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ABSTRACT.  In this study, a robust two-step method (RTSM) is developed to solve the interval linear programming (ILP) problem. 
It improved upon the two-step method (TSM) proposed by Huang et al. (1992) through incorporating additional constraints into 
solution procedures to avoid absolute violation. RTSM was applied to a simple case related to environmental management. The results 
demonstrated its applicability of the developed methodology. Compare with the modified interval linear programming (MILP) method 
proposed by Zhou et al., (2008) and the three-step method (ThSM) developed by Cao and Huang (2011), RTSM can generate a 
relatively larger solution space and thus avoid significant loss of decision-related information. Besides, RTSM has simpler solution 
procedures than ThSM, and will not lead to great computational requirement. 
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1. Introduction 

Optimization is a useful tool for supporting effective envi- 
ronmental management (van Beek et al., 1992; Bloemhof-Ru- 
waard, et al., 1995; Huang and Chang 2003). However, in many 
real-world environmental management problems, uncertainties 
exist in various system components and their interrelationships. 
For example, waste generation rate within a city is related to 
many socio-economic and environmental factors, and exhibits 
uncertain and dynamic features; the efficiency of a municipal 
wastewater treatment plant is affected by wastewater flow rate, 
and is uncertain in nature; regional air quality is mainly influen- 
ced by air pollutant emissions within this area, which also pre- 
sent uncertain characteristics. Such uncertainties can lead to in- 
creased complexities in the related optimization efforts. Simply 
ignoring these uncertainties is considered undesired as it may 
result in inferior or wrong decisions (Ruszcyński, 1997; Young, 
2001; Ozdemir and Saaty, 2006; Zou, et al., 2010). Therefore, 
inexact optimization methods are desired for supporting envi- 
ronmental management under uncertainty. 

In the past decades, amounts of optimization methods were 
developed for environmental management under uncertainty, 
mainly including stochastic, fuzzy and interval mathematical 
programming (abbreviated as FMP, SMP and IMP, respecti- 
vely) (Chang and Wang, 1997; Huang et al., 1992; Chang and 
Lu, 1997; Karmakar and Mujumdar, 2006a, b; Li et al., 2006, 
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2007, 2008; Nie et al., 2007; Lv et al., 2010; Sun and Huang, 
2010; Yan et al., 2010; Fan et al., 2009, 2012a, 2012b). Among 
them, IMP was an effective approach in dealing with uncer- 
tainties, since it does not require distributional information for 
input parameters (Tong, 1994; Chinneck and Ramada, 2000; 
Sengupta et al., 2001; Fiedler et al., 2006; Oliveira and An- 
tunes, 2007). Huang et al. (1992) proposed an interval linear 
programming (ILP) method through incorporating interval 
numbers into a linear programming (LP) framework and app- 
lied it to solid waste management. After that, many inexact LP 

methods were proposed for dealing with a variety of uncer- 
tainties in environmental management problems (Nie et al., 
2007; He et al., 2008; Liu et al., 2008).  

The two-step method (TSM) proposed by Huang et al. 
(1992) was mostly used to solve IMP problems. In this method, 
an ILP problem was converted into two sub-problems that co- 
rrespond to lower and upper bounds of its objective-function 
value (Huang et al., 1992). TSM is effective in solving ILP pro- 
blems without significantly increased computational require- 
ments. However, the main disadvantage of TSM is the poten- 
tial existence of constraint violation in its solution space. Con- 
sequently, Zhou et al. (2008) and Huang and Cao (2011) im- 
proved the algorithm of Huang et al. (1992). In detail, Zhou et 
al. (2008) developed a modified interval linear programming 
(MILP) method, through incorporating additional constraints 
into the lower- and upper-bound submodels. Cao and Huang 
(2011) proposed a three-step method (ThSM) for solving the 
ILP problem; following a feasibility test, a constricting process 
for the decision space was implemented, based on the original 
space from the TSM solutions. The MILP and ThSM could th- 
us help avoid constraint violation in the ILP solution space. 
However, they were based on relatively harsh constraints that 
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led to significantly shrunk decision space, resulting in loss of 
many feasible decision alternatives. In addition, ThSM might 
also be associated with issues of infeasibility in the solution 
process (particularly when the mid-value TSM solutions are 
infeasible), as well as significantly increased computation re- 
quirement. Therefore, a more effective algorithm is desired. 

The objective of this study is to develop a robust two-step 
method (RTSM) for solving ILP problems. The RTSM can help 
at least guarantee feasibility of the generated solutions under 
the best-case constraints, while the dimensions of the decision 
space are not significantly compromised. This is meaningful 
since, within such a space, all decision alternatives generated 
through various trade-off analyses will be guaranteed to be po- 
tentially feasible points with different feasibility levels. The 
RTSM also possesses the advantage of convenience for practi- 
cal applications, since it does not lead to more complicated so- 
lution procedures. Finally, a simplified example will be deve- 
loped to illustrate the solution process. 

