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ABSTRACT.  Eutrophication and water quality degradation comprise one of the most important environmental problems associated 
with protecting freshwater. Here, systematical analyses of trends, qualitative and quantitative analyses of water quality variables, and 
simulations of eutrophication were conducted to evaluate biochemical oxygen demand (BOD), total phosphorus (TP), total nitrogen 
(TN), dissolved oxygen (DO), chlorophyll a (Chl a), and Secchi disk data (SD) based on separate hydrological periods to enhance our 
understanding of lake ecosystem restoration. Long-term trends were identified using seasonal-trend decomposition with local error 
sum of squares, while non-supervised artificial neural networks were used to identify qualitative characteristics, and quantitative 
characteristics were measured using statistical analyses. Numerical simulation of Chl a by the hybrid evolutionary algorithm provided 
a theoretical solution for ecological warnings. The results were as follows: (1) declining trends in BOD, TP, TN, DO and Chl a were 
observed during long-term seasonal decomposition after December 2006, but SD increased after June 2003; (2) partitioned K-means 
maps revealed quantitative characteristics with heterogeneous changes during three hydrological periods, with BOD, TN, SD and Chl a 
showing the highest clustering quality; (3) BOD and DO showed clear relative hierarchies when compared with other parameters based 
on quantitative analysis; (4) Chl a simulation revealed heterogeneous changes in the three hydrological periods, and sensitivity 
analyses indicated that BOD was highly sensitive to Chl a, but TP was not. The sensitivities of other parameters changed during 
different hydrological periods. The methods described here can be used as preliminary management tools for degraded lakes. 
 
Keywords: artificial neural networks, chlorophyll a, hybrid evolutionary algorithm, hydrological period, Lake Baiyangdian, water 
quality variations

 
 

 

1. Introduction 

Eutrophication and degradation of water quality owing to 
external nutrient overloads have significant impacts on lake eco- 
systems (Boesch, 2002), and the need to reduce eutrophication 
and improve water quality has been widely recognized (Gallo- 
way et al., 2008). Depending on the prevailing views, shallow 
lakes are influenced by nutrient concentrations and hydrologi- 
cal variations that have been predicted by mathematical models 
(Scheffer, 1989) and documented by field observations (Blin- 
dow et al., 1993; Scheffer et al., 1994). Scheffer (1989) con- 
cluded that shallow lakes with high nutrient loadings could 
"switch" their state if they were impacted by a strong external 
or internal force. Such forces commonly mentioned include a 
dramatic change in water level (Blindow et al., 1993), a major 
flushing event (Gulati and Van Donk, 1989), or a dramatic re- 
duction in vegetation (Van Donk and Gulati, 1995).  
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Measures to improve water quality include the restoration 
or expansion of aquatic plants known to be capable of remo- 
ving nutrients from the surface water (Coveney et al., 2002; 
Meuleman et al., 2002). Reduction of nutrient concentrations 
in the surface water should primarily be directed toward the re- 
duction of an inflow of excess pollutants from point and non- 
point sources (Köhler et al., 2005). However, reduction of ex- 
cess pollutants is often only partially achieved owing to the ac- 
ceptable cost limits. The degree of nutrient removal and reduc- 
tion of nutrient concentrations from surface water is actually 
influenced by the relative lake area covered by emergent vege- 
tation and thus by the morphometry of the lakeshore (Dobson 
and Frid, 1998). Accordingly, understanding the relationships 
between vegetation and nutrients can facilitate ecosystem re- 
storation. Coops et al. (1996) concluded that vegetation bio- 
mass was dependent on water levels during different hydro- 
logical periods and their dynamics in freshwater systems. Bo- 
densteiner and Gabriel (2003) found that a suitable water level 
was necessary for maintenance of vegetation. Water level flu- 
ctuations may be used to promote the expansion of emergent 
vegetation (Coops et al., 2004), which could then improve 
water quality. Hence, hydrological variations coupled with 
nutrient concentrations have great impacts on lake ecosystems. 
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Figure 1. Locations of Lake Baiyangdian and monitoring 
stations. 
 
However, the extent of combined impacts have not been dis- 
tinguished or evaluated. Moreover, stresses on lake ecosys- 
tems will be exacerbated by the steadily increasing human 
demands for water, as well as by climate change and shifts in 
water availability during seasons in which irrigation and eco- 
logical demands are high (Bernhardt et al., 2005; Postel et al. 
1996). This pattern and intensity of hydrological variability 
significantly change the biotic structure and activity, which 
thus influences the improvement of ecological restoration. In 
addition, hydrological variations in different hydrological peri- 
ods also have strong effects on water quality and lake eutrophi- 
cation. Moreover, aquatic vegetation coverage significantly 
influences the self-purification capability of the lake. As a 

consequence, problems associated with water quality at the 
basin scale cannot be resolved without a profound under- 
standing of ecological effects during different hydrological 

periods. Therefore, it is important to measure variations in nu- 
trients during different hydrological seasons.  

It is well-known that nitrogen (N) and phosphorus (P) are 
the main nutrients in lake ecosystem because their supply rates 
most often control aquatic plant primary production and bio- 
mass formation (Howarth and Marino, 2006; Paerl, 2009). Phy- 
sicochemical variables such as dissolved oxygen (DO), bioche- 
mical oxygen demand (BOD) and Secchi disk data (SD) have 
long been regarded as important indicators of pollution and 
measures of the health of aquatic ecosystems (Raj and Azeez, 
2009). Moreover, chlorophyll a (Chl a) is considered a princi- 
pal indicator of the trophic state of lakes (Boyer et al., 2009). 
Nonlinear variations of environmental variables, such as the 
physical and chemical properties of water quality, are affected 
to different degrees by pollution, which has long been proble- 
matic to ecological field data. Conventional clustering and nu- 
merical simulating methods cannot separate their effects ade- 
quately; however, new techniques with artificial neural networ- 
ks (ANN) methods (i.e., self-organization map clustering, and 
hybrid evolutionary algorithm (HEA)) provide a potential mea- 
ns of separating the respective effects of such environmental 
variables (Chon, 2011). This represents an opportunity to exa- 
mine the effects of water quality variables in different hydrolo- 
gical periods, much more critically than has been possible be- 

fore. 

In this study, systematical analyses of trends, qualitative 
and quantitative analyses of water quality variables and Chl a 
simulations were conducted with an emphasis on separate hy- 
drological periods (high water period, mean water period and 
low water period) in Lake Baiyangdian to enhance our under- 
standing of lake ecosystem restoration. Moreover, simulation 
of Chl a with other parameters using the HEA model was con- 
ducted to facilitate lake management. Our main objectives were 
to: (1) unveil long-term qualitative and quantitative characte- 
ristics of water quality variations in Lake Baiyangdian; (2) re- 
veal the regional characteristics of Chl a during three hydrolo- 
gical periods; and (3) propose an effective warning method for 
better management of lake ecosystem restoration.  

