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ABSTRACT.  Predictive modeling is an important tool for identifying areas for conservation prioritization. But the reliability of any 
model depends on how well its predictions can be generalized beyond the area surveyed. Recent work points to the potential for 
enhancing predictive power by incorporating such spatial processes as autocorrelation or the influence of location, so this study 
addressed two questions: (1) what affect does model complexity, spatial autocorrelation and spatial location have on model accuracy? 
(2) how generalizable are different methods when applied to new geographic test regions? On average, predictive power declined 
22.7% ± 2.7% SE when models were used to predict occurrences in “unsampled” geographic test regions. Overall variability in 
performance depended on the method used. AUTO and GAM models tended to be amongst the least variable, but results depended 
upon species. Our results suggest that models with complex functional relationships between the response and predictor variables (such 
as GAMs fit with up to 5 knots) tended to either improve accuracy, or perform more consistently across species, but not both at the 
same time. In general, it is very difficult to accurately extrapolate model predictions into unsampled geographic areas. However, we 
found that habitat specialists such as the Sedge Wren were consistently well predicted, regardless of method, and that autocorrelated 
regression (using a Gibbs sampler and simulation of presence/absence) could be more reliably generalized for species showing strong 
social structure (e.g., patchiness). GWR was especially sensitive to the plots used to train the model. 
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1. Introduction  

An important consideration in assessing the accuracy and 
reliability of any predictive model is the generalizability of its 
predictions across a range of novel conditions. One way to 
assess this is to use a completely new set of independent data 
(Fielding and Bell, 1997; Justice et al., 1999), but as pointed 
out by Vaughan and Ormerod (2005), such test data may be 
logistically unfeasible to gather, or impossible in the case of 
retrospective analyses (Araujo and Guisan, 2006). Plus, proper 
test data must be representative and of sufficient sample size 
(Vaughan and Ormerod, 2005). In these situations one solution 
is to use resampling methods (Verbyla and Litvaitis, 1989; Vau- 

ghan and Ormerod, 2005). Regardless of the origin of the test 
data (newly gathered vs. resampled from the same data set) we 
must bear in mind that all accuracy assessments are provi- 
sional tests of natural systems which are likely to be in an 
open and non-equilibrial state (Oreskes et al., 1994; Justice et 
al., 1999).  

Generalizability has often been assessed through the use 
of training data cross-validated by a randomly-selected set of 
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test points (Randin et al., 2006). But as pointed out by 
Fielding and Haworth (1995), true predictive generality stems 
from models which are capable of extrapolating beyond the 
geographic range used to train the model, something that is 
rarely ever assessed (Guisan et al., 2006; Randin et al., 2006). 
This is a much stricter and potentially more informative test 
of generalizability than other kinds of validation, as biases in 
the model may only surface when attempts are made to apply 
the model beyond the area or years used to train the model 
(Vaughan and Ormerod, 2003).  

Spatial predictive modelling is a key component of many 
research and applied conservation programs, where the output 
is often a series of maps showing preferred habitat or priority 
areas for species of interest. Given the geographic nature of 
the problem (‘where is the species most abundant?’) it should 
be unsurprising that a number of recent papers have drawn 
attention to the way that complicated spatial processes can 
interact to influence species distribution (Lieske and Bender, 
2009; Kissling and Carl, 2008; Diniz-Filho, 2008). For example, 
in a survey by Dormann (2007) the importance of the presence 
(or abundance) of neighbouring locations in determining presen- 

ce at any given location was highlighted, illustrating the wide- 
spread importance of spatial autocorrelation (Legendre, 1993). 
In addition to autocorrelation, model relationships do not nece- 
ssarily remain constant over the entire region, a phenomenon 
known as non-stationarity (Foody, 2004; Fortin and Dale, 2005; 
Jetz et al., 2005). When location is important, we expect global 
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models to mask potentially important and informative local 
variations in response (Fotheringham et al., 2002). 