2. Review of the Existing Solution Methods for ILP 

According to Huang (1998), an ILP model can be presen- 
ted as follows: 

 

Max f C X       (1a) 

 
subject to:  
 

A X B    (1b) 

 
0X     (1c) 

 
where { }m nA R   , 1C { } nR   , 1{ }mB R   , X   1{ }nR  ; 
R denotes a set of interval numbers; ( )ij m nA a 

 , C    

1 2( , , ..., )nc c c   , 1 2( , , ..., )T
mB b b b     and 1 2( , , ..., )T

nX x x x     . 
An interval number ( a ) is defined as (Huang et al., 1992): 

[ , ] { | }a a a t a a t a         . 

To solve model (1), Huang et al. (1992) proposed a two- 
step method (TSM) through analyzing interrelationships among 
parameters and variables in the objective and constraints. The 
main idea of TSM is to convert the original ILP model into two 
LP submodels which correspond to the lower and upper bounds 
of the objective-function value. In detail, for n interval coeffi- 
cients

 jc

 
(j = 1, 2, …, n) in the objective function, the for- 

mer k coefficients are assumed to be positive (i.e. 0jc  , for 
j = 1, 2, …, k), and the latter (n - k) coefficients are negative 
(i.e. 0jc  , for j = k + 1, k + 2, …, n). Thus the first sub- 
model of model (1) would correspond to f +. It can be formu- 
lated as follows (assume that 0ib   and f  > 0): 

 

1 1

Max
k n

j j j j
j j k

f c x c x    

  

     (2a) 

 
subject to: 

1 1

( ) ( )
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b
       

  

   , i = 1, 2, …, m.  

  (2b) 
 

0jx  , j = 1, 2, …, k  (2c) 

 

0jx  , j = k +1, k + 2, …, n  (2d) 

 
Solutions of joptx

 (j = 1, 2, …, k) and joptx  (j = k + 1, k 
+ 2, …, n) can be obtained through solving submodel (2). Ba- 
sed on the solutions of model (2), the submodel corresponding 
to f - can be formulated as follows (assume that 0ib   and 
f  >0): 

 

1 1

Max
k n

j j j j
j j k

f c x c x    

  

   ,  (3a) 

 
subject to: 
 

1 1

( ) ( )
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b
       

  

   , i = 1, 2, …, m.  

 (3b) 
 

0 j j optx x   , 1,  2,  ...,  j k .  (3c) 

 

j j optx x  , 1,  2,  ...,  j k k n   .  (3d)  

        
From model (3), solutions of joptx  (j = 1, 2, …, k) and 

joptx (j = k + 1, k + 2, …, n) can be obtained. Thus, the final 
solutions of [ ,  ]opt opt optf f f   and [ ,  ]jopt jopt joptx x x   can be ob- 
tained for model (1). 

The TSM has been widely used for solving many inexact 
environmental management problems that can be formulated 
as ILP models (Huang et al., 1995). However, its main weak- 
ness is the potential violation of the best-case constraints when 
the detailed decision point varies within the generated decision 
space. For example, consider an ILP model: max{ 1 1c x  - 2 2c x  | 

11 1a x  + 12 2a x  ≤ 1b , 21 1a x  + 22 2a x  ≤ 2b }, and assume that all of its 
coefficients are non-negative. According to TSM, constraints 

1 1ia x  + 2 2ia x  ≤ ib and 1 1ia x  + 2 2ia x  ≤ ib correspond to the lower 
and upper bounds of the objective-function value, respectively. 
However, these two constraints cannot fully guarantee feasibi- 
lity of the best-case constraints (i.e. 1 1ia x + 2 2ia x ≤ ib ) for any 
x1 [ 1x , 1x ] and x2  [ 2x , 2x ]. 

Zhou et al. (2008) modified the TSM algorithm through 
introducing additional constraints into the lower- and upper- 
bound submodels. For model (1), their modified ILP (or MILP) 
solution procedures are presented as follows: 

 
Submodel 1 

1 1

Max
k n

j j j j
j j k

f c x c x    

  

     (4a) 
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subject to: 

 

1 1

( ) ( )
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b
       

  

   , i = 1, 2, …, m.   

 (4b) 
 

0jx  , j = 1, 2, …, k  (4c) 

 

0jx  , j = k +1, k + 2, …, n  (4d) 

 

Submodel 2 

 

1 1

Max
k n

j j j j
j j k

f c x c x    

  

   ,  (5a) 

 
subject to: 
 

1 1

( ) ( )
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b
       

  

   , i = 1, 2, …, m.  

 (5b) 
 

1 1

(| | | | ) (| | | | ) 0
k n

j j j jopt j j j jopt
j k p j n q

a x a x a x a x   
           

     

       

 (5c) 
 

0 j j optx x   , 1,  2,  ...,  j k .  (5d) 

 

j j optx x  , 1,  2,  ...,  j k k n   .  (5e)  

         
where δ is the number of constraints in Equation (4b) that meet 

1
| | ( )

k

j j joptj
a Sign a x 


  

 +
1
| | ( )

n

j j joptj k
a Sign a x 


  

  = b
 and 

ja
 ≤ 0 for j = k – p + 1, k – p + 2, …, k and ja

  ≥ 0 for j = n 
– q + 1, n – q + 2, …, n.  