2. Materials and Methods 

2.1. Study Area 

Lake Baiyangdian, the largest natural freshwater body in 
the North China Plain, is located 130 km south of Beijing 
(48°43' ~ 39°02' N and 115°38' ~ 116°07' E) (Figure 1). The 
lake consists of 143 lake islands with 36 villages and 67 km2 
of reed marshes. The lake surface area is 366 km2, and the to- 
tal catchment is 31,200 km2. Lake depth varies according to 
hydrological conditions, but is usually less than 2.0 m (Xu et 
al., 1998). The annual mean precipitation in the study area is 
419.9 mm, and the annual mean evaporation is about 1,550 
mm. Since the 1980s, Lake Baiyangdian has decreased in size 
and dried up frequently.  

Lake Baiyangdian has long suffered from eutrophication, 
and much of its original area has converted to swamps. During 
2000 to 2009, the water quality conditions (mean ± standard 
error) at the field monitoring stations were as follows: BOD, 
5.27 ± 0.15 g/m3; total phosphorus (TP), 0.22 ± 0.01 g/m3; to- 
tal nitrogen (TN), 4.14 ± 0.23 g/m3; DO, 9.10 ± 0.13 g/m3; Chl 
a, 11.88 ± 0.87 g/m3; SD, 34.37 ± 1.36 cm. Nutrient loadings 
to Lake Baiyangdian are predominantly caused by non-point 
sources from tourism, municipal sewage and industrial waste- 
water from large enterprises as well as from village and town- 
ship plants. The deterioration of water quality has led to a de- 
crease in biodiversity (Zhong et al., 2008; Cui et al., 2010; Liu 
et al., 2006). The characteristics of the lake are summarized in 
Table 1. 

 

2.2. Data Source 

In this study, hydrological data and water quality data from 
2000 to 2009 were obtained from Anxin Environmental Bureau. 
In general, water samples were collected once per month from 
eight sampling points by national monitoring stations around 
the lake from 1999 to 2009. Meanwhile, field experiments were 
conducted from July 2009 to October 2010 at Nanliuzhuang 
Station and Wangjiazhai Station. The analytic methods used 
were based on the Guidebook to Chemical Analysis of Inland 
Surface Waters edited by the Water Conservancy Ministry of 
China (GB3838-2002) (State Environmental Protection Admi- 
nistration of China, 2002). The water samples were passed th- 
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rough a 0.45-m filter prior to analysis. The dilution and see- 
ding method was applied to BOD analysis, while the ammo- 
nium molybdate spectrophotometric method and gas-phase 
molecular absorption spectrometry were used for determination 
of TP and TN, respectively. The detection limits of these me- 
thods were 0.5 mg/L, 0.01 mg/L and 0.050 mg/L, respectively. 
An electrochemical probe method was used to measure DO. 
The hot ethanol extraction spectrophotometric method and Se- 
cchi disk were used to analyze Chl a and SD, respectively.  

 

2.3. Methods 

Although it is assumed that the emission rate of nutrients 
from point sources is stable during a certain period (e.g., one 
year), the contribution of these sources differs during each hy- 
drological period. Thus, quantitative analysis of each water qua- 
lity parameter was conducted using traditional statistics during 
each hydrological period. The methods used to analyze long- 
term trends, qualitative analysis of water quality variables and 
Chl a numerical simulation are described below. 

 

2.3.1. Long-term Seasonal Decomposition by Seasonal-trend 
Decomposition Using Local Error Sum of Squares (STL) 
Method 

To evaluate overall patterns within intra-annual variations 
for the time series data of water quality (2000 ~ 2009), we em- 
ployed a graphically based approach, the seasonal-trend decom- 
position using the STL method. This method is a graphics ba- 
sed statistical method for time series analysis (Qian et al., 2000). 
STL is an iterative nonparametric procedure that uses repeated 
loess (local error sum of squares) fitting (Sellinger et al., 2007). 
Generally, a time-series of monthly monitoring data may be 
considered the sum of three components, a high-frequency sea- 
sonal component, a low-frequency long-term component (or 
trend), and a residual component (variation not explained by ti- 
me), which are expressed as: 

 
Yyear, month = Tyear, month + Syear, month + Ryear, month (1) 
 
where Yyear, month is the observed value for a given year and mon- 

th, Tyear, month is the trend component, Syear, month is the seasonal 
component, and Ryear, month is the residual term.  

The median polish process uses median values for trend 
and seasonal components, and the STL method uses one con- 
tinuous loess line for the long-term trend component and 12 
month-specific loess lines for the seasonal component. As with 
median polishing, fitting is conducted for each component ite- 
ratively until the resulting trend and seasonal components are 
no longer different from the estimates of the previous iterations. 
The nonparametric nature of the STL method makes it flexible 
for revealing nonlinear patterns in seasonal data. Because each 
month is a subseries in the fitted loess model, the seasonal pa- 
ttern can change with time revealing changes in timing, ampli- 
tude, and variance that occur in the seasonal cycle.  

As with all nonparametric regression methods, the STL 
method requires subjective selection of smoothing parameters. 
There are two smoothing parameters in the model representing 
the window widths of the seasonal and long-term components. 
We selected window widths of 21 months and 61 months for 
seasonal and long-term components, respectively, to visually 
elucidate trends. The procedure was implemented in the R pro- 
gram with the “state” library. For more details, please refer to 
the study conducted by Cleveland et al. (1990). 

 

2.3.2. Qualitative Analysis by Non-supervised ANN 

A non-supervised ANN introduced by Kohonen (1988) 
and Hecht-Nielsen (1989) was applied to ordinate, cluster and 
map data from each hydrological period (Kohonen, 1995). The 
principal approach is called self-organizing mapping (SOM), 
in which the neurons of the non-supervised ANN learn to dis- 
tinguish between similar and dissimilar features of the norma- 
lized input data, which can be mapped as clustered inputs. In 
this context, the term non-supervised indicates that the learning 
algorithm is not guided by known output patterns, but instead 
learns the patterns from features of the inputs.  

The SOM creates a low-dimensional topological map using 
the unit weight vector of each map as a clustering center of in- 
put vectors. The map units are usually arranged in a regular or 
hexagonal grid. During the unsupervised learning process, the 

Table 1. Limnological Properties Reflected by the Databases of Lake Baiyangdian (2000–2009) 

Classification criteria High water period 
(Min/Mean/Max) 

Mean water period 
(Min/Mean/Max) 

Low water period 
(Min/Mean/Max) 

Duration 1st July -30th September 1st October -30th November 1st December -30th June 
Hydrological parameters:    

Precipitation (mm) 1.5/80.53/168.9 0/21.98/100.5 0/19.2/146.1 
Evaporation (mm) 112.9/164.13/246.3 30.8/72.78/118.3 13.5/130.35/298.8 
Water level (m) 5.75/6.66/7.44 5.75/6.59/7.5 5.7/6.69/7.51 

Water quality parameters:    
BOD (g/m3) 0/4.62/25.8 0/4.49/20.8 0/5.77/51.8 
TP (g/m3) 0.015/0.25/2.89 0.007/0.25/1.89 0.01/0.2/3.82 
TN (g/m3) 0/3.85/39.2 0/4.06/35.8 0/4.28/41.2 
DO (g/m3) 0.28/6.62/15.3 0.35/8.33/20 0/10.38/23.4 
SD (cm) 0/31.87/250 0/41.84/200 0/33.31/240 
Chl a (g/m3) 0/16.44/188 0/14.48/173 0/9.17/254 
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best-matching weight vector of the input pattern and its topo- 
logical neighbors on the map are updated together. Therefore, 
the neighboring map units have similar weight vectors. The re- 
lationships among weight vectors are well preserved on the to- 
pological map. The maintenance of similarity relationships 
makes the visualization of the structure of environmental data 
patterns more easily understandable. In addition to the cluste- 
ring process, SOM also projects input data nonlinearly onto a 
low-dimensional map (i.e. a two-dimensional map). For any 
input vector, a corresponding unit on the map will be specified 
such that the map unit’s weight vector and input vector have 
the closest distance. Similar inputs are projected close to each 
other on the map. 

