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ABSTRACT.  Public sector decision-making typically involves complex problems that are riddled with competing performance 
objectives and possess design requirements which are difficult to quantify and capture at the time supporting decision models are 
constructed. Environmental policy formulation can prove additionally complicated because the various system components often 
contain considerable degrees of stochastic uncertainty. Furthermore, there are frequently numerous stakeholders with incompatible 
perspectives. Consequently, there are invariably unmodelled performance design issues, not apparent at the time of the construction of 
a decision support model, which can greatly impact the acceptability of its solutions. While a mathematically optimal solution may be 
the best solution to the modelled problem, it is frequently not the best solution to the real, underlying problem. Therefore, in public 
environmental policy formulation, it is generally preferable to create several quantifiably good alternatives that provide very different 
approaches to the problem. By generating a diverse set of solutions, it is hoped that some of these dissimilar alternatives can provide 
very different perspectives that may serve to satisfy the unmodelled objectives. This study shows how simulation-optimization (SO) 
modelling can be used to efficiently generate multiple policy alternatives that satisfy required system performance criteria in 
stochastically uncertain environments and yet are maximally different in the decision space. This new approach is very 
computationally efficient, since, in addition to finding the best solution to the problem, it permits the simultaneous generation of 
multiple, good solution alternatives in a single computational run of the SO algorithm rather than the multiple implementations 
required in other modelling-to-generate-alternatives procedures. The efficacy of this approach is specifically demonstrated using a 
previously studied waste management case from the Municipality of Hamilton-Wentworth, Ontario. 
 
Keywords: modelling to generate alternatives, simulation-optimization, environmental decision making under uncertainty, planning 
and strategy

 
 

 

1. Introduction 

In public sector decision making, numerous system objec- 
tives and requirements always exist that can never be explicitly 
included or apparent during the decision formulation stage. 
This is a common occurrence in situations where the final de- 
cisions must be constructed based not only upon clearly articu- 
lated and modelled objectives, but also upon environmental, 
political and socio-economic goals that are fundamentally sub- 
jective (Baugh et al., 1997; Brill et al., 1982; Liebman, 1976; 
Zechman and Ranjithan, 2004). Moreover, it may never be po- 
ssible to explicitly express many of the subjective considera- 
tions in public policy formulation because there are generally 
numerous competing, adversarial stakeholder groups holding 
perspectives that are incompatible. Therefore many of these 
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subjective aspects remain unknown, unquantified and unmo- 
delled in the construction of any corresponding decision mo- 
dels. Thus, public sector decision-making typically involves 
complex problems that are riddled with competing performan- 
ce objectives and possess design requirements which are very 
difficult to capture at the time that any supporting decision mo- 
dels are actually constructed (Brugnach et al., 2007; De Kok 
and Wind, 2003; Hipel and Ben-Haim, 1999; Mowrer, 2000; 
Walker et al., 2003). Environmental policy formulation can 
prove even more complicated because the various system com- 
ponents often also contain considerable stochastic uncertainty 
(Yeomans, 2008). Consequently, public sector environmental 
policy formulation often proves to be an extremely complica- 
ted and challenging undertaking (Janssen et al., 2010; Loughlin 
et al., 2001).  

Numerous ancillary modelling approaches have been pro- 
posed to support the policy formulation endeavour (Linton et 
al., 2002; Rubenstein-Montano et al., 2000) and for environ- 
mental policy determination, various deterministic mathemati- 
cal programming techniques have been introduced ( for exam- 
ple: Ferrell and Hizlan, 1997; Hasit and Warner, 1981; Haynes, 
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1981; Lund, 1990; Lund et al., 1994; Marks and Liebman, 
1971; Walker, 1976; Wenger and Cruz, 1990). However, while 
mathematically optimal solutions may provide the best results 
for the modelled problems, they are frequently not the best so- 
lutions for the underlying real problems due to the unmodelled 
issues and unquantified objectives not apparent at the time of 
model construction (Chang et al., 1982a, b; Gidley and Bari, 
1986; Janssen et al., 2010; Loughlin et al., 2001). Furthermore, 
although optimization-based techniques are designed to create 
single best solutions, the presence of the unmodelled issues 
coupled with the system uncertainties and opposition from po- 
werful stakeholders can actually lead to the outright elimina- 
tion of any single (even an optimal) solution from further con- 
sideration (De Kok and Wind, 2003; Matthies et al., 2007; 
Yeomans, 2008; Zechman and Ranjithan, 2004).  

In the environmental decision-making realm, there are fre- 
quently numerous stakeholder groups holding completely in- 
congruent standpoints, essentially dictating that policy-makers 
must establish a decision framework that can concurrently con- 
sider numerous irreconcilable points of view (De Kok and Wind, 
2003; Matthies et al., 2007; Yeomans, 2002, 2008). Conse- 
quently, from an environmental policy formulation standpoint 
it is generally preferable to be able to generate several alterna- 
tives that provide multiple, disparate perspectives to the pro- 
blem under consideration (Huang et al., 1996; Janssen et al., 
2010). Preferably these alternatives should all possess quanti- 
fiably good (i.e. near-optimal) objective measures with respect 
to the modelled objective(s), but be fundamentally different 
from each other in terms of the system structures characterized 
by their decision variables. By generating this set of very diffe- 
rent solutions, it is hoped that at least some of the dissimilar al- 
ternatives can be used to address the requirements of the un- 
known or unmodelled criteria to varying degrees of stakehol- 
der acceptability.  

In practice, most policy formulation proceeds with the po- 
licy-designers proposing a number of technologically feasible 
policy alternatives, which are then evaluated by estimating th- 
eir performance and effect on the system. This stage is follo- 
wed by a comparison of these alternatives in which the policy- 
designers select the specific option that best achieves their es- 
tablished system requirements. A significant disadvantage to 
this approach is that the policy-makers can only ever realisti- 
cally construct a myopic subset of design alternatives, while 
the number of feasible options could prove to be extremely nu- 
merous. This limitation of policy generation in considering on- 
ly a very narrow subset of possibilities, leads to the significant 
likelihood of entirely overlooking many better system design 
alternatives (Yeomans, 2008).  