The MILP method can ensure the ILP solution space to 
be absolutely feasible, without violation of the best-case con- 
straints. However, the MILP was based on relatively harsh 
constraints (i.e. additional constraints to submodel 5) that led 
to significantly shrunk decision space, resulting in loss of many 
feasible decision alternatives; moreover, uncertainty of the ob- 
jective function may be enlarged due to the additional constrain- 
ts in submodel (5). 

Cao and Huang (2011) proposed a three-step method 
(ThSM) for solving the ILP problem; following a feasibility 
test, a constricting process for the decision space was imple- 
mented, based on the original space from the TSM solutions. 
The ThSM consisted of the following steps (Cao and Huang, 
2011): 

Step 1: generate solutions of model (1) through TSM. 

Step 2: conduct feasibility test to analyze whether the TSM 
solutions can satisfy the best-case constraints. For constraint i 
(i = 1, 2, …, m), the idea of feasibility test is to identify X*∈

optX  such that *

1

n

ij jj
a x

 = max{
1

n

ij jj
a x

 | xj ∈ jx }; if 

*

1

n

ij jj
a x

 ≤ ib is tenable, then optX   pass the feasibility test; 
otherwise, it means that part of solutions from optX   will vio- 
late the constraints. 

Step 3: eliminate the infeasible solution zone through a 
constricting approach. For solutions that do not pass the feasi- 
bility test, two constricting approaches are proposed to remove 
them: 

 
ThSM-I 
 
Max q  (6a) 
 
subject to: 
 

0

1 1 1

i

i

p n n

ij j ij j i ij j
j j p j

a qd a qd b a m   

   

     , i = 1, 2, …, m. (6b) 

 
0 1q    (6c) 

 
ThSM-II 
 

Max 01 2 ... nq q q     (7a) 
 
subject to: 
 

0

1 1 1

i

i

p n n

ij j j ij j j i ij j
j j p j

a q d a q d b a m   

   

     , i = 1, 2, …, m.  (7b) 

 
0 1jq   (7c) 

 

where mj = 0.5( joptx
+ joptx

); dj = 0.5( joptx
- joptx

); j = 1, 2, …, 
n0; n0 means the number of interval solutions obtained th- 
rough submodels (2) and (3).  

The main advantage of the ThSM method is its ability to 
avoid constraint violation in the ILP solution space. However, 
many feasible solutions will be eliminated in the constricting 
process which compresses the solution space from all dimen- 
sions. Particularly, it leads to loss of the solution zones that are 
close to the worst-case constraints. In addition, ThSM might 
also be associated with issues of infeasibility in the solution 
process. For example, when the mid-value of TSM solutions 
[i.e. the solution set defined by m

jx  = 0.5( joptx + joptx ), j ] 
does not pass feasibility test, then models (6) and (7) will be- 
come infeasible. Also, ThSM may lead to significantly increa- 
sed computation requirement, which may hinder its practical 
applications, especially for problems with a large number of 
constraints. 

3. Robust Two-Step Method   

A robust two-step method (RTSM) is proposed for solving 
ILP problems, where the best-cases constraints of model (1) 
will be incorporated within the submodel corresponding to f + 
(when the objective is to be maximized). This can thus help 
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avoid absolute constraint violation (i.e. violations even beyond 
the best-case constraints) as the decision variables fluctuated 
within the generated decision space.  

Lemma 1 (Huang et al. 1995): For [ , ]A A A   and B  
[ , ]B B  , denoting { , 0}Q X AX B X    , { |Q X A X   

, 0}B X  , and { , 0}Q X A X B X     , we have Q   
Q Q :     

Proof: If both X ∈ Q - and X ≥ 0 hold, we have AX ≤ A+X 
≤ B - ≤ B, such that X ∈ Q holds. Furthermore, if both X ∈ Q 
and X ≥ 0 hold, we have A-X ≤ AX ≤ B ≤ B+, such that X ∈ Q+ 
holds. Hence, Q Q Q   . 

Remark 1: Lemma 1 provides the relationships between 
feasible X sets under two extreme constraints (best and worst 
cases). 

Lemma 2 (Huang et al., 1995): For n interval coefficients 

jc (j = 1, 2, …, n) in the objective function of model (1), if k1 
of them are positive, and k2 are negative, let the former k1 coe- 
fficients be positive, i.e. 0jc  (j = 1, 2, …, k1) and the latter 
k2 coefficients be negative, i.e. 0jc  (j = k1 + 1, k1 + 2, …, n), 
where k1 + k2 = n (the model does not include the situation in 
which the two bounds of jc  have different signs). Thus, the 
following expression can be developed for the lower and 
upper bounds of f  : 

 

1

1

1 1

k n

j j j j
j j k

f c x c x    

  

    (8a) 

 

1

1

1 1

k n

j j j j
j j k

f c x c x    

  

     (8b) 

 
Proof: Straightforward. 