The training algorithm of SOM is iterative. At the begin- 
ning, the weight vectors can be initialized linearly. For input 
vector x, the map unit with the weight vector closest to x is con- 
sidered the best-matching unit of x. The weight vector of the 
best-matching unit is denoted by mc. During each learning step 
t, the weight vectors of both the best-matching unit and its to- 
pological neighbors on the map are updated: 

 
mi(t+1) = mi(t) + α(t) hci(t) [x(t)- mi(t))]  (2) 

 
where mi is the n-dimensional model vector with each map unit 
i, x(t) is the input vector, hci(t) is the neighborhood function 
around the best-matching unit, and α(t) is the learning rate. 

There are two methods in which SOM can be utilized for 
environmental data classification. In one method, map units are 
labeled according to the training patterns most frequently pro- 
ject onto them after the clustering process. New patterns are cla- 
ssified into the classes of the map unit and weight vector they 
are closest to. In the other method, the weight vector is clustered 
into different classes using the information pertaining to the 
map structure, e.g., the U-matrix, instead of using the labels of 
input patterns after the clustering process. For the latter case, 
prior knowledge regarding similar labels is not needed (Liu et 
al., 2005). In this study, the latter case was used for classifica- 
tion. 

This study utilized the SOM method in combination with 
the clustering techniques described for the U-matrix method 
and K-means method by calculating the Euclidian distances of 
data features for the classification. First, the environmental da- 
ta were classified into two-dimensional units through training 
of the SOM. Next, all environmental data patterns were divi- 
ded into clusters using the clustering techniques of the U-ma- 
trix method and, subsequently, the K-means method, to visua- 
lize and better understand the features of the environmental da- 
ta. The U-matrix map visualized the relative distances between 
neighboring data of the input data space as shades of grey. The 
light areas in the U-matrix visualize neighboring data with the 
smallest distances belonging to a region or cluster. The black 
colors represent the largest distances between neighboring da- 
ta and denote borders between clusters. The K-means algorithm 
partitioned the input data space into a specified number of clu- 
sters based on the U-matrix (Lau et al., 2006; Wilson and Reck- 
nagel, 2001). The corresponding partitioned map for the three 

periods was defined in Table 1 and shown as Figure 4a. For 
more details, variants, and different methods of computing 
SOMs, please refer to Kaski et al. (1998).  

 
2.3.3. Numerical Simulation by HEA 

Evolutionary algorithms (EA) are adaptive methods that 
mimic processes of biological evolution, natural selection and 
genetic variation. EA search for suitable representations of a 
problem solution with genetic operators and the principle of 
“survival of the fittest”. Due to their merits of self-organization, 
self-learning, intrinsic parallelism and generality, EA have been 
successfully applied to pattern recognition, economic predic- 
tion, optimum control and parallel processing (Cao et al., 2006; 
Bäck et al., 2002). The HEA evolves the structure of the rule 
set by using genetic programming, and optimizes the random 
parameters in the rule set by using a general genetic algorithm 
(GA). The HEA uses genetic programming (GP) to generate 
and optimize the structure of rule sets and a GA to optimize the 
parameters of a rule set. GP (Banzhaf, 1998) is an extension 
of GA in which the genetic population consists of computer pro- 
grams of varying sizes and shapes. In standard GP, computer 
programs can be represented as parse trees, while leaf nodes 
represent elements from a terminal set. These symbolic pro- 
grams are subsequently evaluated by “fitness cases”. Fitter pro- 
grams are selected for recombination to create the next genera- 
tion by using genetic operators such as crossover and mutation. 
This step is iterated for consecutive generations until the termi- 
nation criterion of the run has been satisfied. A general GA is 
used to optimize the random parameters in the rule set. 

The HEA is able to produce formulas of rule-based equa- 
tion discovery, and was introduced to forecast and explain al- 
gal population dynamics in lakes (Cao et al., 2006). Two main 
attributes of the HEA are use of GP, which evolves the struc- 
ture of parsing trees (Banzhaf, 1998), and use of the general GA 
for optimization of random parameters in the rule sets (Jeong 
et al., 2010). The basic flowchart of the HEA is shown in Fi- 
gure 2. The principal procedure of the rule set evolution is si- 
milar to the framework of replication and reproduction of genes. 
In the initial stage, a 200-sized population of rule sets is ran- 
domly generated and this population, P(t), is evolved under 
HEA sequential procedures by genetic operators such as cross- 
over (vector and tree level) and mutation (tree level). This is 
one attribute of the HEA for structure optimization using those 
genetic operators in GP. The random parameters in each rule 
set of the population are then optimized by GA, which is ano- 
ther attribute of the HEA in the present study. Selection of the 
best-predicting model is based on the determination coefficients 
(r2) between the observed and predicted values. The deepest 
rule search is set at less than 3, which means the maximum num- 
ber of model parameters in a search space is 3. A 'trial and er- 
ror' algorithm is used in ecological informatics to select the best 
model. The models showing the highest determination coeffi- 
cients for both training and testing data are filtered. Among the 
filtered models, the model that produces the changing patterns 
closest to the observed Chl a is finally selected as the best-pre- 
dicting model. Using the best-predicting model, several sensiti-  
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vity analyses are implemented. First, we evaluate the utility con- 
dition between ‘THEN’ and ‘ELSE’ functions. This is done by 
varying the data of the parameters used in the ‘IF’ function, be- 
tween mean ± standard deviation. The utility of the ‘THEN’ or 
‘ELSE’ function is represented by 1 (used) and 0 (not used). 
Sensitivity analysis is used to estimate the output sensitivity 
from input variables so that it is useful to evaluate the applica- 
bility of models. The figures of sensitivity analysis are displayed 
in two graphs of ‘THEN’ and ‘ELSE’ parts of the model, and 
the data are sorted by an ‘IF’ condition of the model and then 
substituted into the sub tree sectors of the model. The range of 
parameter variation is determined by the mean and standard 
deviation. 