Our study presents the novel application of a new model 
validation method, which we call ‘geographic cross validation’, 
to perform a comparative assessment of the predictive accuracy 
and generalizability of a suite of important species distribution 
modeling methods. This is the first time these methods have 
been evaluated and compared in this way. Through the use of 
a set of covariates for land cover, climate, and elevation – as 
well as information about spatial structure – we produced a 
series of predictive models. We postulated that spacing beha- 
viour (spatial autocorrelation) might exert a measurable effect 
at the finest scales of this study and expected that incorporat- 
ing this additional information – in the form of a spatial auto- 
logistic regression model (AUTO) – might improve predictive 
accuracy. Furthermore, given the large geographical area of 
this study it is possible that local-scale adaptation could bring 
about geographically-distinct species responses. Under these 
circumstances we would expect geographically-weighted regre- 

ssion (GWR) potentially well-suited to capture this variability 
and improve predictive accuracy. More generally, and given 
the concern that complex models are more vulnerable to over- 
fitting the data at hand (Harrell et al., 1996; Justice et al., 
1999; Fielding, 2002; Randin et al., 2006), we also assessed 
the overall impact of model complexity. 
 

2. Methods 

2.1. Geographic Cross Validation 
This method requires the geographic partitioning of the 

study area into sub regions, which we suggest is most relevant 
for large study areas likely to encompass sufficient geographic 
variation to warrant this approach. In this study, eight geogra- 
phic sub-regions were used, each of which was approximately 
evenly sampled (Figure 1). We then performed an 8-fold 
cross-validation, with each single sub-unit being successively 
reserved to test the predictive accuracy of models generated 
using the data from the remaining seven regions (the training 
set). As all model predictions were probabilities of occurrence 
at individual locations, this introduced a threshold dependency 
in deciding the cutoff point for determining whether test points 

should be expected to contain an occurrence for that species 
(Fielding and Bell, 1997). Predictive accuracy, therefore, was 
assessed using the area under the receiver operating characteris- 

tic curve (ROC curve, Zweig and Campbell, 1993; Fielding 
and Bell, 1997), which avoids the threshold problem by integrat- 

ing across all combinations of possible thresholds. 
The area under the curve (AUC) of the ROC curve repre- 

sents the proportion of cases in which the model predictions 
are consistent with the observed test points (where model pre- 
dictions are higher for presence points than absence points), 
with a value of 0.50 indicating a model no more capable of 
predicting occurrence/absence than random chance. As pointed 
out by Elith et al. (2006), values less than 0.50 indicate models 
which actually perform poorer than random prediction. The 
AUC of the ROC curve is especially suitable when the main 

goal (as in our study) is to assess the ability of model predict- 
tions to be used to rank the relative importance of landscape 
units (Pearce and Ferrier, 2000; Pearce et al., 2001). 
 

 
Figure 1. Delineation of the boreal-hardwood transition zone 
(shaded area), which encompasses portions of Southern 
Manitoba, Ontario and Quebec as well as Northern Minnesota, 
Wisconsin, and Michigan (approx. 618,000 km2). Also 
indicated are the 56 Breeding Bird Survey routes used in the 
study (black dots), as well as the geographic test regions 
(dotted lines, numbered one through eight). 
 
2.2. Study Area and Land Cover Information 

The 618,000 km2 study region (Figure 1) constitutes a 
transition zone between mixed hardwood and boreal forest, 
and is heavily influenced by the presence of the Great Lakes 
(Ontario Partners, 2006). The forest communities of this region 
represent a heterogeneous mix of oaks, maples, birch and pines 
in the southern portions of the region, shifting to coniferous 
species in the more northern, boreal portions (Ontario Partners, 
2006). 

The Moderate Resolution Imaging Spectroradiometer 
(MODIS) of the NASA Earth Orbiting System (Friedl et al., 
2002; Huete et al., 2002) provided an index of vegetation 
greenness (the Enhanced Vegetation Index, or EVI) as well as 
a supervised land cover classification image. Preliminary ana- 
lysis suggested that an average EVI based on a 3 km × 3 km 
neighbourhood (EVIMEAN) was a better predictor than the 
local EVI value (Lieske and Bender, 2009). An additional 
advantage to using this neighbourhood-based approach was 
that it allowed us to calculate an index of coarse-scale habitat 
heterogeneity, approximated by the standard deviation of EVI 
values in the 3 × 3 window (EVISD). Due to the rarity of many 
land cover classes, categories were regrouped, and only the 
major ones retained for model building (at 1-km resolution): 
conifer-dominated forest (CONIFER), cropland/vegetation mo- 