Corollary 1: the largest feasible area corresponding to f   
can be formed as follows: 

  
1

max 1 1 1
1

{ 0, 1, 2,..., ; 0, 1, 2,..., ;|
k

j j
j

Q x j k x j k k n  



         

1 1

, }
n

ij j ij j i
j k

a x a x b i    

 

     (9a) 

 
Proof: Assume [ , ]u

ij ij ija a a  and uQ = { jx
 ≥ 0, j = 1, 2, …,  

k1; jx ≥ 0, j = k1 + 1, k1 + 2, …, n| 1

1

k u
ij jj

a x
 +

1 1

n u
ij jj k

a x
  ≤  

ib , i }. For any X0 = ( 0jx
 ≥ 0, j = 1, 2, …, k1; 0jx ≥ 0, j = k1  

+ 1, k1 + 2, …, n)∈ uQ , 1

01

k u
ij jj

a x
 +

1
01

n u
ij jj k

a x
  ≤ ib holds. 

Because ija  ≤ 
u
ija  ≤ ija  and 0 0jx  , we have 1

01

k

ij jj
a x 

 +  

1
01

n

ij jj k
a x 

  ≤ 1

01

k u
ij jj

a x
  +

1
01

n u
ij jj k

a x
   ≤ ib , i . There- 

fore, X0 ∈ maxQ , namely maxuQ Q  . 

Corollary 2: the smallest feasible area corresponding 
f  is : 

 
1

min 1 1 1
1

{ 0, 1, 2, ..., ; 0, 1, 2,..., ;|
k

j j
j

Q x j k x j k k n  



           

1 1

}
n

ij j ij j i
j k

a x a x b    

 

   (9b) 

 
Proof: Assume [ , ]l

ij ij ija a a  and lQ = { jx ≥ 0, j = 1, 2, …, 
k1; jx ≥ 0, j = k1 + 1, k1 + 2, …, n| 1

1

k l
ij jj

a x
 + 

1 1

n l
ij jj k

a x
   ≤ 

ib , i }. Consider  X = ( jx
 ≥ 0, j = 1, 2, …, k1; jx

 ≥ 0, j = 

k1 + 1, k1 + 2, …, n) ∈ minQ , then 1

1

k

ij jj
a x 

 +
1 1

n

ij jj k
a x 

   ≤ 

ib  holds. Since ija ≤ l
ija ≤ ija and 0jx  , we have 1

1

k l
ij jj

a x
  

+
1 1

n l
ij jj k

a x
  ≤ 1

1

k

ij jj
a x 

 +
1 1

n

ij jj k
a x 

  ≤ ib , i . Therefore, 
X ∈ lQ , namely min lQ Q  . 

Theorem 1: (Huang et al., 1995) In order to obtain inter- 
val solutions expressed as [ ,  ]opt opt optf f f    and joptx  [ ,joptx  

]joptx , constraints corresponding to f + can be developed as fo- 
llows: 

 

1 1

( ) ( )
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b
       

  

   , i = 1, 2, …, m  

 (10a) 
 
Similarly, the relevant constraints corresponding to f   

can also be developed as follows: 

 

1 1

( ) ( )
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b
       

  

   , i = 1, 2, …, m   

 (10b) 
 

Lemma 3: Consider constraint i in equation (1b), 

1

n

ij jj
a x 

  ≤ ib , where 0ija   (j = 1, 2, …, li1 ) and ija   

≤ 0 (j = li1 + 1, li1 + 2, …, n). For any [ , ]j j jx x x  (j = 1, 2, …, 
n), the best-case constraint of constraint i (i.e.

1

n

ij j ij
a x b 


 ) 

can be satisfied, if and only if:  

 
1

1 11

l ni

ij j ij j i
j j li

a x a x b    

  

    (11) 

 
Proof: Since 0ija   (j = 1, 2, …, li1) and 0ija   (j = 

li1 + 1, li1 + 2…, n), then for any [ , ]j j jx x x  ≥ 0 (j = 1, 2, …,  

n), xj ≤ jx  and j jx x  hold. Thus we have ij ja x  ≤ ij ja x    

(j = 1, 2, …, li1) and ij ja x  ≤ ij ja x   (j = li1 + 1, li1 + 2…, n). If  
1

1

il

ij jj
a x 

  + 

1 1i

n

ij jj l
a x 

   ≤ ib , then we have 
1

1

il

ij jj
a x

  +  

1 1i

n

ij jj l
a x

  ≤ ib . 