Long-term time series data were divided into training data 
(January 2000 to December 2007) and validating data (January 
2008 to December 2009). The experimental data were obtained 
from field monitoring conducted at Nanliuzhuang Station and 
Wangjiazhai Station from January 2010 to October 2010. The 
tested data were scattered without strict data intervals. 

3. Results 

3.1. Long-term Seasonal Decomposition of Water Quality 

The nonparametric nature of the STL approach makes it 
possible to identify nonlinear trends and seasonal interactions 
that would be missed by traditional trend detection methods. 
The STL decomposes the water quality time series into three 
components, a smoothed long-term trend, a seasonal cycle of 
varying amplitude, and residuals (Figure 3). The long-term trend 
lines indicate an irregular decline in BOD, TP, TN, DO and 
Chl a after December 2006, while an increasing trend is shown 
in SD after June 2003 (Figure 3). Trend curves with an irregu- 
lar periodicity of over 2 year oscillations were also detected. 
However, short-term seasonal variations in water quality were 
regular in seasonal cycles of varying amplitudes (Figure 3). 

 

3.2. Qualitative Analysis of Water Quality 

Figure 4 provides a qualitative display of water quality pa- 
rameters. The results show that ordination and clustering by 
non-supervised ANN can be integrated into a powerful tool for 
analysis of complex ecological relationships in data. The hydro- 
logical seasonal patterns for water quality from 2000 to 2009 
show a significant intuitively difference (Figure 4). BOD and 
TN display regular similar clusters, with the highest value being 
observed in low water season (Figures 4b and 4d). However, 
TP, DO, Chl a and SD show different hydrological seasonal 
patterns. The highest value of Chl a is observed in the mean 
water season (Figure 4g), while the highest values of TP, DO 
and SD are observed in the no–high water season, no–high 
water season and no–low water season, respectively (Figures 

4c, 4e and 4f). The results reveal that Chl a is distinctive from 
SD, BOD, TP, TN and DO. 

 

3.3. Quantitative Analysis of Water Quality 

Figure 5 shows the annual average variations in water qua-  
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End 
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Figure 2. Flowchart depicting the HEA application process. 

 

lity of the lake during three hydrological periods. During 10 
years, changes in TP, TN, SD and Chl a in three hydrological 
periods showed “tightly twisted curves” (Figures 5b, 5c, 5e 
and 5f), while changes in BOD and DO were relatively loose 
(Figures 5a and 5d). The basic trend in BOD were low water 
season > high water season > mean water season, while that 
of SD was low water season > mean water season > high 
water season. The highest value of TN was 5.55 ± 1.17 g/m3

 in 
the low water period in 2004, and the highest value of TP was 
0.40 ± 0.15 g/m3

 in the mean water period in 2007. Both the 
highest values of BOD and DO were observed in the low 
water period (8.35 ± 1.22 g/m3 in 2006 and 11.45 ± 0.47 g/m3 
in 2007, respectively). The lowest values of BOD and DO 
were observed in the high water season (2.63 ± 0.12 g/m3 in 
2009, 5.04 ± 0.86 g/m3 in 2005, respectively) (Figures 5b and 
5d). During the three hydrological periods, the highest value 
of SD occurred in the mean water period in 2004 (75.63 ± 
12.61 cm) and the lowest value was observed during the high 
water period in 2004 (5.42 ± 3.85 cm) (Figure 5e). The curves 
of variations in Chl a during the three hydrological periods are 
divided into two periods: smoothly fluctuating curves in 2000 
to 2005, and greatly fluctuating periods in 2005 to 2009 
(Figure 5f).  

 
3.4. Chl a Simulation  

Figures 6 to 8 show the best rule sets for Chl a for the 
three hydrological periods based on simulation by HEA. Ob- 
viously, the best sets of Chl a for the three hydrological 
periods show different rules (Figures 6a, 7a and 8a), as well as 
different sensitive parameters (Figures 6b, 6c, 7b, 7c, 8b and 8c).  

During a high water season, the best set is: 

13.482/

[( ) sin( )] 8.392

sin[ ( 1.656)] ( 27.418)

[( ) sin( )] 8.392

BOD

TN BOD BOD
Chl a

SD SD BOD

TN BOD BOD


           
   

(3) 
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Figure 4. Ordination and clustering of hydrological period of 
Lake Baiyangdian by non-supervised ANN and visualized 
partitioned K-means map: (a) Partitioned map, (b) BOD, (c) 
TP, (d) TN, (e) DO, (f) SD, (g) Chl a. 

The fitted curve shows basic consistency with the observed da- 
ta, and the value of R2 is 0.81. 

Sensitivity analyses of Chl a for high water season were 
also plotted (Figures 6b and 6c), and the results revealed that 
the sensitivity of Chl a to BOD and TN is always high. When 
the value of [(TN + BOD) – sin(BOD)] is less than 8.392, a 
smaller BOD indicates a higher Chl a concentration with a li- 
nearly decreasing trend. However, when the value is larger than 
8.392, the concentration of Chl a changes nonlinearly with in- 
creases of TN and BOD (Equation 3). 

During a mean water season, the best set is: 

cos[(5.491 ) 2.476] cos[( )]

7.203,

 [(TN > 3.294) & (TN < 7.816)] OR

[(TN >= 1.574) & (BOD < 7.656)]

{[( 4.487) cos( )]/sin[( / )]},

 [(TN < 3.294) OR (TN > 7.816)] OR

[(TN < 1.574) & (BOD >= 7.656)]

DO BOD TN

if

Chl a

SD TN DO TN

if
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 (4) 

The fitted curve shows normal variation with the observed da- 
ta, and the value of R2 is 0.73. 
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Figure 3. Results of the STL method with depictions of the long-term water quality component (the left row), seasonal 
component (the middle row), and residuals (the right row). 
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Figure 5. Annual average variations in water quality parameters in the lake during three hydrological periods 
(2000–2009): (a) BOD, (b) TP, (c) TN, (d) DO, (e) SD, (f) Chl a. 
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Figure 6. Results of numerical simulation and sensitivity analysis of Chl a by HEA during high water 
seasons: (a) for numerical simulation; (b) and (c) for sensitivity analyses. 
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Sensitivity analyses of Chl a for the mean water season 
were also plotted (Figures 7b and 7c). The results showed that 
the sensitivity of Chl a is always high for BOD, TN, DO and 
SD. When the parameters satisfy the conditions in Equation 4, 
the sensitivity variations display differences among different 
conditions. 

In a low water season, the best set is: 

 

14.26/ln[ ln( ) ] sin(ln( ( - 22.44) ),

( 4.906) {[( 4.891)&( 4.816)]

[( 4.816) ( 4.906)]}

{ /ln[ ( /14.685) ]} 9.079/ln[ ( / ) ],

( 4.906) {[( 4.891)&( 4.816)]

[( 4.8

SD SD

if BOD OR BOD DO

OR DO OR BOD

Chl a

BOD SD SD TN

if BOD OR BOD DO

OR DO



  
 

 



  
 16) ( 4.906)]}OR BOD













                 (5) 
 
The fitted curve shows nearly perfect variation with the obser- 
ved data, and the value of R2 is 0.94. 