saic (CROPVEG), deciduous-dominated forest (DECID), and 
mixed (conifer-deciduous) forest (MIXEDF). These four land 
cover classes were combined with a default class (OTHER) to 
produce a dummy-coded omnibus variable (LANDCOV). Cli- 
matic measurements were obtained from the global climate 
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data of Mitchell and Jones (2005), for the years 1997 to 2002. 
Considerations of multicollinearity forced us to retain only 
three of the variables in that dataset (Lieske and Bender, 
2009): mean monthly diurnal temperature range (DTR, in �); 
total annual precipitation (PRECIP, in mm), and mean monthly 
temperature (TEMP, in �). Finally, we used a 1-km resolution 
elevation dataset obtained from the GTopo30 global digital 
elevation model of the U.S. Geological Survey’s EROS Data 
Center in Sioux Falls, South Dakota (U.S. Geological Survey, 
1996). The grid is approximately 1-km resolution, and resulted 
in the elevation variable ELEV (in m). 
 
2.3. Species Occurrence Data 

Based on Partners in Flight (PIF) ranking of conservation 
priority, we chose four species of sufficient importance to 
place them on the PIF Watch List (Rich et al., 2004): Black- 
burnian Warbler Dendroica fusca, Canada Warbler Wilsonia 
canadensis, Purple Finch Carpodacus purpureus, and Sedge 
Wren Cistothorus platensis. Additionally, we included the 
American Crow Corvus brachyrhynchos, a breeding species 
which is common and widespread throughout the study area. 
Species occurrence data was obtained from the North Ameri- 
can Breeding Bird Survey (BBS), a monitoring project initiated 
in 1966 (Robbins et al., 1986). While primarily intended to 
detect long-term trends in species abundance, individual volun- 
teer surveys consist of 50 3-min. stop point observations (0.8 
km apart) along a defined route and hence, contain valuable 
spatial information. For this study, species count data (at the 
level of the individual stop point) was reclassified as “used” 
when non-zero counts were noted across any of 7 years (from 
1997 to 2003). Precisely georeferenced stop points were availa- 
ble for only 7 routes in the study area, so we were forced to 
employ a linear referencing operation in ArcGIS (Environmental 

Systems Research Institute, 2002) to subdivide individual routes 

to obtain a larger sample of stop locations. This resulted in n 
= 56 routes (2799 stop points).  

 
2.4. Modelling Methods: Generalized Linear and Genera- 
lized Additive Models 

Global models (estimated using all locations simultane- 
ously) were estimated as either generalized linear models 
(GLMs; McCullagh and Nelder, 1999) or generalized additive 
models (GAMs; Hastie and Tibshirani, 1990), and were imple- 

mented within the freely available R Statistical Package (Ihaka 
and Gentleman, 1996). GLM models were of the following 
general form: 
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where the log-link of species occurrence was modeled as a 
combination of a y-intercept term (β0) and β1 … βp globally 
estimated coefficients for X1 … Xp covariates (see Section 2.2). 
We used two different GLM model formulations: GLM1, in 

which all relationships between species occurrences and can- 
didate predictor variables were assumed to be simple linear 
trends (1 degree of freedom), and GLM2 where unimodal 
relationships were modeled as quadratic polynomials (2 deg- 
rees of freedom). 

“Simple” GAM models (GAM1) closely mirrored the 
GLM2 models in terms of the degrees of freedom allocated to 
model relationships; while “complex” GAMs involved spline 
smoothing with up to 5 knots in order to accommodate strong- 
ly non-linear relationships (GAM2): 
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where the log-link of species occurrence was modeled as a 
combination of a y-intercept term (β0) and β1(X1) … βp(Xp) 
globally estimated smoothing functions of the X1 … Xp. cova- 
riates (see Section 2.2). We used two different GAM model 
formulations: GAM1, in which all relationships between spe- 
cies occurrences and candidate predictor variables were mo- 
deled with the same degrees of freedom as used in GLM2, 
and GAM2 where 5 degrees of freedom were allocated to all 
smoothing functions. 

As the aim of this study was to compare the accuracy and 
performance of a number of predictive models, our goal was 
to not to exhaustively explore alternative model structures but 
to objectively select a reasonable base specification for com- 
paring each of the methods. We used an all-combinations 
procedure to identify models with the lowest Akaike Informa- 
tion Criterion (AIC). This approach avoids hypothesis testing 
and makes use of information theory to identify plausible 
models while guarding against the tendency for models to 
retain variables which provide only marginal improvements in 
information content. We found the all-combinations approach 
to be a practical, robust, and objective way to produce this 
reduced set of variables, provided that we confined variable 
selection to a computationally simpler algorithm (GLM2). To 
identify this baseline model structure we fit GLM2 regre- 
ssions using all combinations of predictor variables. Another 
important advantage of this approach was that it allowed us to 
avoid the potential vagaries of stepwise model selection. For 
instance, an important criticism of stepwise model selection is 
that important combinations of variables can escape considera- 
tion due to the premature discard of key variables in earlier 
model selection steps. Interactions were not tested.  