Theorem 2: Consider constraint i0 of model (1):  

 
1

0 0 0

11 1

k n

i j j i j j i
j j k

a x a x b    

  

           (12) 

 
Three criteria exist for determining whether additional con- 

straints are needed to avoid violation of the best-case constraint:  

(1) If 
0

0i j ja c j    , then solution [ ,  ]jopt jopt joptx x x    
obtained from submodels (2) and (3) can ensure that for any xj 
∈ [ joptx , joptx ] (j = 1, 2, …, n) , 

1

01

k

i j jj
a x

  + 
01 1

n

i j jj k
a x

   
≤ 

0i
b  is satisfied. 
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(2) If 
0

0i j ja c j    , then the solutions [ ,  ]jopt jopt joptx x x    
obtained through submodels (2) and (3) can guarantee that, 
for any xj ∈ [ joptx , joptx ] (j = 1, 2, …, n), 1

01

k

i j jj
a x

 + 

01 1

n

i j jj k
a x

  ≤ 
0i

b is satisfied. 

(3) If 
0

0i j ja c    [j =1, 2, …, 
0 1il (

0 1il  ≤ k) and k + 1, k 
+ 2 …, 

0 2il  (
0 2il > k)] and 

0i j ja c   ≤ 0 [j =
0 1il + 1,

0 1il + 2,…, 
k and

0 2il + 1,
0 2il + 2, …, n], then solutions [ ,  ]jopt jopt joptx x x    

obtained from submodels (2) and (3) will not lead to violation 
of the best-case constraint (

1

n

ij j ij
a x b 


 ), if and only if: 

0 0

0 0 0 0
0 0

1 2
1 1 1 11 2

l k l ni i
i j j i j jopt i j j i j joptj j l j k j li i

a x a x a x a x       
      

       

0i
b   (13) 

 
where joptx and joptx are solutions obtained from submodel (3) 
which corresponds to f  .  

Proof:  

(1) From model (2), we have: 
0 01

( )
k

i j i j jj
a Sign a x

  
 +  

0 01
( )

n

i j i j jj k
a Sign a x

  
   ≤ 

0i
b . Since 

0
0i j ja c j    , we ha- 

ve: 
0i ja  ≥ 0 (j = 1, 2, …, k) and 

0i ja  ≤ 0 (j = k + 1, k + 2, …, 
n). Thus, 

0 0
( )i j i j ja Sign a x

    =
0i j ja x  , and 

0 0
( )i j i j ja Sign a x

     

= 
0i j ja x   hold. Therefore, we have 

0 01
( )

k

i j i j jj
a Sign a x

  
  + 

0 01
( )

n

i j i j jj k
a Sign a x

  
  =

01

k

i j jj
a x 

 +
01

n

i j jj k
a x 

  ≤
0i

b .  

For any xj ∈ [ jx , jx ] (j = 1, 2, …, n),
0i j ja x ≤ 

0i j ja x   (j = 1, 
2, …, k) and

0i j ja x ≤ 
0i j ja x   (j = k + 1, k + 2,…, n) hold. 

Consequently, we have
01

k

i j jj
a x

 +
01

n

i j jj k
a x

  ≤
01

k

i j jj
a x 

  

+
01

n

i j jj k
a x 

   ≤ 
0i

b . 

(2) Based on model (3), 
0 01

( )
k

i j i j jj
a Sign a x

  
 + 

1

n

j k    

0 0
( )i j i j ja Sign a x

    ≤ 
0i

b holds. Since 
0

0i j ja c j    , then 

we have 
0i ja ≤ 0 (j = 1, 2, …, k) and 

0i ja  ≥ 0 (j = k + 1, k 

+  2 … ,  n ) .  T h u s ,
0 0

( )i j i j ja Sign a x
   =

0i j ja x  a n d  
0i ja

  

0
( )i jSign a

jx  = 
0i j ja x   hold. Consequently, we have 

1

k

j  

0i ja


0
( )i j jSign a x  +

0 01
( )

n

i j i j jj k
a Sign a x

  
  =

01

k

i j jj
a x 

 +  

01

n

i j jj k
a x 

   ≤ 
0i

b  ≤ 
0i

b . For any xj ∈ [ jx , jx ] (j = 1,  

2, …, n), 
0i j ja x  ≤ 

0i j ja x  (j = 1, 2, …, k) and 
0i j ja x  ≤

0i j ja x    

(j = k + 1, k + 2, …, n) hold. Therefore, we have 
01

k

i j jj
a x

   

+
01

n

i j jj k
a x

  ≤
01

k

i j jj
a x 

 +
01

n

i j jj k
a x 

  ≤ 
0i

b
 ≤

0i
b . 