The sensitivity analyses of Chl a for low water season are 
plotted in Figures 8b and 8c. The results showed that the sen- 
sitivity of Chl a for BOD, TN and SD is always high. When TN 
and SD satisfy the conditions in Equation 5, a smaller value of 
SD can lead to a higher of concentration Chl a with a linear de- 
crease. However, a larger concentration of TN can cause a hi- 
gher concentration of Chl a with a linear increase. The varia- 
tion in sensitivity BOD differs among conditions.  

Based on comparison of the three hydrological periods, a 
larger SD owing to improved water transparency usually indi- 
cates a lower Chl a concentration. The sensitivity of Chl a to 
SD changes was also high for all three hydrological periods, 

which indicates a positive trend as high levels limit underwater 
light for photosynthesis. In addition, Chl a shows little sensiti- 
vity to changes in TP and DO, especially TP. Overall, the resu- 
lts demonstrated that ordination and clustering by non-supervi- 
sed ANN and simulation by HEA can be integrated into a po- 
werful tool for analysis of complex ecological relationships in 
time series data (Figures 4, 5, 6, 7 and 8). Moreover, Chl a is 
distinctive from BOD, TN, DO and SD, despite differences in 
the trophic state and morphometry of the lake. 

As shown in Figure 9, less scattering and denser values 
around the straight line were displayed during the three hydro- 
logical periods. The Chl a simulation had a testing R2 of 0.8608, 
0.9054 and 0.9591 for the high water period, mean water pe- 
riod and low water period, respectively. The significant levels 
are all below 0.001. Therefore, the best rule sets for the res- 
pective hydrological seasons can be a potential index for early 
warning of ecosystem degradation, which should be integrated 
into lake management in future.  

4. Discussion 

It is clear that qualitative analysis of water quality presen- 
ted by a non-supervised ANN provides a proper tool for deve- 
lopment of cluster and visual maps, which could be a useful fra- 
mework for lake research. The methods presented here will fur- 
ther facilitate “basic research on complex interactions (that) 
will lead to explanations for the variability and unpredictability 
that presently hamper lake management efforts…” (Carpenter, 
1988). However, parameters with qualitative ordination and clu- 
stering by non-supervised ANN were only shown to be highly 
indicative for testing hypotheses regarding algal specific prefe- 
rences for water quality and environmental conditions (Reck- 
nagel et al., 2006). Although the quantitative analysis by recu- 
rrent supervised ANN has led to certain achievements in fore- 
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Figure 7. Results of numerical simulation and sensitivity analysis of Chl a by HEA during mean water 
seasons: (a) for numerical simulation; (b) and (c) for sensitivity analyses. 
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casting algal blooms, it is still theoretical. Future studies should 
focus on practical transformation by a combination of quantita- 
tive and qualitative analyses.  

The quantitative analysis of water quality with traditional 
statistics described the variation in time series. The three hydro- 
logical periods reflected different hydrological conditions, and 
demonstrated the effects on biotic processes and water quality 
variation. However, these water quality parameters could not 
contain all of the information pertaining to the freshwater eco- 
system.  

The HEA is still robust against multiple eco-informatics 
and has been developed to discover predictive rule sets in com- 
plex ecological data. The HEA has been designed to evolve the 
structure of rule sets by using GP and to optimize the random 
parameters in the rule sets by means of a GA. The HEA has 
been successfully applied to analysis of long-term monitoring 
data for shallow eutrophic lakes in Japan and Keron (Kim et 
al., 2000; Jeong et al., 2001; Jeong et al., 2003). Cao et al., 
(2006) confirmed the suitability of the HEA by comparing the 
model explanations and sensitivity analysis with theoretical 
hypotheses and experimental results in an investigation of two 
shallow eutrophic lakes in East Asia. Overall, the HEA provi- 
des an effective tool for exploring multiple eco-informatics.  

High determination coefficients in Chl a simulation were 
also observed in extreme hydrological periods (high water sea- 
son and low water season). It is well-known that Chl a repre- 
sents the primary production of phytoplankton in lake ecosys- 
tems. The growth of phytoplankton is sensitive to water quality 
parameters such as TN, TP, DO, etc. (Cloern and Jassby, 2010). 
In extreme hydrological periods, fluctuations in water level are 
the most obvious features that bring a great deal of nutrients 
to phytoplankton growth owing to enhancement of the exchan- 
ge between surface water and sediment (Xia et al., 2009; Mor- 
tazavi et al., 2012). Specifically, phytoplankton experience ma- 
turity during the high water season (July to September), and then 

gradually die during the low water season (October to Novem- 
ber). Moreover, the warm temperatures during those periods 
can promote the diversity and appearance of phytoplankton in 
semiarid areas (Sellami et al., 2012). The development of cya- 
nobacteria occurs in autumn, which results in peak values as a 
consequence of nutrient replenishment (Xia et al., 2004; Abran- 
tes et al., 2006). The cyanobacteria dominance recorded in Ba- 
rra Bonita Reservoir indicates that high nutrient availability is 
the controlling factor (Dellamano-Oliveira et al., 2008). Increa- 
ses in the biomass of phytoplankton imply a close connection 
between Chl a and water quality parameters during high and 
low water season. The Chl a concentration, which represents 
the activities of phytoplankton in those periods, can easily be 
detected.  

Because of a lack of high frequency time series data, the 
number used in the HEA model is relatively lower, which ma- 
kes the simulated data easier to fit with a high determination 
coefficient. Maier et al. (2010) reported that inputs selected 
(number of inputs and input independence) can have a signifi- 
cant impact on performance of the ANN model. Model based 
approaches (i.e. HEA model) rely on the number of hidden no- 
des, which have the potential to mask the effect on model per- 
formance. However, the deepest rule in the HEA model is set 
less than 3, which indicates that the maximum model parame- 
ters is 3 for the search space. Thus, the combined effects of re- 
latively fewer data and the deepest rule search less than 3 are 
likely to produce higher determination coefficients. According- 
ly, it is rational to run the HEA model for the simulation. 

The high accuracy determination coefficient of the Chl a 
simulation has been shown in many previous studies. Reck- 
nagel et al. (2006) simulated the Chl a concentrations in Lake 
Kasumlgaura and Lake Soyang using the EA algorithm and ob- 
tained determination coefficients of 0.97 and 0.84, respectively. 
The Chl a simulation using the EA algorithm in the lower Nak- 
dong River (South Korea) showed a high accuracy with a de 
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Figure 8. Results of numerical simulation and sensitivity analysis of Chl a by HEA in low water seasons: (a) 
for numerical simulation; (b) and (c) for sensitivity analyses. 
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Figure 9. Scatterplots comparing observed and predicted Chl 
a concentrations using the best rule sets with experimental 
data for: (a) high water period; (b) mean water period; (c) low 
water period. 
 
-termination coefficient of 0.83 (Kim et al., 2010).  

