 

stakeholders, and particular economic, social and culture con- 
ditions. Moreover, post optimimality techniques like multi- 
criteria decision analysis (MCDA) could be used to help the 
decision makers to indentify the final scheme. MCDA is a 
technique for making preference decisions (e.g., evaluation, 
prioritisation and selection) on available alternatives in terms 
of multiple, usually conflicting, criteria (Zhang et al., 2004; 
Zhang et al., 2008, 2010). A combination of the developed 
scenario-based solution methods with MCDA could integrate 
unquantifiable knowledge (e.g. special social customs, and 
past experiences) into the decision process.  

The assumption that the product ( ij ja x± ± ) obeys specific 
probability distributions as mentioned in the first section should 

be met when the developed solution methods are adopted to 
solve ILP models. Different solution methods correspond to 
different scenarios which reflect different concerns and atti- 
tudes of the decision makers; however all the developed app- 
roaches are based on the aforementioned assumptions. If the 
assumed probability distributions cannot be satisfied, it is then 
risky to apply the developed methods. Investigation of the above 

issues in detail is important for making the modeling result 
applicable. Further studies can be focused on these subjects. 

7. Conclusions 

In this study, twelve methods corresponding to different 
system-condition scenarios have been developed for solving 
interval linear programming (ILP) problems. The scenarios 
correspond on different attitudes of decision makers to the 
study system. In detail, variations in concerns on objective fun- 
ction values (aggressive, conservative, or neutral), the attitude 
to the constraints (optimistic or pessimistic), and the preferred 
types of constricting ratios (consistent or varied) lead to a total 
of twelve scenarios. Consequently, twelve solution methods 
representing these scenarios have been developed. A numerical 

example has been presented to demonstrate applicability of the 
developed methods. Interval solutions have been obtained under 

each scenario. Compared with the previous studies, more infor- 
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mation and options could be provided to the decision makers.  
The developed methods have also been applied to a munici- 

pal solid waste management problem. The inherent mechanism 
(i.e. tradeoffs between system cost and system-failure risk) of 
the study system could be reflected through the obtained 
solutions under multiple scenarios. As a result, decision makers 
could understand the study system comprehensively and identi- 

fy a desired scenario which is suitable to the practical situations. 
Moreover, a number of feasible schemes could be generated 
under each scenario which allows decision makers to further 
adjust the obtained solutions and indentify a desired one through 

incorporation of their experiences, economic situations, social 
and cultural conditions. In addition, the possibility of infea- 
sible solutions has been greatly reduced with the considera- 
tion of twelve scenarios instead of one.  

The accuracy and flexibility of the decision-making process 

could be enhanced since more information and schemes have 
been provided. The developed methods are also useful for 
dealing with other planning problems that can be formulated 
as ILP models. Integration of post optimality techniques into 
the scenario-based solution methods would be a subject for 
further studies. 
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