In response to this option creation requirement, several 
approaches collectively referred to as modelling-to-generate- 
alternatives (MGA) have been developed (Baetz et al., 1990; 
Baugh et al., 1997; Brill et al., 1982; Chang et al., 1982a, b; 
Gidley and Bari, 1986; Loughlin et al., 2001; Rubenstein- 
Montano and Zandi, 1999; Rubenstein-Montano et al., 2000; 
Zechman and Ranjithan, 2004). The MGA approach was esta- 
blished to implement a much more systematic exploration of a 
solution space in order to generate a set of alternatives that are 

good within the modelled objective space while being maxi- 
mally different in the decision space. Thus, a good MGA pro- 
cess should enable a thorough exploration of the decision space 
for good solutions while simultaneously allowing for unmo- 
delled objectives to be considered when making the final deci- 
sions.  

Notwithstanding their fundamental limitations, most ma- 
thematical programming approaches emanating from the plan- 
ning research literature have focused almost exclusively upon 
producing optimal solutions to single-objective problem in- 
stances or, equivalently, generating noninferior solution sets 
to multi-objective problem formulations. While such algori- 
thms may efficiently generate solutions to the derived complex 
mathematical models, whether their results actually establish 
“best” approaches for providing appropriate decisions to the 
underlying real problems is certainly questionable. Baugh et 
al. (1997), Brill et al. (1982) and Zechman and Ranjithan (2004) 
all supply numerous real world examples of this type of incon- 
gruent modelling duality. In particular, any search for good al- 
ternatives to problems known (or suspected) to contain unmo- 
delled objectives must focus not only on the non-inferior solu- 
tion set, but also necessarily on an exploration of the problem’s 
inferior region. To illustrate the implications of an unmodelled 
objective on a decision search, assume that the optimal solution 
for a quantified, single-objective, maximization decision pro- 
blem is X* with corresponding objective value Z1*. Now su- 
ppose that there exists a second, unmodelled, maximization 
objective Z2 that perhaps subjectively reflects environmental/- 
political acceptability. Let the solution Xa, belonging to the 
noninferior, 2-objective set, represent a potential best compro- 
mise solution if both objectives could somehow have been si- 
multaneously evaluated by the decision-maker. While Xa might 
be viewed as the best compromise solution to the real problem, 
it would clearly appear inferior to the solution X* in the quan- 
tified model, since it must be the case that Z1a ≤ Z1*. This ob- 
servation implies that when unmodelled objectives are factored 
into the decision making process, mathematically inferior solu- 
tions for the modelled problem can potentially be optimal for 
the real problem. Therefore, when unmodelled objectives and 
unquantified issues might exist, different approaches are re- 
quired in order to not only search the decision space for the 
noninferior set of solutions, but also to simultaneously explore 
the decision space for inferior alternative solutions to the mo- 
delled problem.  

The primary motivation behind MGA is to produce a ma- 
nageably small set of alternatives that are quantifiably good 
with respect to modelled objectives yet as different as possible 
from each other in the decision space. In so doing, the resulting 
alternative solution set is likely to provide truly different choi- 
ces that all perform somewhat similarly with respect to the kn- 
own modelled objective(s) yet very differently with respect to 
any unmodelled issues. By generating these good-but-different 
solutions, the policy-makers can explore alternatives that may 
satisfy the unmodelled objectives to varying degrees of stake- 
holder acceptability. Obviously the policy-setters must then 
conduct a subsequent comprehensive comparison of the alter- 
natives to determine which options would most closely satisfy 
their very specific circumstances. Thus, an MGA approach sh- 
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ould necessarily be considered as one of decision support ra- 
ther than of explicit solution determination. 

As mentioned earlier, the components of many environ- 
mental systems frequently contain considerable stochastic un- 
certainty. Hence, deterministic MGA methods are rendered re- 
latively unsuitable for most environmental policy implementa- 
tion situations, since they provide no effective mechanism with 
which to integrate these system uncertainties directly into the 
construction of their solutions (Brown et al., 1974; Coyle, 1973; 
Liebman, 1976; Gottinger, 1986; MacDonald 1996; Tchobano- 
glous et al., 1993). Various Monte Carlo simulation approaches 
have been incorporated into environmental planning to circum- 
vent some of these uncertainty shortcomings (Bodner et al., 
1970; Baetz, 1990; Wang et al., 1994; Openshaw and White- 
head, 1985). However, while simulation provides an effective 
means for comparing stochastic system behaviours, it provides 
no formal mechanism for actually calculating good system so- 
lutions.  

Yeomans et al., (2003) incorporated stochastic uncertainty 
directly into environmental planning using an approach refer- 
red to as simulation-optimization (SO). SO is a family of opti- 
mization techniques that incorporates inherent stochastic un- 
certainties expressed as probability distributions directly into 
its computational procedure (Fu, 2002; Kelly, 2002). The app- 
roach of Yeomans et al. (2003) focused solely upon the “func- 
tion optimization” aspects of the modelled systems, with the 
goal being to determine single best system policies. While SO 
holds considerable potential for application to a wide range of 
stochastic problems, it cannot be considered universally appli- 
cable due to its accompanying solution time issues (Fu, 2002; 
Kelly, 2002; Lacksonen, 2001). Huang et al. (2005) and Yeo- 
mans (2005, 2007, 2010) have examined several approaches 
to accelerate the search times and solution quality of SO in its 
function optimization capacity.  

To address the deficiencies of the deterministic MGA me- 
thods, Yeomans (2002) demonstrated that SO could be used to 
generate multiple policy options which simultaneously integra- 
ted stochastic uncertainties directly into each generated alter- 
native. Since computational aspects can negatively impact SO’s 
optimization capabilities, these difficulties clearly also extend 
into its use as an MGA procedure (Yeomans, 2008). Linton et 
al. (2002) and Yeomans (2008) have shown that SO can be 
considered an effective, though very computationally intensive, 
MGA technique for environmental policy formulation. How- 
ever, none of these SO MGA approaches could ensure that the 
created alternatives were sufficiently different in decision va- 
riable structure from one another to be considered an effective 
procedure. 