We used the simple (but objective) rule of choosing the 
final set of predictor variables that resulted in the GLM2 
regression with the lowest AIC value, recognizing that: (1) it 
is the relative difference in AIC values that is important, not 
the absolute values, and (2) some alternative specifications of 
predictor variables resulted in models that were virtually 
indistinguishable in terms of relative AIC differences. The 
final set of predictor variables defined the base specification 
that was used to build all subsequent distribution models. In 
this way we were able to eliminate variability attributable to 
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differences in model selection procedures, and to focus on the 
head-to-head performance of each of the methods. We advise 
practitioners who are applying one of the modelling methods 
in isolation, and who have recourse to sufficient time and 
computational resources, to consider the use of bootstrapping 
to assess the relative importance of predictor variables (Harrell, 
2001) or calculate model-averaged estimates for each parameter 

(Diniz-Filho et al., 2008; Burnham and Anderson, 2002).  
 

2.5. Modelling Methods: Autologistic and Geographically- 
weighted Regression. 

Proximity (autocorrelation) was incorporated by extending 

the GLM2 model estimated above, through inclusion of a 
spatially-lagged autocovariate term (AUTO): 
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where the log-link of species occurrence was modeled as a 
combination of a y-intercept term (β0), a globally estimated 
autocorrelation term (γ), and β1 … βp globally estimated co- 
efficients for X1 … Xp covariates (see Section 2.2). The AUTO 
covariate was the product of an n × n weights matrix (W) and 
an n × 1 binary vector (y, a 1/0 dummy variable indicating 
presence or absence at neighbouring points). A simple weigh- 
ting function was applied to all points: 
 

wij =1/8, with each neighbouring presence point weighted 
equally 

= 0, otherwise  
We adopted the Markov Chain Monte Carlo Gibbs Sampler 

(as described below) of Augustin et al. (1996, 1998) to enable 
predictions to be made throughout the entire surface and not 
just at sampled locations (T = 11 iterations). Initial “presences” 
(the prior knowledge) were simulated based on the starting 
predictions obtained from the GLM2 model (Section 2.4, 
Lieske and Bender, 2009) and the autocovariate estimated in 
subsequent iterations: 

1. GLM2 (without an autocovariate) was used to produce 
the initial set of probabilities of occurrence; 

2. A random number generator, drawing from a Bernoulli 
distribution, was used to simulate presences for unsampled 
grid locations; 

3. The logistic regression was recomputed, this time with 
the autocovariate term included; 

4. The random number generator was re-applied to simu- 
late presences for unsampled grid locations; 

5. A Gibbs Sampler was applied, with unsampled points 
chosen at random (one at a time), the autocovariate re-calculated, 

the conditional probability of occurrence recomputed, and a 
new random number generator applied to that point. With ea- 
ch iteration of the Gibbs Sampler, the probabilities of occu- 
rrence at any given point were progressively updated (given the 

 

 
Figure 2. Illustration of the geographically-weighted 
regression (GWR) framework used in this study. At each 
location the response variable was modelled as a function of a 
limited set of observations (defined by the kernel radius, 
which was ¼ of the study area or about 500 km), each of 
which was differentially weighted as a continuously decaying 
function of distance from the kernel centre. 
 
conditional dependence on the neighbours), ultimately resul- 
ting in a model of the joint distribution of all grid points (Au- 
gustin et al., 1998). 

Location (non-stationarity) was modelled using the bino- 
mial GWR framework of Fotheringham et al. (2002). Using 
this approach, parameters were estimated at each sample loca- 
tion using the local neighbourhood of observations, each of 
which was differentially weighted as a continuously decaying 
function of distance from the center (Fotheringham et al., 
2002; Figure 2):  
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where β0(x, y) is a locally estimated y-intercept term, and 
β1(x, y) … βp(x, y) are locally estimated coefficients for X1 … 
Xp covariates (Section 2.2). In general, for n samples there will 
be n parameter estimates, each a function of location (Cartesian x 
and y coordinates). Due to computational demands associated 
with the use of the adaptive kernel, we used a fixed Gaussian 
radius of 1/4 of the width of the study area (about 500 km). 
We estimated these parameters using the code originally 
implemented in the R statistical language by C. Brunsdon. 