(3) If
0

0i j ja c   [j = 1, 2, …,
0 1il (

0 1il ≤ k) and k + 1, k + 
2,…,

0 2il (
0 2il > k)] and

0i j ja c  ≤ 0 [j =
0 1il + 1,

0 1il + 2, …, k and  

0 2il + 1,
0 2il + 2, …, n], we have

0
0i ja  ( j = 1, 2, …,

01il and 

0 2il + 1,
0 2il + 2, …, n) and

0
0i ja  ( j =

01il + 1,
0 2il + 2, …, k, k 

+ 1, …,
0 2il ). When equation (13) holds, for any jx  [ , ]j jx x  (j 

= 1, 2, …, n) and j j jx x x   , we have 0

0

1
1

li
i j jj

a x 
 ≥ 0

0

1
1

li
i j jj

a x
  

and
0

20
1

n

i j joptj li
a x 

  ≥
0

20
1

n

i j jj li
a x

  due to
0

0i ja   ( j =1, 
2, …, 

0 1il and 
0 2il + 1, 

0 2il + 2,…, n); meanwhile
0

10
1

k

i jj li
a

   

joptx ≥
0

10
1

k

i j jj li
a x

  and 20

01

li
i j jj k

a x 
  ≥ 20

01

li
i j jj k

a x
  will hold  

since
0

0i ja  ( j =
0 1il + 1,

0 1il + 2, …, k, k + 1, …,
0 2il ). Therefore, 

we have
01

n

i j jj
a x

 ≤ 0

0

1
1

li
i j jj

a x 
 +

0
10

1

k

i j joptj li
a x 

  + 20

1

li
j k   

0i j ja x  +
0

20
1

n

i j joptj li
a x 

  ≤
0i

b . 

Remark 3: To solve model (1), the submodel correspon- 
ding to f  would be solved firstly because of the following 
reasons: 

(1) From Lemma 1, the solutions of the submodel corres- 
ponding to f  [i.e. joptx  (j = 1, 2, …, k) and joptx  (j = k + 1, 
k + 2, …, n)] are identified from set Q . Since Q Q  , jx  
Q , such that j joptx x   ( j = 1, 2, …, k) and j joptx x   ( j 
= k + 1, k + 2, …, n). 

(2) For model (1), the submodel corresponding to f –
 would 

use relatively strict constraints (i.e. lower-bound values for the 
constraints' right-hand sides), and the submodel corresponding 
to f + would use relatively relaxed constraints (i.e. upper-bound 
values for the right-hand sides). From theorem 2, additional 
constraints based on the solutions corresponding to f - should 
be interposed for the submodel corresponding to f +. This will 
help avoid violation of the best-case constraints as the decision 
variables fluctuated within the generated decision space.  

Based on the above analysis, a robust two-step method 
(RTSM) will be developed to solve model (1). In this method, 
a conservative submodel (i.e. the submodel corresponding to f – 
when the objective is to be maximized) will be solved firstly; 
then an optimistic submodel (i.e. the submodel corresponding 
to f +) will be derived based on solutions from the conservative 
submodel. In detail, the conservative submodel can be presen- 
ted as follows (assume 0ib  , 0f   ): 

1 1

Max
k n

j j j j
j j k

f c x c x    

  

   ,  (14a) 

subject to: 

1 1

( ) ( )
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b
       

  

   , i = 1, 2, …, m  

 (14b) 
0jx  , j = 1, 2, …, k  (14c) 

0jx  , j = k +1, k + 2, …, n  (14d) 

 
From submodel (14), solutions of joptx  (j = 1, 2, …, k) 

and joptx  (j = k + 1, k + 2, …, n) can be obtained. These solu- 
tions will be incorporated into the optimistic submodel. The th- 
ird criterion (as shown in Theorem 2) will then be employed 
to derive additional constraints that can help prevent from vio- 
lation of the best-case constraints. Thus, the optimistic submo- 
del can be formulated as follows (assume 0ib  , 0f   ):   

 

1 1

Max
k n

j j j j
j j k

f c x c x    

  

     (15a) 

subject to: 

1 1

( ) ( )
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b
       

  

   , i = 1, 2, …, m.  

  (15b) 
 

1 2

1 1 1 11 2

l lk ni i

ij j ij jopt ij j ij jopt i
j j l j k j li i

a x a x a x a x b        

      

        (15c) 
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1, 2,...,j joptx x j k    (15d) 

 
1, 2,...,j joptx x j k k n       (15e) 

 
0jx  , j = 1, 2, …, k  (15c) 

 
0jx  , j = k +1, k + 2, …, n  (15d) 

 
where jc  ≥ 0 ( j = 1, 2, …, k), and jc  ≤ 0 ( j = k +1, k + 
2, …, n); ija ≥ 0 ( j = 1, 2, …, li1; j = li2 + 1, li2 + 2,…, n) and 

ija  ≤ 0 ( j = li1 + 1, li1 + 2, …, li2), where li1 ≤ k, and li2 ≥ k. 

Hence, solutions of joptx (j = 1, 2, …, k) and joptx ( j = k + 
1, k + 2, …, n) can be generated through submodel (15). 
Therefore, the ultimate solutions for model (1) are: joptx   
[ , ]jopt joptx x   and [ , ]opt opt optf f f   . 