In this paper, it is shown how to efficiently generate maxi- 
mally different solution alternatives for public environmental 
policy planning situations containing considerable stochastic 
uncertainty by using a version of the technique of Zechman 
and Ranjithan (2004) that has been specifically modified to ad- 
dress the heavy computational burdens inherent in SO. This 
new stochastic MGA approach is very computationally effi- 
cient, since it permits the concurrent generation of multiple, 

quantifiably good solution alternatives, guaranteed to be as di- 
fferent as possible from one another, in a single computational 
run of the SO algorithm in contrast to the repeated multiple im- 
plementations required in most other MGA procedures. This 
study illustrates the efficacy of this new SO procedure’s MGA 
capabilities by testing it on the municipal solid waste (MSW) 
management study taken from Yeomans et al. (2003).  

2. An Efficient Simulation-Optimization Approach 
for Modelling to Generate Alternatives 

In this section, the computationally efficient, co-evolutio- 
nary MGA procedure, capable of incorporating stochastic un- 
certainty directly into its generated alternatives, is developed 
using a modified SO adaptation of Zechman and Ranjithan 
(2004) (see Yeomans, 2009).  

Determining optimal solutions to large stochastic problems 
proves to be very complicated when system uncertainties have 
to be incorporated directly into the solution procedures (Fu, 
2002). If the objective function for an optimization problem is 
represented by F, the problem’s feasible region is given by D, 
and the problem contains n decision variables expressed in vec- 
tor form as X = [X1, X2, … , Xn], then the corresponding ma- 
thematical programming problem is to optimize F(X) subject 
to XD. When stochastic conditions exist, values for the pa- 
rameters, constraints and objective(s) can only ever be effi- 
ciently estimated via simulation. While simulation presents the 
means for comparing results, it does not provide a mechanism 
for constructing optimal solutions to these problems.  

SO is a broadly defined family of solution approaches that 
combines simulation with some underlying optimization me- 
thod for stochastic optimization. In SO, all unknown objective 
functions, constraints, and parameters are replaced by one or 
more discrete event simulation models in which the decision 
variables provide the settings under which the simulation is 
performed. Since all measures of system performance are sto- 
chastic, any potential solution, X, is evaluated via simulation. 
As simulation is computationally intensive, an optimization 
component is employed to guide the search for solutions throu- 
gh the problem’s feasible region using as few simulation runs 
as necessary (Azadivar, 1999; Fu, 1994, 2002; Law and Kelton, 
2000). Lacksonen (2001) contrasted the performance of the va- 
rious SO search strategies and found that evolutionary proce- 
dures clearly proved to be the most robust. In this paper, the 
SO solution search procedure is directed by an evolutionary al- 
gorithm.  

Evolutionary SO consists of two alternating computational 
phases: (i) an evolutionary module and (ii) a simulation module. 
Evolutionary SO maintains a set, or population, of candidate 
solutions throughout its execution. Because of the system’s 
stochastic components, all performance measures are necessa- 
rily statistics calculated from the responses generated in the si- 
mulation module. The fitness or quality of each solution in the 
population is found by having its performance criterion, F, 
evaluated by simulation. After simulating each candidate solu- 
tion, the respective fitness values become inputs to the evolu- 
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tionary module for the creation of the next generation of solu- 
tions. The fitness of each solution within the population is ran- 
ked in comparison to every other candidate solution. These 
ranked fitness measures become the inputs to the evolutionary 
module where the next solution population is created via the 
evolutionary algorithm. The evolutionary module evaluates the 
entire population in each generation of the solution search and 
evolves the search from its current population to a subsequent 
one. The driving force underlying evolutionary procedures is 
that fitter solutions in a current population possess a greater li- 
kelihood for survival and progression into the subsequent ge- 
nerations. The evolutionary module continuously evolves the 
system toward improved solutions in subsequent populations 
and ensures that the solution search does not become fixated 
at some local optima. This alternating, two-phase search pro- 
cess terminates when an appropriately stable system state has 
been attained (Azadivar and Tompkins, 1999; Pierreval and 
Tautou, 1997; Yeomans, 2008). The optimal solution produced 
by the procedure is the single best solution found over the cour- 
se of the entire search. 

One shortcoming of essentially all of the preceding MGA 
techniques has been that they have generally been based upon 
deterministic mathematical programming methods and conse- 
quently have no mechanism to effectively incorporate uncer- 
tainty into their solution construction. Fortunately, the evolving 
population-based search strategy of evolutionary SO provides 
a computational mechanism for integrating the inherent stoch- 
astic uncertainties directly into each of the generated solutions 
while simultaneously generating options that may never have 
been proposed or considered by decision-makers. By design, 
evolutionary search algorithms maintain populations of solu- 
tions throughout their searching phases. When evolving from 
one population to a subsequent one, the relatively weaker can- 
didate solutions within the population become progressively 
replaced by better solutions in the evolutionary survival-of-the- 
fittest analogy. Therefore, upon termination, SO procedures ha- 
ve not only produced single best answers from their solution 
searches, but have also concurrently created a set of several 
quantifiably good solutions residing in their highly fit, terminal 
populations. This concept is used in the new co-evolutionary 
SO MGA approach. 

In order to properly motivate the procedure, it is necessary 
to provide a more formal definition of the underlying, funda- 
mental goals of an MGA process (Brill et al., 1982; Zechman 
and Ranjithan, 2004). Suppose the optimal solution to an origi- 
nal mathematical model is X* with objective value Z* = F(X*). 
The following model can then be solved to generate an alter- 
native solution that is maximally different from X*:  

 
Max   = ∑i|Xi - Xi*| [P1] 
 
s.t. X ∈ D 
 
| F(X) - Z* | ≤ T 
 
where   is a difference function and T is a target specified in 
relation to the original optimal function value Z*. T is a user- 

supplied value that represents how much of the inferior region 
is to be explored for alternative solutions. For example, if the 
original objective is to minimize cost and the least cost is $100, 
then the target could be set at $110 thereby allowing for solu- 
tions that exceed the original model’s optimal solution by no 
more than 10%. To generate additional alternatives, the target 
T is progressively incremented such that the new solution fou- 
nd is maximally different from the previously generated alter- 
natives. This alternative generation process terminates when 
either no new alternative solution can be found or the prescri- 
bed number of alternatives has been generated. 