Finally, the special regional characteristic of high frequen- 
cy water recharges must be considered. In Lake Baiyangidan, 
water recharges have been implemented annually during the 

last decade, and these have usually occurred in spring and win- 
ter (mean water season) (Zhao et al., 2011). Studies indicate 
that algal blooms are related to hydrological conditions such 
as water recharges (Smayda, 2008; Cloern and Jassby, 2010; 
Phlips et al., 2011). Water recharges have potential effects on 
phytoplankton growth, and consequently on variations in Chl 
a. Mortazavi et al. (2012) reported that water Chl a concentra- 
tions reached peak values in Weeks Bay (Alabama, USA) du- 
ring late summer and early fall, when water recharge was low 
(approximately low water season), and dropped to low values 
during mean water season. Contrary to the other two water sea- 
sons, there is a large amount of data available for the mean wa- 
ter season because the season covers the entire winter and spr- 
ing. The large dataset can expand the search space for the best 
rule set in the HEA model and consequently influence the ac- 
curacy of the determination coefficient. In winter, surface wa- 
ter is covered with ice and the value of Chl a approaches zero, 
but the nutrient concentration in the water body is still active. 
The relationship between phytoplankton and water nutrient in 
this period is really weak which is the most contributions to the 
low accuracy for Chl a prediction due to the meaningless best 
rule searching in HEA model. However, the predicted accuracy 
can be promoted by the enhanced connections between Chl a 
and nutrients during spring. The range of Chl a values changes 
less drastically in the mean water season, with most concentra- 
tions being below 20 g/m3. The ultimate purpose of the HEA 
model is to prevent algal blooms by detection of high Chl a va- 
lues before blooms occur. High Chl a values were indeed dete- 
cted during the mean water season (Figure 7b). For example, 
high Chl a concentrations were observed in June 2006 and June 
2008. Thus, the determination coefficient is prone to lower ac- 
curacy in mean water season, whereas it is subject to higher 
accuracy during the other two hydrological seasons. 

Despite differences in the trend and modeling for Chl a 
prediction, the results provide some potential specific strate- 
gies for lake management. Specifically, BOD should receive 
greater attention owing to its high sensitivity to Chl a during 
all three hydrological periods, as well as its unique characteris- 
tics observed on the K-means map and upon traditional statis- 
tical analysis. Furthermore, other parameters should be focu- 
sed on individually based on their characteristics during diffe- 
rent hydrological seasons. Water recharges implemented in the 
mean water season are rational, but the results indicate that wa- 
ter recharges impact Chl a concentrations during this season. 
In future research, a larger time series dataset should be app- 
lied to further improve the HEA model and ultimately put the 
result into the practice. 

5. Conclusions 

It is important to understand long term water quality 
trend variations, appropriate clusters of parameters and Chl a 
simulation during individual hydrological seasons to enable 
relevant actions to improve water quality. In this study, long 
term trends, qualitative and quantitative analysis of water qua- 
lity variables, and Chl a simulations for Lake Baiyangdian 
were investigated. Based on our results, the following conclu- 
sions can be drawn:   
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1) In long-term seasonal decomposition, the concentra- 
tions of BOD, TP, TN, DO and Chl a showed decreasing trends 
after December 2006, but the SD values increased after June 
2003. 

2) The partitioned K-means map developed by non-super- 
vised ANN revealed heterogeneous changes in three hydrolo- 
gical periods, with BOD, TN, SD and Chl a showing high clus- 
tering. 

3) Quantitative variations in water quality demonstrated 
by traditional statistics showed a clear hierarchy of BOD and 
DO during the three hydrological periods, but TP, TN, SD and 
Chl a showed drastic fluctuation. 

4) Chl a simulation by HEA also revealed heterogeneous 
changes during the three hydrological periods in Lake Baiyang- 
dian. Sensitivity analyses indicated that BOD was highly sen- 
sitivity to Chl a during all three hydrological periods, while 
TP was insensitive. TN, SD and DO had individual effects on 
the concentration of Chl a under different conditions. The best 
rule sets in the respective hydrological periods provided poten- 
tial indexes for early warnings in the degraded lake. 

Systematical analyses with trend, qualitative and quanti- 
tative analysis of regional water quality variables, as well as si- 
mulations of eutrophication could enhance our understanding 
of lake ecosystem restoration. These analyses can be used as 
preliminary management tools for improvement of water qua- 
lity in degraded lakes. 

 
Acknowledgments. The authors thank Dr. Friedrich Recknagel for 
his help in algorithm programming during training seminars at the 
International Conference on Environmental Informatics by ISEIS, 
2010, Beijing, China. We also would like to extend special thanks to 
the editor and the anonymous reviewers for all their detailed 
comments and valuable suggestions in greatly improving the quality 
of this manuscript. This research was financially supported by the 
National Water Pollution Control Major Project of China 
(No.2008ZX07209–009), the Program for Changjiang Scholars and 
Innovative Research Team in University (No.IRT0809) and the 
National Science Foundation for Innovative Research Group (No. 
51121003). 

 
References 

Abrantes, N., Antunes, S., Pereira, M., and Gonçalves, F. (2006). Sea- 
sonal succession of cladocerans and phytoplankton and their inter- 
actions in a shallow eutrophic lake (Lake Vela, Portugal), Acta 
Oecol., 29(1), 54-64. http://dx.doi.org/10.1016/j.actao.2005.07.0 06 

Bäck, T., Hammel, U., and Schwefel, H. (2002). Evolutionary com- 
putation: Comments on the history and current state, IEEE Tran- 
sactions on Evolutionary Computation, 1(1), 3-17. 

Banzhaf, W. (1998). Genetic Programming: An Introduction on the 
Automatic Evolution of computer programs and its Applications: 
Morgan Kaufmann. San Francisco, CA, USA. 

Bernhardt, E., Palmer, M., Allan, J., Alexander, G., Barnas, K., Broo- 
ks, S., et al. (2005). Ecology: synthesizing US river restoration 
efforts, Science, 308(5722), 636. http://dx.doi.org/10.1126/science. 
1109769 

Blindow, I., Andersson, G., Hargeby, A., and Johansson, S. (1993). 
Long-term pattern of alternative stable states in two shallow 
eutrophic lakes, Freshw. Biol., 30(1), 159-167. 