4. Illustrative Case Study of Environmental 
Management  

An illustrative case of interval parameter linear program- 
ming presented by Zhou et al. (2008) would be analyzed to sh- 
ow the solution process of RTSM: 

 
Max 1 2[26,30] [5.5,6.0]f x x      (16a) 

 
subject to: 
 

1 2[8,10] [12,14] [3.8,4.2]x x     (16b) 

 

1 2[1.0,1.1] [0.19, 0.2] [6.5, 7]x x     (16c) 

 

1 0x  , 2 0x    (16d) 

 
In the above problem, it is assumed that the objective is 

to maximize economic return, while constraints (16b) and (16c) 
denote respectively limitations in resource availability and po- 
llutant emission allowance. 

Figure 1 shows a graphical presentation of the decision 
space for model (16). Based on constraints (16b) and (16c), the 
decision space is firstly divided into eight zones (i.e. Zones A, 
B, C, D, E, F, G, H, and I). Different zones would satisfy or 
violate different constraints. For example, any point in zone C 
is infeasible for constraint (16b); in contrast, all solutions in 
zone G satisfy constraint (16b) regardless the variation of its 
uncertain coefficients. In detail, zones B, C, D, E, and F are in- 
feasible for model (16) since they would lead to absolute infea- 
sibility. This means that the points located in those zones would 
violate at least one of the two best-case constraints for model 
(16), which are presented as the dash lines in Figure 1. Conver- 
sely, the solutions in zone H are absolutely feasible for model 
(16) since they satisfy the worst-case constraints; however, th- 
ese solutions would lead to serious waste of resources since 
uncertainties of the right-hand-side coefficients are not consi- 

5 5.5 6 6.5
2

2.5

3

3.5

4

4.5

5

infeasible zone

A

B

C

D

E

F

G 
H

I 

I

A = softly-feasible for (15b), and feasible for (15c) 

B = infeasible for (15b) but feasible for (15c) 

C = infeasible for (15b) and softly-feasible for (15c) 

D = infeasible for (15b) and (15c) 

E = infeasible for (15c), but softly-feasible for (15b) 

F = infeasible for (15c) but feasible for (15b) 

best-case constraints for (15b) and (15c) 

Figure 1. Inexact constraints and solution space obtained 
through TSM. 
 
dered. Therefore, zones A, I and G would be potentially feasi- 
ble, which were denoted as ‘softly feasible zones” by Huang 
et al. (2002). In fact, the ‘soft’ concept corresponds to the exis- 
tence of uncertainties, demonstrating the existence of a trade- 
off between system benefit and constraint-violation risk (Huang 
et al., 2002). A high benefit corresponds to a high risk, and it 
is impossible to accomplish both high benefit and low risk si- 
multaneously. 

Based on the two-step method (TSM) of Huang et al. 
(1992), model (16) can be solved through formulating the fo- 
llowing two submodels: 

The first submodel: 

Max 1 230 5.5f x x      (17a) 

subject to:  

1 28 14 4.2x x     (17b) 

1 21 0.2 7x x     (17c) 

1 0x  , 2 0x        (17d) 

The second submodel: 

Max 1 226 6.0f x x       (18a) 

subject to:  
 

1 210 12 3.8x x     (18b) 
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5 5.5 6 6.5

2 

2.5

3

3.5

4

  

B

D

F

H

G

I 

I

J 

A 

K

C

E

best-case constraints for (15b) and (15c) 

4.5

solution through RTSM 

constraint (19d) to prevent from absolute infeasibility 

A = softly-feasible for (15b), and feasible for (15c) 

B = infeasible for (15b) but feasible for (15c) 

C = infeasible for (15b) and softly-feasible for (15c) 

D = infeasible for (15b) and (15c) 

E = infeasible for (15c), but softly-feasible for (15b) 

F = infeasible for (15c) but feasible for (15b) 

G = feasible for (15b), and softly-feasible for (15c) 

H = feasible for (15c) and (15b) 

I = softly-feasible for (15b) and (15c) 

J = softly-feasible for (15b) and (15c), but may lead to violation 

5

 
Figure 2. Inexact constraints and solution space obtained 
through RTSM. 
 

1 21.1 0.19 6.5x x     (18c) 

 

1 1optx x  , 2 2optx x     (18d) 

1 0x  , 2 0x   (18e) 

Thus, the solutions of model (16) through TSM are: 

1optx = [5.21, 6.34], 2optx = [3.32, 4.03], and optf  = [111.4, 
171.8]. 

The rectangle in Figure 1 shows the solution space obtained 
through TSM. It is obvious that this space contains a zone wh- 
ere the best-case constraints are violated when decision varia- 
bles fluctuate within the obtained interval solutions. For exam- 
ple, for the best case of constraint (16c), if x1 = 1optx = 6.34, x2 
= 2optx = 4.03, then we have 1 × x1 + 0.19 × x2 = 6.34 + 0.19 
× 4.03 = 7.11 > 7. The shadowed zone in Figure 1 presents the 
solutions that would violate at least one best-case constraint.  