A direct approach to generate alternatives with the SO al- 
gorithm would be to iteratively solve the maximum difference 
model, P1, using SO by incrementally updating the target T 
whenever a new alternative must be produced. This approach 
would be somewhat similar in scope to the original Hop, Skip, 
and Jump (HSJ) method of Brill et al. (1982) in which an ini- 
tial problem formulation is optimized and then supplementary 
alternatives are generated by systematically adjusting the tar- 
get constraint to force the creation of suboptimal solutions. 
While this approach is straightforward, it would require repea- 
ted execution of the SO algorithm, which would be extremely 
computationally intensive (Yeomans, 2008).  

The new MGA procedure is designed to generate a small 
number of good but maximally different alternatives, as defi- 
ned by P1, in a single run of the SO procedure (i.e. the same 
number of runs as if SO were used solely for function optimi- 
zation) and is based upon the concept of co-evolution. In this 
new approach, pre-specified stratified subpopulation ranges 
within the evolutionary algorithm’s overall population are esta- 
blished that collectively evolve the search toward the formation 
of the stipulated number of very different solution alternatives. 
Each desired solution alternative is represented by each respec- 
tive subpopulation that undergoes the common evolutionary 
search procedure. This search can be structured based upon any 
standard evolutionary search procedure containing appropriate 
encodings and operators that best suit the problem being solved. 
The survival of solutions in each subpopulation depends upon 
how well the solutions perform with respect to both the model- 
led objective(s) and by how far away they are from all of the 
other solutions in the decision space as represented in P1. Thus, 
the evolution of solutions in each subpopulation is directly in- 
fluenced by those solutions contained in the other subpopula- 
tions, forcing the evolution of each subpopulation towards 
good but maximally distant regions of the decision space. This 
co-evolutionary concept enables the simultaneous search for, 
and production of, a set of quantifiably good solutions that are 
maximally different from each other (Yeomans, 2009). 

By using the co-evolutionary concept, it becomes possible 
to implement an SO-based MGA procedure that produces alter- 
natives which possess objective function bounds that are some- 
what analogous, but superior, to those created by an HSJ-type 
approach. While each alternative produced by an HSJ proce- 
dure is maximally different only from the single, overall opti- 
mal solution together with an objective value which is at least 
x% different from the best objective (i.e. x = 1%, 2%, etc.), the 
new co-evolutionary procedure is able to generate alternatives 
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that are no more than x% different from the overall optimal so- 
lution but with each one of these solutions being as maximally 
different as possible from every other generated alternative th- 
at is produced in terms of the solution structure of their deci- 
sion variables according to P1. Co-evolution is also a much 
more efficient process than HSJ in that it exploits the popula- 
tion-based searches of evolutionary algorithms in order to ge- 
nerate the multiple maximally different solution alternatives si- 
multaneously. Namely, while an HSJ-styled approach would 
be required to run n different times in order to generate n diffe- 
rent alternatives, the new algorithm need be run only a single 
time to produce its entire set of alternatives irrespective of the 
value of n. Hence, it is a much more computationally efficient 
procedure. 

 
 

Create initial population and stratify it into the 
number of different  solutions desired

Simulate each solution in S1 to determine the best 
solution in this subpopulation. This objective value is 

used as the target, T.  

Simulate each solution in the remaining 
subpopulations. Designate solutions satisfying the 

target as feasible 

Identify and preserve the best solution within each 
subpopulation. This step determines the best 
selection of maximally different alternatives.

Stop the algorithm if the termination criteria has been 
achieved

Calculate the decision space centroid (centre of 
mass) for each of the subpopulations

Calculate the minimum distance from each solution 
to the centriods of all other subpopulations

Identify the specific solution in each subpopulation 
which is as distant as possible from the solutions in 

every other subpopulation

Generate a new population by applying 
recombination operators to the solutions selected in 

the previous step

 
Figure 1. Flowchart of the Co-Evolutionary MGA Procedure. 
 

The steps in the co-evolutionary algorithm are as follows: 

1. Create an initial population stratified into P equally- 

sized subpopulations. The value for P typically must be estab- 
lished a priori by decision-maker. P represents the desired num- 
ber of alternative solutions to be generated. Sp represents the 
pth subpopulation set of solutions, p = 1, 2, …, P and there are 
K solutions contained within each Sp. S1 is the subpopulation 
dedicated to the search for the overall optimal solution to the 
modelled problem. The best solution residing in S1 is employ- 
ed to establish the benchmarks for the relaxation constraints 
used to create the maximally different solutions as in P1.  

2. Evaluate each of the solutions in S1 using simulation 
and identify the best solution with respect to the modelled ob- 
jective. 

3. In Sp, p = 2, 3, …, P, use the simulation module to evalu- 
ate each of the solutions with respect to the modelled object- 
tive. Solutions meeting the target constraint are designated as 
feasible, while all other solutions are designated as infeasible. 

4. Apply an appropriate elitism operator to each Sp to pre- 
serve the best individual in each subpopulation. In S1, this is 
the best solution evaluated with respect to the modelled objec- 
tive. In all other subpopulations Sp, p = 2, 3, …, P, the best 
solution is the feasible solution most distant in decision space 
from all of the other subpopulations (the distance measure is 
defined in Step 7). If all solutions in Sp are infeasible, then this 
is the best individual solution with respect to the modelled ob- 
jective. This step simultaneously selects a set of alternatives 
that respectively satisfy different values of the target T while 
being as far apart as possible (i.e. maximally different in the 
sense of P1) from the solutions generated in each of the other 
subpopulations. Note that by the co-evolutionary nature of this 
algorithm, the alternatives are simultaneously generated in 
one pass of the procedure rather than the P implementations 
suggested by the necessary increments to T in problem P1. 

5. Stop the algorithm if the termination criteria (such as 
maximum number of iterations or some measure of solution 
convergence) are met. Otherwise, proceed to Step 6. 