 
3. Results 

3.1. Variable Selection 
The results of the variable-selection process (based on 

all-combinations variable selection) are shown in Table 1. Mo- 
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Figure 3. Environmental characteristics of the eight sub- 
regions used to perform the geographic cross-validation. Six 
continuous environmental predictor variables were examined: 
mean enhanced vegetation index for a 3 km × 3 km spatial 
neighbourhood (EVIMEAN); standard deviation of enhanced 
vegetation indices for the same spatial neighbourhood 
(EVISD); average diurnal temperature range (DTR, in �); 
annual precipitation (PRECIP, in mm); mean monthly 
temperature (TEMP, in �); and elevation (ELEV, in m). See 
Figure 1 for the locations of each of the sub-regions. 
 
st of the variables were retained for the American Crow, Bla- 
ckburnian Warbler and Sedge Wren. In the case of the Canada 
Warbler, LANDCOV and EVI-based variables (e.g. EVIMEAN, 
EVISD) were dropped from the final model, and simpler li- 
near relationships to PRECIP and ELEV were favoured over 
higher order polynomials (PRECIP2 and ELEV2). Similarly 
for the Purple Finch, EVI-based variables were dropped, as 
was the PRECIP and higher order ELEV2 variables. LAND- 
COV was retained in the final model. 

Predictions from the species distribution models were 
used to produce predictive occurrence maps, which we illu- 
strate for each species (Figures A1 to A3). In all cases, predict- 
tions were binned into five categories (quintiles), which im- 
proved the readability of the map and simplified comparison 
of the distribution of areas most likely to be used by each 
species. Some of the impressions conveyed by the distri- 
bution maps included: patchiness in peak probability of occur- 
rence for the Blackburnian and Canada Warblers (Figure A1, 
f-j and Figure A2, a-e), and southern and westerly peaks in pro- 

 

Figure 4. Land cover characteristics of the eight sub-regions 
used to perform the geographic cross validation. Five land 
cover classes were defined: conifer-dominated forest 
(CONIFER), cropland/vegetation mosaic (CROPVEG), 
deciduous-dominated forest (DECID), and mixed (conifer- 
deciduous) forest (MIXEDF). These four land cover classes 
were combined with a default class (OTHER) to produce a 
dummy-coded omnibus variable (LANDCOV). Solid bars 
indicate the distribution of land cover classes for the entire 
study area, while grey bars indicate the distributions for 
individual regions. 
 
Table 1. Results of the All-Combinations Model Selection 
Procedure for Each of the Five Species* 

Species** Model n.p. AIC AUC
AMCR EVIMEAN + EVIMEAN2 + 

EVISD + EVISD2 + DTR + 
DTR2 + PRECIP + PRECIP2 + 
TEMP + TEMP2 + ELEV + 
LANDCOV 

16 3452.4 0.71

BLBW EVIMEAN + EVIMEAN2 + 
DTR + DTR2 + PRECIP + 
PRECIP2

15 1620.6 0.77

CAWA DTR + DTR2 + PRECIP + 
TEMP + TEMP2 + ELEV 

7 860.2 0.72

PUFI DTR + DTR2 + TEMP + 
TEMP2 + ELEV+ LANDCOV 

10 1478.1 0.70

SEWR EVIMEAN + EVIMEAN2 + 
EVISD + DTR + DTR2 + 
PRECIP + PRECIP2 + TEMP + 
TEMP2 + ELEV + ELEV2 + 
LANDCOV 

16 652.2 0.92

*Presented in the table are: the “best” model (model with the lowest AIC 
value); the numbers of parameters (n.p.); the Akaike Information 
Criterion (AIC); and the apparent predictive accuracy (AUC), which was 
estimated using the same data used to build the model.   
**AMCR = American Crow, BLBW = Blackburnian Warbler, CAWA = 
Canada Warbler, PUFI = Purple Finch, and SEWR = Sedge Wren. 
 
bability of occurrence for the American Crow (Figure A1, a-e) 

and Sedge Wren (Figure A3, a). In general, patterns in peak 
probability of occurrence were qualitatively similar acro- ss 
the gradient of model complexity, although the relative 
importance of some geographic regions appeared to decline 
for some species (e.g. the eastern half of the study area for Se- 
dge Wren, obvious from comparisons of GLM1 with GLM2, 
and GAM1 with GAM2). 
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Figure 5. Accuracy assessment based on the same 
observations used to train the models, with boxplots 
representing the median and variation in AUC values (across 
five species). The models included: non-polynomial (GLM1) 
and polynomial (GLM2) logistic regression; generalized 
additive modelling (GAM1 and GAM2); geographically- 
weighted regression (GWR); and autologistic regression 
(ALOG). 
 