Based on RTSM, model (16) can be transformed into two 
submodels. The first submodel can be presented as follows: 

Max 1 226 6.0f x x      (19a) 

subject to:  

1 210 12 3.8x x     (19b) 

 

1 21.1 0.19 6.5x x      (19c) 

 

1 0x  , 2 0x   (19d) 

 
The solutions are 1optx =5.21, 2optx = 4.03 and optf 

 = 

111.38. Thus, the second submodel can be expressed as: 

 

Max 1 230 5.5f x x      (20a) 

 
subject to:  
 

1 28 14 4.2x x     (20b) 

 

1 21 0.2 7x x    (20c) 

 

1 21 0.19 7optx x     (20d) 

1 1optx x  , 2 2optx x      (20e) 

1 0x  , 2 0x       (20f) 

 
The solutions of submodel (20) are 1optx = 6.23, 2optx  = 

3.26 and optf  =169.1. Consequently, the ultimate solutions of 
model (16) are: 1optx = [5.21, 6.23], 2optx =[3.26, 4.03], 
and optf  =[111.38, 169.1]. 

With the above RTSM, an additional constraint [i.e. con- 
straint (20d) presented as dotted line in Figure 2] is proposed 
to prevent from violation of the best-case constraint. Through 
this constraint [i.e. constraint (20d)], zone J is excluded from 
the solution space. The shadowed zone in Figure 2 shows the 
ultimate solution space obtained through RTSM. It is indicated 
that the generated solutions are at least softly feasible in refe- 
rence to the given constraints (i.e. no absolute violation for 
constraints).  

Model (16) can also be solved through approaches of MILP 
(Zhou et al., 2008), ThSM-I and ThSM-II (Cao and Huang, 
2011). The solutions are presented in Table 1. As shown in Fi- 
gure 3, the rectangular with solid lines is the solution space ob- 
tained through MILP. MILP can ensure no violation of the best- 
case constraints (present as dash lines in Figure 3). However, 
it results in a significantly shrunk solution space, leading to se- 
rious loss of many feasible decision alternatives. Figures 4 and 
5 show the solutions obtained through ThSM-I and ThSM-II. 
They would not violate the best-case constraints of model (16). 
However, compared with RTSM, the two approaches would 
compress the solution space from all dimensions, which may 
lead to relatively more loss of feasible decision alternatives; it 
also requires feasibility test which may be redundant for large- 
scale cases. Particularly when the study cases involve many 
variables and constraints, the feasibility test may lead to the 
issue of great computational requirement. In comparison, the 
solution space acquired through RTSM covers a relatively lar- 
ger space of the “softly feasible” zone, and can thus avoid signi- 
ficant loss of decision-related information. Also, the proce- 
dures of RTSM are not complicated and will not lead to great 
computational requirement. 
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Figure 3. Solutions obtained through MILP and RTSM. 
 

5. Conclusions 

(1) A robust two-step method (RTSM) has been advan- 
ced to solve interval linear programming (ILP) problems. It 
improves upon the two-step method (TSM) proposed by Huang 
et al. (1992) through incorporating additional constraints into 
solution procedures to avoid absolute violation. Compared with 
TSM, RTSM can guarantee no violation of the best-case con- 
straints when decision variables fluctuated within their solution 
spaces. RTSM has been applied to a simple case related to en- 
vironmental management. The results demonstrate applicabi- 
lity of the developed methodology.  

(2) Comparisons between the RTSM and the previous so- 
lution methods have been undertaken. Different solution spa- 
ces have been obtained. It is indicated that: (a) RTSM would 
generate a relatively larger solution space than other ILP solu- 
tion methods, and can thus avoid significant loss of decision- 
related information. (b) In comparison with the three-step me- 
thod (ThSM), the solution process of RTSM is much simpler. 
RTSM would not require feasibility test and model constriction. 
This would be meaningful for its practical applications, since 
the feasibility test may lead to high computational require- 
ments for problems with a large number of constraints.   

(3) Although this study is a new attempt to improve upon 
the two-step method as proposed by Huang et al. (1992), it is 
desired that more real-world case studies be undertaken to 
demonstrate its practical applicability. 
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Figure 4. Solutions obtained ThSM-I and RTSM. 
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Figure 5. Solutions obtained through ThSM-II and RTSM. 
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Table 1. Solutions for Model (16) through the Previous Solution Methods

ThSM-I 
(Cao and Huang, 2011) 

ThSM-II 
(Cao and Huang, 2011) 

 TSM 
(Huang et al., 1992) 

MILP 
(Zhou et al., 2008) 

q = 0.833 q1 = 0.813, q2 = 1 

1optx  [5.21, 6.34] [4.57, 6.34] [5.30, 6.25] [5.32, 6.23] 

2optx  [3.32, 4.03] [3.32, 3.50] [3.38, 3.97] [3.32, 4.03] 

optf   [111.4, 171.8] [98.0, 171.8] [114.1, 168.78] [114.0, 168.77] 
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