6. Identify the decision space centroid, Cip, for each of the 
N decision variables Xikp, i = 1, 2, …, N, in solution k = 1, 2, …, 
K, of Sp, Cip = (1/K)∑k Xikp. Each centroid represents the 
N-dimensional centre of mass for the solutions in each of the 
respective subpopulations, p. In the calculation shown, each 
dimension of each centroid is computed as the average value 
of that decision variable over all of the values for that variable 
within the respective subpopulation. Alternatively, the centroid 
could be calculated as a fitness-weighted average or by some 
other appropriately defined measure. 

7. For each solution k = 1, 2, …, K, in each Sq, q ≠ 1, 
calculate Dkq , a distance measure between that solution and 
all other subpopulations. Dkq = Min {|Xikp - Cip|; p = 2, …, P; p 
≠ q}. This distance represents the minimum distance be- 
tween solution k in subpopulation q and the centroids of all 
other subpopulations. 

8. Apply a binary tournament to the solutions in each Sp. 
For S1, the selection is with respect to the modelled objective. 
In each Sp, p ≠ 1, the selection is based on the fitness of the so- 
lution with respect to the modelled objective(s) as well as its 
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distance from all other subpopulations Dkp. For each Sp, p ≠ 1, 
(i) when both solutions are feasible with respect to the relaxed 
constraint, select the one with the better objective, or else (ii) 
if the majority of the solutions are feasible, select based upon 
the distance measure Dkp, otherwise, (iii) select based upon the 
objective function value. The goal of maximal difference is to 
force solutions from one subpopulation to be as far apart as po- 
ssible in the decision space from the solutions of each of the 
other subpopulations as required in P1. This step identifies the 
specific solution in each subpopulation which is as distant as 
possible from the solutions in all of the other subpopulations. 

9. In each Sp, apply recombination operators to the solu- 
tions selected in Step 8, and return to Step 2.  

A schematic flowchart illustrating the steps involved in the 
co-evolutionary procedure appears in Figure 1. 

By adopting this co-evolutionary MGA methodology, 
multiple maximally different design options would be created 
that meet established system criteria, while simultaneously re- 
maining acceptable and implementable in practice. The evolu- 
tionary SO procedure used within this MGA context will have 
generated a set of very good policy alternatives and, by the na- 
ture of evolutionary searches, most of these options would ne- 
ver have been considered by planners during their normal, more 
myopic policy-setting phase. SO’s ability to directly integrate 
the stochastic uncertainty into the option generation produces 
major practical benefits in comparison to deterministic approa- 
ches and, since environmental policy formulation problems 

contain so many uncertain components, reality dictates that 
such an approach would be requisite in order to produce one 
or more realistically acceptable solution alternatives.  

3. Case Study of SO used in MGA for Municipal 
Solid Waste Management Planning 

The efficacy of this new co-evolutionary SO MGA proce- 
dure will be illustrated using the municipal solid waste mana- 
gement planning study of Hamilton-Wentworth, Ontario taken 
from Yeomans et al. (2003). The MSW management system 
within the region is a very complicated process which is im- 
pacted by economic, technical, social, environmental, legisla- 
tional and political factors. Prior to the study of Yeomans et al. 
(2003), the municipality had not been able to effectively incor- 
porate inherent uncertainties into their planning processes and, 
therefore, had not performed effective systematic planning for 
the flow of wastes within the region. While this section briefly 
outlines the case, more extensive details and descriptions can 
be found in both Yeomans et al. (2003) and Yeomans (2008).  

Located at the Western-most edge of Lake Ontario, the 
Municipality of Hamilton-Wentworth covers an area of 1,100 
square kilometers and includes six towns and cities; Hamilton, 
Dundas, Ancaster, Flamborough, Stoney Creek, and Glanbrook. 
The Municipality is considered the industrial centre of Canada, 
although it simultaneously incorporates diverse areas of not 
only heavy industrial production, but also densely populated 
urban space, regions of significant suburban development, and 
large tracts of rural/agricultural land. The MSW system within 
Hamilton-Wentworth needed to satisfy the waste disposal re- 

quirements of its half-million residents who, collectively, pro- 
duced more than 300,000 tons of waste per year, with a budget 
of $22 million. The region had constructed a system to manage 
these wastes composed of: a waste-to-energy incinerator refe- 
rred to as the Solid Waste Reduction Unit (or SWARU); a 550 
acre landfill site at Glanbrook; three waste transfer stations lo- 
cated in Dundas (DTS), in East Hamilton at Kenora (KTS), and 
on Hamilton Mountain (MTS); a household recycling program 
contracted to and operated by the Third Sector Employment 
Enterprises; a household/hazardous waste depot, and; a back- 
yard composting program.  

The three transfer stations have been strategically located 
to receive wastes from the disparate municipal (and individual) 
sources and to subsequently transfer them to the waste mana- 
gement facilities for final disposal; either to SWARU for inci- 
neration or to Glanbrook for landfilling. Wastes received at the 
transfer stations are compacted into large trucks prior to being 
hauled to the landfill site. These transfer stations provide many 
advantages in waste transportation and management; these in- 
clude reducing traffic going to and from the landfill, provi- 
ding an effective control mechanism for dumping at the land- 
fill, offering an inspection area where wastes can be viewed 
and unacceptable materials removed, and contributing to a re- 
duction of waste volume because of the compaction process. 
The SWARU incinerator burns up to 450 tons of waste per day 
and, by doing so, produces 14 million kilowatt hours per year 
of electricity which can be either used within the plant itself 
or sold to the provincial electrical utility. SWARU also genera- 
tes a residual waste ash which must subsequently be transpor- 
ted to the landfill for disposal.  

Within this MSW system, decisions have to be made regar- 
ding whether waste materials would be recycled, landfilled or 
incinerated and additional determinations have to be made as 
to which specific facilities would process the discarded mate- 
rials. Included within these decisions is a determination of wh- 
ich one of the multiple possible pathways that the waste would 
flow through in reaching the facilities. Conversely, specific pa- 
thways selected for waste material flows determine which faci- 
lities process the waste. It is possible to subdivide the various 
waste streams with each resulting substream sent to a different 
facility. Since cost differences from operating the facilities at 
different capacity levels produce economies of scale, decisions 
have to be made to determine how much waste should be sent 
along each flow pathway to each facility. Therefore, any single 
MSW policy option is composed of a combination of many de- 
cisions regarding which facilities received waste material and 
what quantities of waste are sent to each facility. All of these 
decisions are compounded by overriding system uncertainties.  