3.2. Characterization of the Environmental Envelope 

Environmental conditions for the continuous predictor 
variables are indicated in Figure 3. The average value for each 
variable, for the entire study area, is indicated by a solid 
horizontal line. Odd numbered sub-regions (#1, 3, 5, 7 + 8) were 

at more northern latitudes, while most even-numbered sub-re- 
gions (#2, 4, 6) were more southerly. As the sub-regions were 
num- bered from west to east, lower sub-region numbers refer 
to locations in the west side of the study area and larger 
numbers to regions on the east side. 

With regards to EVIMEAN values, northern sub-regions 
(#1, 3, 5, 8) tended to exhibit lower than average greenness 
values compared to southern regions (#2, 4, 6). There were no 
perceptible west-east patterns. Variation in EVISD suggested 
that region # 2 (within the State of Minnesota and in the wes- 
tern side of the study area) was lower (more homogeneous) 
than average while region # 7 (within the Ottawa region) was 
higher than average. Diurnal temperature range (DTR) appeared 

most extreme for the central regions of the study area (#3, 4, 
5), particularly those in the vicinity of Lake Superior and La- 
ke Michigan. Average annual precipitation (PRECIP) showed 
a strong west-east gradient, with eastern portions of the study 
area receiving substantially more precipitation than those in 
the west. Not unexpectedly, average monthly temperature 
(TEMP) exhibited a strong latitudinal gradient, with sou- 
thern-most regions (#2, 4, 6) experiencing higher than average 
temperatures for the entire study area. The northern-most re- 
gion (#8) was subjected to the lowest average monthly tem- 
peratures of all. With respect to elevation, differences in 
median elevation were less dramatic than variation in the ran- 

 

 
Figure 6. Predictive accuracy (AUC, based on the area under 
the receiver operating characteristic curve) for: non- 
polynomial (GLM1) and polynomial (GLM2) logistic 
regression; generalized additive modelling (GAM1 and 
GAM2); geographically-weighted regression (GWR); and 
autologistic regression (ALOG). Boxplots represent the 
median and distribution of AUC values for 8 iterations of 
geographic cross validation across five different species. 
 
ge of values, which was greatest for regions in the eastern 
portion of the study area (#7 and 8). Clearly, regions #7 and 8 
has more variable topography than the others. 

Based on the overall distribution of land cover classes 
(Figure 4), the region was best described as predominantly 
mixed wood forest. Pixels classified as pure deciduous forest 
were rare. The relative differences in abundance of each class 
varied depending upon geographic sub region. The southern 
regions (#2, 4, and 6) consisted of large quantities of cropland, 
compared to the two north-western regions (#1 and 3) which 
had more conifer forest.  
 
3.3. Assessment of Model Accuracy 

Testing accuracy on the basis of the same points used to 
train the model conveys an optimistic picture of model predi- 
ctive power (Figure 5). The use of more complex (non-linear) 
functional responses (GLM2 and GAM2) resulted in higher 
median predictive accuracies than simple linear ones (GLM1 
and GAM1). Incorporating the effects of location (GWR) and 
proximity (ALOG) resulted in even greater improvements. 
Median accuracy for GWR and AUTO (across species) excee- 
ded 0.85. Clearly, the results of this analysis show that spa- 
tially-explicit models have the potential to be substantially 
more accurate than non-spatially explicit models. But this 
apparent gain in predictive power came at a cost: while more 
accurate overall, the interquartile ranges of the spatially- 
explicit models was considerably wider, suggesting that there 
was greater variability in model performance. Occurrences for 
some species were predicted more accurately than for others. 
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Figure 7. Dendrogram (based on cluster analysis) grouping 
methods on the basis of their performance under geographic 
cross-validation. 
 
Of note was the lone outlier defining the uppermost limit of 
accuracy for the non-spatially explicit models; this point was 
the Sedge Wren, a species predicted consistently well (> 0.80) 
regardless of the method used. 