Bodensteiner, L., and Gabriel, A. (2003). Response of mid-water 
common reed stands to water level variations and winter con- 

ditions in Lake Poygan, Wisconsin, USA, Aquat. Bot., 76(1), 49- 
64. http://dx.doi.org/10.1016/S0304-3770(03)00013-5 

Boesch, D. (2002). Challenges and opportunities for science in redu- 
cing nutrient over-enrichment of coastal ecosystems, Estuaries and 
Coasts, 25(4), 886-900. http://dx.doi.org/10.1007/BF02 804914 

Boyer, J., Kelble, C., Ortner, P., and Rudnick, D. (2009). Phy- 
toplankton bloom status: Chlorophyll a biomass as an indicator of 
water quality condition in the southern estuaries of Florida, USA, 
Ecol. Indicators, 9(6), S56-S67. http://dx.doi.org/10.1016/j.ecolind. 
2008.11.013 

Cao, H., Recknagel, F., Joo, G., and Kim, D. (2006). Discovery of 
predictive rule sets for chlorophyll-a dynamics in the Nakdong Ri- 
ver (Korea) by means of the hybrid evolutionary algorithm HEA, 
Ecol. Inf., 1(1), 43-53http://dx.doi.org/10.1016/j.ecoinf.2005.08. 
001 

Carpenter, S. (1988). Complex interactions in lake communities, 
Science, 242(4884), 1450-1451. http://dx.doi.org/10.1007/978-1- 
4612-3838-6 

Chon, T.S. (2011). Self-Organizing Maps Applied to Ecological 
Sciences, Ecol. Inf., 6(1), 50-61. http://dx.doi.org/10.1016/j.ecoinf. 
2010.11.002 

Cleveland, R.B., Cleveland, W.S., McRae, J.E., and Terpenning, I. 
(1990). STL: A seasonal-trend decomposition procedure based on 
loess, J. Off. Stat., 6(1), 3-73. 

Cloern, J.E., and Jassby, A.D. (2010). Patterns and scales of phyto- 
plankton variability in estuarine–coastal ecosystems, Estuaries and 
Coasts, 33(2), 230-241. http://dx.doi.org/10.1007/s12237-009-919 
5-3 

Coops, H., van den Brink, F., and van der Velde, G. (1996). Growth 
and morphological responses of four helophyte species in an 
experimental water-depth gradient, Aquat. Bot., 54(1), 11-24. http: 
//dx.doi.org/10.1016/0304-3770(96)01025-X 

Coops, H., Vulink, J., and Van Nes, E. (2004). Managed water levels 
and the expansion of emergent vegetation along a lakeshore, 
Limnol. Ecol. Manage. Inland Waters, 34(1-2), 57-64. http://dx.doi. 
org/10.1016/S0075-9511(04)80022-7 

Coveney, M., Stites, D., Lowe, E., Battoe, L., and Conrow, R. (2002). 
Nutrient removal from eutrophic lake water by wetland filtration, 
Ecol. Eng., 19(2), 141-159. http://dx.doi.org/10.1016/S0925-8574 
(02)00037-X 

Cui, B., Li, X., and Zhang, K. (2010). Classification of hydrological 
conditions to assess water allocation schemes for Lake Baiyang- 
dian in North China, J. Hydrol., 385(1-4), 247-256. http://dx.doi. 
org/10.1016 /j.jhydrol.2010.02.026 

Dellamano-Oliveira, M., Vieira, A., Rocha, O., Colombo, V., and 
Sant'Anna, C. (2008). Phytoplankton taxonomic composition and 
temporal changes in a tropical reservoir, Fundam. Appl. Limnol., 
171(1), 27-38. http://dx.doi.org/10.1127/1863-9135/2008/0171-00 
27 

Dobson, M., and Frid, C. (1998). Ecology of aquatic systems. Harlow: 
Addison Wesley Longman Limited. 

Galloway, J., Townsend, A., Erisman, J., Bekunda, M., Cai, Z., Fre- 
ney, J., et al. (2008). Transformation of the nitrogen cycle: Recent 
trends, questions, and potential solutions, Science, 320(5878), 889. 
http://dx.doi.org/10.1126/science.1136674 

Gulati, R., and Van Donk, E. (1989). Biomanipulation in The Nether- 
lands: Applications in fresh-water ecosystems and estuarine waters 
—An introduction, Aquat. Ecol., 23(1), 1-4. http://dx.doi.org/10. 
1007/BF02286421 

Hecht-Nielsen, R. (1989). Self-Organization and Associative Memory, 
IEEE J. Quant. Electron., 25(2), 237. 

Howarth, R., and Marino, R. (2006). Nitrogen as the limiting nutrient 
for eutrophication in coastal marine ecosystems: Evolving views 
over three decades, Limnol. Oceanogr., 364-376. http://dx.doi.org/ 
10. 4319/lo. 2006. 51.1_part_2.0364 



F. Wang et al. / Journal of Environmental Informatics 20(2) 90-102 (2012) 

 

101 

Jeong, K., Joo, G., Kim, H., Ha, K., and Recknagel, F. (2001). 
Prediction and elucidation of phytoplankton dynamics in the 
Nakdong River (Korea) by means of a recurrent artificial neural 
network, Ecol. Model., 146(1-3), 115-129. http://dx.doi.org/10.1016 
/S0304-3800(01)00300-3 

Jeong, K., Kim, D., Whigham, P., and Joo, G. (2003). Modelling 
Microcystis aeruginosa bloom dynamics in the Nakdong River by 
means of evolutionary computation and statistical approach, Ecol. 
Model., 161(1-2), 67-78. http://dx.doi.org/10.1016/S0304- 3800(02) 
00280-6 

Jeong, K., Kim, D., Shin, H., Kim, H., Cao, H., Jang, M., and Joo, G. 
(2010). Flow Regulation for Water Quality (chlorophyll a) Im- 
provement, Int. J. Environ. Res., 4(4), 713-724. 

Kaski, S., Kangas, J., and Kohonen, T. (1998). Bibliography of 
self-organizing map (SOM) papers: 1981-1997, Neural Comput. 
Surv., 1, 1-176. http://www.cis.hut.fi/research/refs/ 

Köhler, J., Hilt, S., Adrian, R., Nicklisch, A., Kozerski, H., and Walz, 
N. (2005). Long-term response of a shallow, moderately flushed 
lake to reduced external phosphorus and nitrogen loading, Freshw. 
Biol., 50(10), 1639-1650.http://dx.doi.org/10.1111/j.1365-2427.20 
05.01430.x 

Kim, B., Choi, K., Kim, C., and Lee, U. (2000). Effects of the 
summer monsoon on the distribution and loading of organic car- 
bon in a deep reservoir, Lake Soyang, Korea, Water Res., 34(14), 
3495-3504. http://dx.doi.org/10.1016/S0043-1354(00)00104-4 

Kim, D., Jeong, K., McKay, R., Chon, T., Kim, H., and Joo, G. (2010). 
Model development in freshwater ecology with a case study using 
evolutionary computation, J. Ecol. Field Biol., 33(4), 275-288. 
http://dx.doi.org/10.5141/JEFB.2010.33.4.275 

Kohonen, T. (1988). Self-organization and associative memory (Ber- 
lin): Springer-Verlag. http://dx.doi.org/10.1007/978-3-662-00784-6 

Kohonen, T. (1995). Self-organising maps. Heidelberg: Springer- 
Verlag. http://dx.doi.org/10.1007/978-3-642-97610-0 

Lau, K., Yin, H., and Hubbard, S. (2006). Kernel self-organising 
maps for classification, Neurocomputing, 69(16-18), 2033-2040. 
http://dx.doi.org/10.1016/j.neucom.2005.10.003 

Liu, H.L., Wang, J., and Zheng, C.X. (2005). Using self-organizing 
map for mental tasks classification in Brain-Computer Interface, 
Advances in Neural Networks - Isnn 2005, Pt 2, Proceedings, 3497, 
327-332. 