The complete mathematical model for MSW planning in 
Hamilton-Wentworth can be found in the appendix, while more 
extensive details and descriptions of it appear in Yeomans et 
al. (2003). This mathematical formulation was used not only 
to examine the existing municipal MSW system, but also to 
prepare the municipality for several potentially enforced struc- 
tural changes to its operating conditions. Yeomans et al. (2003) 
examined three likely future scenarios, with each scenario in- 
volving potential incinerator operations. Scenario 1 considered 
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the existing MSW management system and corresponded to a 
status quo case. Scenario 2 examined what would occur should 
the incinerator operate at its upper design capacity; correspon- 
ding to a situation in which the municipality would landfill as 
little waste as possible. Scenario 3 permitted the incinerator to 
operate anywhere within its design capacity range; from being 
closed completely to operating up to its maximum capacity. 
Yeomans et al. (2003) ran SO for a 24-hour period to deter- 
mine best solutions for each scenario. For the existing system 
(Scenario 1), a solution that would never cost more than $20.6 
million was constructed. For Scenarios 2 and 3, Yeomans et al. 
(2003) produced optimal solutions costing no more $22.1 mi- 
llion and $18.7 million, respectively. In all of these scenarios, 
SO was used exclusively as a function optimizer with the goal 
being to produce only single best solutions.  

As outlined earlier, when public policy planners are faced 
with difficult and controversial choices, they generally prefer 
to be able to select from a set of near-optimal alternatives that 
differ significantly from each other in terms of the system stru- 
ctures characterized by their decision variables. In order to cr- 
eate these alternative planning options for the three MSW sys- 
tem scenarios, it would be possible to place extra target con- 
straints into the original SO model which would force the ge- 
neration of solutions that were structurally different from their 
respective, initial optimal solutions. Suppose for example that 
ten additional planning alternative options were created accor- 
ding to P1 through the inclusion of a technical constraint on the 
objective function that increased the total system cost of the 
original model from 1% up to 10% in increments of 1%. By 
adding these incremental target constraints to the original SO 
model and sequentially resolving the problem 10 times for each 
scenario (i.e. 30 additional runs of the SO procedure), it would 
be possible to create the prescribed number of alternative poli- 
cies for MSW planning.  

However, to improve upon the process of running thirty 
separate additional instances of the computationally intensive 
SO algorithm to generate these solutions, the co-evolutionary 
MGA procedure described in the previous section need be run 
exactly once for each scenario. The evolutionary parameters 
used for this computational experiment were a population size 
of 220 (i.e. a subpopulation size of 20 for the optimal solution’s 
subpopulation and for each of the 10 required alternatives), a 
maximum number of iterations of 300 (together with an addi- 
tional check for solution convergence), a crossover parameter 
of 40% and a mutation rate of 5%. The co-evolutionary MGA 
procedure was coded in Visual Basic and implemented on a 
Dell Precision M4300 laptop running at 2.4 GHz. This experi- 
mentation produced the 30 additional alternatives shown in Ta- 
ble 1. Each column of the table shows the overall system costs 
for the 10 maximally different options generated for each of 
the three scenarios. Given the performance bounds established 
for the objective in each problem instance, the decision-makers 
can feel reassured by the stated performance for each of these 
options while also being aware that the perspectives provided 
by the set of dissimilar decision variable structures generated 
by the co-evolutionary MGA algorithm are as different from 
each other as is feasibly possible. Hence, if there are stakeho- 

lders with incompatible standpoints holding diametrically op- 
posing viewpoints, the policy-makers can perform an assess- 
ment of these different options without being myopically con- 
strained by a single overriding perspective based solely upon 
the objective value. 

 
Table 1. Annual MSW Costs ($ Millions) for 11 Maximally 
Different Alternatives for Scenarios 1, 2 and 3 

Annual MSW System Costs Scenario 1 Scenario 2 Scenario 3

Overall “Optimal” Solution 20.6 22.1 18.7 
Best 1% Solution 20.7 22.2 18.8 
Best 2% Solution 20.9 22.4 18.9 
Best 3% Solution 21.1 22.6 19.1 
Best 4% Solution 21.4 22.7 19.4 
Best 5% Solution 21.4 23.1 19.5 
Best 6% Solution 21.8 23.3 19.7 
Best 7% Solution 22.0 23.6 19.9 
Best 8% Solution 22.2 23.8 20.0 
Best 9% Solution 22.3 23.9 20.1 
Best 10% Solution 22.5 24.1 20.3 

 
Furthermore, it should also be explicitly noted that the al- 

ternatives created do not differ from the lowest cost solution 
by at least the stated 1, 2, 3, … , 10%, respectively, but, in ge- 
neral, actually differ by less than these pre-specified upper de- 
viation limits. This is because each of the best alternatives pro- 
duced in S2, S3,…,S11 have solutions whose structural variables 
differ maximally from those of each and every one of the other 
alternatives generated, while simultaneously guaranteeing that 
their objective values deviate from the overall best objective 
by no more than the specified targets of 1, 2, …, 10%, respec- 
tively. Thus, the alternatives generated in this MGA approach 
are very different from those produced in the more straightfor- 
ward incremental HSJ-style of target setting, while simulta- 
neously establishing much more robust guarantees of solution 
quality.  

Although a mathematically optimal solution may not pro- 
vide the best approach to the real problem, it can be demons- 
trated that the co-evolutionary procedure does indeed produce 
very good solution values for the originally modelled problem, 
itself. Table 2 clearly highlights how the alternatives generated 
in S1 by the new MGA procedure are all “good” with respect 
to their best overall cost measurements relative to the optimal 
solutions found in Yeomans et al. (2003). It should be expli- 
citly noted that the cost of the overall best solutions produced 
by the MGA procedure (i.e. the best solutions found in S1) are 
actually identical to the ones found in the function optimization 
of Yeomans et al. (2003) for each scenario. This is obviously 
not a coincidence because any expansion of the population size 
in the SO procedure to include the additional subpopulations 
S2, S3, …, S11 does not detract from its evolutionary capabilities 
to find the best, function optimization solution in subpopulation 
S1. Hence, in addition to its alternative generating capabilities, 
the MGA procedure simultaneously also performs exceedingly 
well with respect to its role as a function optimizer. 