Geographic cross-validation provided a very rigorous test 
of predictive power and contrasted with the previous results 
(Figure 6). Immediately noteworthy was a substantial decline 
in predictive accuracy for all methods (indicated by the me- 
dians of the accuracy boxplots falling below the horizontal 
0.70 cutoff value). Model performance was compared using a 
hierarchical cluster analysis, and the resulting dendrogram 
(Figure 7) indicated that the spatially-explicit models formed 
a separate branch distinct from the non-spatially explicit 
GAMs as well as GLM2. Curiously, AUTO performed more 
similarly to the simple linear regression (GLM1) than to any 
of the other methods. GWR and GAM2 formed solitary leaves. 
GLM2 and GAM1 formed a distinct group. Overall variation 
in accuracy values was much greater when geographical cross 
validation was used (indicated by the wider interquartile 
ranges). For instance, interquartile range for GLM1 was 3.1% 
based on the optimistic assessment, but 28.4% for the geogra- 
phic cross-validation. Not only were predictions from all me- 
thods less accurate when extrapolated geographically, but 
they varied to a large degree depending on sub-region. 

In terms of general performance, region-specific com- 
parisons (Figure 8) indicated that sub-region #1 tended to 
confound all models. Presences in sub-region #8 tended to be 
predicted more accurately than the others. In terms of model- 
specific performance, GLM1 models showed a linear trend in 
predictive accuracy that paralleled the east-west precipitation 
gradient of Figure 3. GLM2 and GAM1 models showed very 
similar patterns of accuracy across sub-regions, re-iterating 
the clustering results of the dendrogram (Figure 7). Clearly 
there were no substantive differences between GLM and GAM 
models when the structure (set of predictor variables) and com- 
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Figure 8. Geographically cross-validated accuracies for each 
of the models used in this study. For each model, average 
predictive accuracy is indicated by a solid horizontal line, 
while the upper and lower 95% percentiles are represented by 
hatched horizontal lines. 
 
plexity (i.e., degrees of the freedom) of the models were the 
same. GAM2 models were different from the others, show- 
ing fairly consistent performance excepting the very poor fit 
for one species in sub-region #8. This was indicated by the 
prominently asymmetric distribution and a very low lower 
whisker. GWR models showed promise for sub-regions 1 
through 4, exhibiting relatively consistent performance across 
species, but predictions became increasingly unreliable for 
sub-regions 5 and 6. The GWR model was unable to produce 
predictions for sub-regions 7 and 8. Finally, AUTO models 
were the most consistent performer across sub-regions, as 
indicated by the narrower range in confidence intervals. But 
AUTO models struggled at either of the east-west extremes of 
the study area, producing less accurate predictions for the 
sub-regions and an overall “bowed” shape in performance. 
 
3.4. Species-Specific Results 

To better understand the differences in model performan- 
ce under the regime of geographic cross-validation we teased 
apart performance by species (Figure 9). For the American 
Crow overall accuracy was highest for method AUTO. Region- 
by-region variability was also considerably lower for ALOG 
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Figure 9. Results of the species-specific geographic cross- 
validations, summarized by method. Species included:  
American Crow (AMCR); Blackburnian Warbler (BLBW); 
Canada Warbler (CAWA); Purple Finch (PUFI); and Sedge 
Wren (SEWR). Modelling methods included: non-polynomial 
logistic regression (LOG); polynomial logistic regression 
(LOGPOLY); generalized additive modelling (GAM); 
geographically-weighted regression (GWR); and autologistic 
regression (ALOG). Boxplots represent the median and 
distribution of AUC values for 8 iterations of geographic cross 
validation. 
 
models of the Purple Finch and Sedge Wren. GWR didn’t 
appear to enhance predictive accuracy for any particular 
species. GLM2 and GAM1 performed similarly regardless of 
species. The simplest model of all, GLM1 – which assumed 
only linear relationships – lead to higher median accuracies 
for some species, but with much less consistency in perfor- 
mance. 