Liu, C., Xie, G., and Huang, H. (2006). Shrinking and drying up of 
Baiyangdian Lake wetland: A natural or human cause? Chin. 
Geogr. Sci., 16(4), 314-319. http://dx.doi.org/10.1007/s11769-006- 
0314-9 

Maier, H.R., Jain, A., Dandy, G.C., and Sudheer, K.P. (2010). Me- 
thods used for the development of neural networks for the pre- 
diction of water resource variables in river systems: Current status 
and future directions, Environ. Model. Software, 25(8), 891-909.  
http://dx.doi.org/10.1016/j.envsoft.2010.02.003 

Meuleman, A., Beekman, J., and Verhoeven, J. (2002). Nutrient 
retention and nutrient-use efficiency in Phragmites australis stands 
after wasterwater application, Wetlands, 22(4), 712-721. http://dx. 
doi.org/10.1672/0277-5212(2002)022[0712:NRANUE]2.0.CO;2 

Mortazavi, B., Riggs, A., Caffrey, J., Genet, H., and Phipps, S. (2012). 
The Contribution of Benthic Nutrient Regeneration to Primary 
Production in a Shallow Eutrophic Estuary, Weeks Bay, Alabama, 
Estuaries Coasts, 1-16. http://dx.doi.org/10.1007/s12237-012-947 
8-y 

Paerl, H. (2009). Controlling eutrophication along the fresh-water– 
marine continuum: Dual nutrient (N and P) reductions are essential, 
Estuaries Coasts, 32(4), 593-601. http://dx.doi.org/10.1007/s122 
37- 009-9158-8 

Phlips, E., Badylak, S., Hart, J., Haunert, D., Lockwood, J., 
O’Donnell, K., Sun, D., Viveros, P. and Yilmaz, M. (2011). Cli- 
matic Influences on Autochthonous and Allochthonous Phytoplan- 

kton Blooms in a Subtropical Estuary, St. Lucie Estuary, Florida, 
USA, Estuaries Coasts, 1-18. http://dx.doi.org/10.1007/s12237- 
011-9442-2 

Postel, S., Daily, G., and Ehrlich, P. (1996). Human appropriation of 
renewable fresh water, Science, 271(5250), 785. http://dx.doi.org/ 
10.1126/science.271.5250.785 

Qian, S. S., Borsuk, M. E., and Stow, C. A. (2000). Seasonal and 
long-term nutrient trend decomposition along a spatial gradient in 
the Neuse River watershed, Environ. Sci. Technol., 34(21), 4474- 
4482. http://dx.doi.org/10.1021/es000989p 

Raj, N., and Azeez, P. (2009). Spatial and temporal variation in sur- 
face water chemistry of a tropical river, the river Bharathapuzha, 
India, Curr. Sci., 96(2), 245-251. 

Recknagel, F., Cao, H., Kim, B., Takamura, N., and Welk, A. (2006). 
Unravelling and forecasting algal population dynamics in two 
lakes different in morphometry and eutrophication by neural and 
evolutionary computation, Ecol. Inf., 1(2), 133-151.  http://dx.doi.  
org/10.1016/j.ecoinf.2006.02.004 

Scheffer, M. (1989). Alternative stable states in eutrophic, shallow 
freshwater systems: a minimal model, Aquat. Ecol., 23(1), 73-83. 

Scheffer, M., van den Berg, M., Breukelaar, A., Breukers, C., Coops, 
H., Doef, R., et al. (1994). Vegetated areas with clear water in 
turbid shallow lakes, Aquat. Bot., 49(2-3), 193-196. http://dx.doi. 
org/10.1016/0304-3770(94)90038-8 

Sellinger, C.E., Stow, C.A., Lamon, E.C., and Qian, S.S. (2007). 
Recent Water Level Declines in the Lake Michigan- Huron System, 
Environ. Sci. Technol., 42(2), 367-373. http://dx.doi.org/ 10.1021/ 
es070664+ 

Sellami, I., Romdahane, S. B., Guermazi, W., El Bour, M., Hamza, A., 
Mhamdi, M. A., Pinel-Alloul, B., Aleya, L., and Ayadi, H. (2012). 
Seasonal dynamics of plankton communities coupled with envi- 
ronmental factors in a semi arid area: Sidi Saâd reservoir (Center of 
Tunisia), Afr. J. Biotechnol., 11(4), 865-877. http://dx.doi.org/ 
10.5897/AJB11.2145 

Smayda, T.J. (2008). Complexity in the eutrophication–harmful algal 
bloom relationship, with comment on the importance of grazing, 
Harmful Algae, 8(1), 140-151. http://dx.doi.org/10.1016/j.hal.20 
08.08.018 

State Environmental Protection Administration of China (2002). 
Environmental quality standard for surface water, China (GB 
3838-2002). Beijing: China Environmental Science Press (in Chi- 
nese). 

Van Donk, E., and Gulati, R. (1995). Transition of a lake to turbid 
state six years after biomanipulation: mechanisms and pathways, 
Water Sci. Technol., 32, 197-206. http://dx.doi.org/10.1016/0273- 
1223(95)00699-0 

Wilson, H., and Recknagel, F. (2001). Towards a generic artificial 
neural network model for dynamic predictions of algal abundance 
in freshwater lakes, Ecol. Model., 146(1-3), 69-84. http://dx.doi. 
org/10.1016/S0304-3800(01)00297-6 

Xia, X., Yang, Z., Huang, G., Zhang, X., Yu, H., and Rong, X. (2004). 
Nitrification in natural waters with high suspended-solid content-- 
A study for the Yellow River, Chemosphere, 57(8), 1017-1029. 
http://dx.doi.org/10.1016/j.chemosphere.2004.08.027 

Xia, X., Yang, Z., and Zhang, X. (2009). Effect of Suspended- 
Sediment Concentration on Nitrification in River Water: Impor- 
tance of Suspended Sediment-Water Interface, Environ. Sci. Tech- 
nol., 43(10), 3681-3687. http://dx.doi.org/10.1021/es8036675 

Xu, M., Zhu, J., Huang, Y., Gao, Y., Zhang, S., and Tang, Y. (1998). 
The ecological degradation and restoration of Baiyangdian Lake, 
China, J. Freshw. Ecol., 13(4), 433–446. http://dx.doi.org/10.1080 
/02705060.1998.9663640 

Zhao, Y., Xia, X.H., Yang, Z.F., and Xia, N. (2011). Temporal and 
spatial variations of nutrients in Baiyangdian Lake, North China, J. 



F. Wang et al. / Journal of Environmental Informatics 20(2) 90-102 (2012) 

 

102 

Environ. Inf., 17 (2), 102-108. http://dx.doi.org/10.3808/jei.2011 
00192 

Zhong, P., Yang, Z., Cui, B., and Liu, J. (2008). Eco-environmental  
 

 

  water demands for the Baiyangdian Wetland, Front. Environ. Sci. 
Eng. China, 2(1), 73-80. http://dx.doi.org/10.1007/s11783- 008- 00 
15-y 

 
 

 