This example has demonstrated how co-evolutionary SO 
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MGA modelling can be used to efficiently generate multiple, 
quantifiably good policy alternatives that satisfy required sys- 
tem performance criteria according to prespecified bounds wi- 
thin stochastically uncertain environments and yet remain ma- 
ximally different from each other in the decision space.  

In totality, the results of this section underscore several 
important findings with respect to the use of SO within this 
co-evolutionary MGA procedure: (i) Co-evolutionary SO can 
be used to generate more good alternatives than planners would 
be able to create using other MGA approaches because of the 
evolving nature of its population-based solution searches; (ii) 
All of the solutions produced by SO incorporate stochastic sys- 
tem uncertainties directly into their structure during their crea- 
tion unlike all of the earlier deterministic MGA methods; (iii) 
The alternatives generated are good for planning purposes sin- 
ce all of their structures are as mutually and maximally diffe- 
rent from each other as possible (i.e. these differences are not 
just simply different from the overall optimal solution as in the 
HSJ-style approach to MGA); (iv) The MGA procedure is com- 
putationally very efficient since it need only be run once to ge- 
nerate its entire set of multiple, good solution alternatives (i.e. 
to generate n solution alternatives, SO MGA needs to run exa- 
ctly the same number of times that SO would need to be run 
for function optimization purposes alone – namely once – ires- 
pective of the value of n); and, (v) The best overall solutions 
produced by the MGA procedure will be very similar, if not id- 
entical, to the best overall solutions that would be produced 
by SO for function optimization alone. 

As described earlier, public sector, environmental policy 
problems are typically riddled with incongruent performance 
requirements and stochastic uncertainties that are very diffi- 
cult to quantify. Consequently, it is preferable to create several 
quantifiably good alternatives which may provide very diffe- 
rent perspectives to potentially unknown and unmodelled per- 
formance design issues during the policy formulation stage. 
The unique performance features captured within these dissi- 
milar alternatives could result in very different system perfor- 
mance with respect to the unmodelled issues, thereby incorpo- 
rating the unmodelled issues into the actual solution process. 
This MSW case study has demonstrated how co-evolutionary 
SO MGA modelling can be used to efficiently generate such 
multiple, good policy alternatives that satisfy the required sys- 
tem performance criteria according to the prespecified bounds 
within highly uncertain environments and yet remain maximal- 
ly different in the decision space.  

4. Conclusions 

Public environmental policy formulation is a very compli- 
cated process that can be impacted by many uncertain factors, 
unquantified issues and unmodelled objectives. This multitude 
of uncertain and competing dimensions forces public policy- 
makers to integrate many conflicting sources of uncertainty in- 
to their decision process prior to final policy adoption. With the 
presence of so much uncertainty, it becomes unlikely that any 
single solution could ever be constructed that simultaneously 
satisfies all of the incongruent system requirements without a 

Table 2. Best Annual MSW Performance Costs (in millions of 
$) Found for Scenarios 1, 2 and 3 

 Scenario 1 Scenario 2 Scenario 3

Yeomans et al. (2003) using SO  20.6  22.1  18.7  
Best Solution Found Using Co- 
Evolutionary Algorithm  

20.6  22.1  18.7  

 

significant counterbalancing of the numerous tradeoffs invol- 
ved. Any ancillary modelling techniques used to support the 
policy formulation process must, therefore, somehow simulta- 
neously account for all of these features while being flexible 
enough to encapsulate the impacts from the inherent planning 
uncertainty.  

In this paper, a computational procedure was presented th- 
at showed how SO could be used to efficiently generate multi- 
ple, maximally different, near-best policy alternatives for diffi- 
cult, stochastic, environmental problems and the effectiveness 
of this MGA approach was illustrated using a case study of 
municipal solid waste management planning. MSW systems 
provide an ideal testing ground for illustrating a wide variety 
of modelling techniques used to support environmental public 
policy formulation, since they possess all of the prevalent in- 
congruencies and system uncertainties that so often exist in 
complex planning processes.  

In its stochastic MGA capacity, SO was shown to be able 
to efficiently produce numerous solutions possessing the requi- 
site characteristics of the system, with each generated alterna- 
tive providing a very different planning perspective. However, 
unlike deterministic MGA methods, SO can incorporate sto- 
chastic uncertainties directly into the generation of these alter- 
natives. Because an evolutionary method guides the search, 
SO actually provides a formalized, population-based mechani- 
sm for considering many more solution options than would be 
created by other MGA approaches. Since SO techniques can 
be adapted to model a wide variety of problem types in which 
system components are stochastic, the practicality of this ap- 
proach can clearly be extended into many different types of 
operational and strategic planning applications containing sig- 
nificant sources of uncertainty.   
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Appendix: Mathematical Model for MSW Planning 
in Hamilton-Wentworth 

In the model, the various districts from which waste origi- 
nates are identified using subscript i; where i = 1, 2, …, 17, 
denotes the originating district. The transfer stations are deno- 
ted by subscript j, in which j = 1, 2, 3, represents the number 
assigned to each transfer station, where DTS = 1, KTS = 2 and 
MTS = 3. Subscript k, k = 1, 2, 3, identifies the specific waste 
management facility, with Landfill = 1, SWARU = 2, and Third 
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Sector = 3. The decision variables for the problem are designa- 
ted by xij, yik and zik where xij represents the proportion of solid 
waste sent from district i to transfer station j; yik corresponds 
to the proportion of waste sent from transfer station j to waste 
management facility k, and zik corresponds to the proportion 
of waste sent from district i to waste management facility k. 
For notational brevity, and also to reflect the fact that no distri- 
ct is permitted to deliver their waste directly to the landfill, de- 
fine zi1 = 0, for i = 1, 2, …, 17.  