4. Discussion 

4.1. The Effect of Model Complexity, Spatial Autocorre- 
lation and Spatial Location 

The results of the geographic cross-validation demonstra- 
ted that in some cases the linear GLM1 model could produce 
median levels of accuracy comparable to more complex mo- 
dels. But this came at the price of greater inconsistency across 
sub-regions. On the basis of optimistic accuracy assessments 

Figure A1. Predictive species occurrence maps for the 
American Crow (left column, a-e) and the Blackburnian 
Warbler (right column, f-j). Maps in the first row (a and f) 
were derived from non-polynomial GLM1 models. The 
second row (b and g) was derived from polynomial GLM2 
models, the third row (c and h) from GAM1 models, the 
fourth row (d and i) from GAM2 models, and the fifth row (e 
and j) from GWR models. To assist the visualisation, the 
prediction surfaces were obtained by applying an inverse- 
distance weighting smoother to quintile (1 through 5) 
rankings of the raw probabilities of occurrence. 
 
(Figure 5) predictive accuracy is potentially higher for GAM 
and spatially-explicit (GWR and ALOG) models, but this 
depends on the use to which those predictions are to be put. 
When sampling is uniform and comprehensive for the region 
of interest, and predictions are desired for points within that 
sampling frame, GAMs, GWR and ALOG methods can be 
expected to yield improved accuracy. However, when the goal 
is to extrapolate into poorly- or non-sampled sub regions, 
overall accuracy could actually be lower and more variable. 

 
4.2. Geographic Generalizability  

When exposed to a regime of geographic cross-validation 
there was an overall average decline in predictive accuracy of 
22.7% ± 2.7% SE (compare Figures 5 and 6), which was 
similar to the findings of Menke et al. (2009) who applied a 
geographic test to Californian occurrences of the Argentine 
ant. Of all the methods we examined GWR appeared to be the 
most sensitive to the geographic locations used to calibrate the 
model, as it resulted in the lowest overall accuracy and gave 
the widest range in performance. Curvilinear models (GAM2,  
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Figure A2. Predictive species occurrence maps for the 
Canada Warbler (left column, a-e) and the Purple Finch (right 
column, f-j). Maps in the first row (a and f) were derived from 
non-polynomial GLM1 models. The second row (b and g) 
was derived from polynomial GLM2 models, the third row (c 
and h) from GAM1 models, the fourth row (d and i) from 
GAM2 models, and the fifth row (e and j) from GWR models. 
To assist the visualisation, the prediction surfaces were 
obtained by applying an inverse-distance weighting smoother 
to quintile (1 through 5) rankings of the raw probabilities of 
occurrence. 
 
GAM1) seemed an improvement over simple linear ones 
(GLM1), in terms of having higher overall accuracy and exhi- 
biting less variability across species, but this didn’t seem to 
apply to GAM2 models. In this case, our results suggested 
that having more complex functional relationships between 
the response and predictor variables (GAMs with up to 5 
knots) tended to be either more accurate, or to perform more 
consistently across species, but not both at the same time. 

 
5. Conclusions 

In general, it is very difficult to accurately extrapolate 
model predictions into unsampled geographic regions. All 
methods examined in this study experienced substantial declines 

in predictive power when this was attempted. But our results 
suggest some strategies that may help improve the generaliza- 
bility of predictive models: 

It is better to concentrate on modeling the dominant pre- 
dictor variables, especially those where the species response  

 

 
Figure A3. Predictive species occurrence maps for the Sedge 
Wren. The maps in rows a through e were derived from the 
following models: non-polynomial GLM1, polynomial GLM2, 
GAM1, GAM2, and GWR. To assist the visualisation, the 
prediction surfaces were obtained by applying an inverse- 
distance weighting smoother to quintile (1 through 5) 
rankings of the raw probabilities of occurrence. 
 
“signal” is strong and relatively simple in form (linear or 
curvilinear). The use of more complex functional relationships, 
such as with GAM2 models (fit with up to 5 knots) tended to 
either improve accuracy or perform more consistently across 
species, but not both at the same time. As with Pearce et al. 
(2001) and Segurado and Araujo (2004), we found our habitat 
specialist (Sedge Wren) tended to produce accurate models 
regardless of method. 

Spatial autoregressive approaches are particularly effective 

for species where spacing behaviour operates strongly at the 
scale of interest. Incorporating spacing behaviour (through the 
use of an autocorrelated predictor variable) appears to provide 
extra “contextual” information and was especially beneficial 
for the American Crow, a highly social species with a tenden- 
cy to be patchily distributed. 

GWR has the potential to improve model predictive accu- 
racy, but not when the predictions are extrapolated as done 
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here. This method appears quite sensitive to the data used to 
train the model. 
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