In the model, any stochastically uncertain parameter A is 
represented by the notation A. The cost for transporting one ton 
of waste from district i to transfer station j is denoted by ,ijtx


 

that from transfer station j to waste management facility k is 
represented by ,jkty


 and that from district i to waste manage- 

ment facility k is .iktz


 The per ton cost for processing waste 
at transfer station j is j


 and that at waste management faci- 

lity k is k


. Two of the waste management facilities can pro- 
duce revenues from processing wastes. The revenue generated 
per ton of waste is 2r


 at SWARU and 3r


 at the Third Sector 

recycling facility. The minimum and maximum processing ca- 
pacities at transfer station j are jK


and ,jM


 respectively. Simi- 

larly, the minimum and maximum capacities at waste mana- 
gement facility k are kL


 and kN


, respectively. The quantity 

of waste, in tons, generated by district i is ,iW


 and the propor- 
tion of this waste that is recyclable is .ia


The proportion of re- 

cyclable waste flowing into transfer station j is .jRW


The pro- 
portion of residue (residual wastes such as the incinerated ash 
at SWARU) generated by waste management facility j is ,jQ


 

where 1Q


= 0 by definition. This waste residue must be shi- 
pped to the landfill for final disposal. 

Formulating any specific MSW policy formulated for 
Hamilton-Wentworth would require the determination of a de- 
cision variable solution satisfying constraints (2) to (31) and 
would be evaluated by its resulting cost found using objective 
(1).  

Cost/Revenue Objective: 

 

Minimize Cost =
5 6 3

1 1 2
p q r

p q r

T P R
  

     (1) 

 
Subject to: 
 
Transportation Cost Constraints: 
 

17 3

1
1 1

 ij ij i
i j

T tx x W
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

  (2) 
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Waste Processing Cost Constraints: 
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Revenue Constraints: 
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Transfer Station Capacity Limits Constraints: 
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Landfill, SWARU and Third Sector Recycling Facility 
Capacity Limits Constraints: 

 
17 3 3

1
1 1 1
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Mass Balance Constraints: 
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xij   0, yjk   0, zik   0, i = 1, 2, …, 17; j = 1, 2, 3; k = 1, 
2, 3 (31) 
 

In the objective function (1), the total transportation costs 
for wastes generated are provided by equations (2) to (6). Equa- 
tion (2) calculates the transportation costs for waste flows from 
the districts (i.e. the cities and towns) to the transfer stations, 
while equation (3) provides the costs for transporting the waste 
from the districts directly to the waste management facilities. 
The total cost for transporting waste from the transfer facilities 
to the waste management facilities is determined in equation 
(4). The transportation costs for residue disposal created at 
SWARU and the Third Sector are given by equations (5) and 
(6), respectively. The total processing costs for the transfer sta- 

tions and waste management facilities are expressed in (7) th- 
rough (12). Here, Pk represents the processing costs at waste 
management facility k, k = 1, 2, 3, and P(j + 3) represents the pro- 
cessing costs at transfer station j, j = 1, 2, 3. The processing 
cost, P1, in (7) indicates that the landfill receives wastes from 
both SWARU and the Third Sector in addition to the waste 
sent from the transfer stations. The relationship specifying the 
processing costs at KTS, P5 in (11), is more complicated than 
for DTS and MTS, since KTS must also process the Third Sec- 
tor’s unrecyclable residue (this waste processing pattern can 
also be observed in equations (16) and (19)) and this residue 
may have been sent there directly from the districts or from the 
other transfer stations. The revenue generated by SWARU, R2, 
and by the Third Sector, R3, are determined by expressions 
(13) and (14). All of these cost and revenue elements are amal- 
gamated into objective function (1). 

Although several alternative objectives for (1) were ana- 
lyzed in Yeomans et al. (2003), determining solutions which 
minimized the maximum cost satisfied the paramount risk aver- 
sion characteristics exhibited by the municipal government. 
Since municipal budgets generally establish fixed annual dollar 
amounts to fund their programs, municipalities tend to be ex- 
tremely risk averse and aim to avoid any potential outcomes 
that might lead to an overspending of their budgeted allocations. 
Therefore, focusing upon the maximum objective introduced 
practical advantages from a budget-setting standpoint for mu- 
nicipalities that must fund programs solely through taxation. 
The nature of these types of solutions might produce relatively 
high costs on average, but would guarantee that municipal spen- 
ding would never exceed the value of the maximum objective 
found. Hence, this is the objective employed for the fitness 
function in the co-evolutionary algorithm. 

Upper and lower capacity limits placed upon the transfer 
stations DTS, KTS and MTS, are provided by constraints (15) 
through (20), while capacity limits established for the landfill, 
SWARU and the Third Sector are given by (21) to (25). The 
waste processing relationship for the landfill is more complica- 
ted than for the other waste management facilities, since the 
landfill receives residue from both SWARU and the Third Sec- 
tor. Furthermore, while there is no lower operating require- 
ment placed upon the use of the landfill, both SWARU and the 
Third Sector require minimum levels of activity in order for th- 
eir ongoing operations to remain economically viable. Mass 
balance constraints must also be included to ensure that all ge- 
nerated waste is disposed and that the amount of waste flowing 
into a transfer facility matches the amount flowing out of it. 
Constraint (26) ensures the disposal of all waste produced by 
each district. Recyclable waste disposal is established by con- 
straint (27). In (27), it is recognized that not all recyclable wa- 
ste produced at a district is initially sent to the Third Sector 
recycling facility (i.e. some recyclable waste may initially be 
discarded as “regular” garbage) and that some, but not all, 
recyclable waste received at a transfer station is subsequently 
sent for recycling. The expression in (28) ensures that all 
waste received by each transfer station must be sent to a waste 
management facility. Equation (29) provides the mass balance 
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constraint for the wastes entering and leaving KTS (which 
handles more complicated waste patterns than the other two 
transfer stations). Constraint (30) describes the mass balance 
requirement for recyclable wastes received by the transfer 
stations that are then forwarded to the Third Sector. Finally, 
(31) establishes non-negativity requirements for the decision 
variables. 
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