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ABSTRACT.  This paper introduces an interval binary programming (IBP) method to the selection of control measures for noise 
reduction under uncertainty, by incorporating the concepts of interval numbers and interval mathematical programming into a binary 
programming optimization framework. As an extension of the binary programming method, IBP can explicitly address complexities 
and uncertainties in a noise control system. Parameters in the IBP model can be expressed as intervals, and uncertainties are effectively 
incorporated within the model solution process. The modelling approach is applied to a representative control measure selection 
problem for noise reduction in an urban environment. Results of the application indicate that useful solutions for noise control 
practices can be generated. A number of decision alternatives have been obtained and analyzed under different acceptable noise levels 
for two communities, and they reflect complex tradeoffs between environmental and economic considerations. 
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1. Introduction 

The problems associated with acoustic noise continues to 
be a major challenge for urban communities throughout the 
world due industrialisation and urbanisation. The noise gene- 
rated from plants and factories can pose significant threats to 
the health of workers and residents in nearby communities 
(King and Davis, 2003). Noise-induced hearing loss is one of 

the most common occupational diseases and the second most 
self-reported occupational illness or injury in the United States 

(Murray-Johnson et al., 2004). According to the National Ins- 
titute for Occupational Safety and Health (NIOSH), appro- 
ximately 30 million U.S. workers are currently exposed to 
noise hazards on the job and an additional 9 million U.S. wor- 
kers are at-risk for developing hearing loss (NIOSH, 1998). 
Long-term exposure to excessive noise levels is recognized as 
the major cause of hearing loss. Since hearing loss is difficult 
to cure, appropriate engineering controls are strongly recom- 
mended to minimize noise and diminish the noise effect on 

workers and nearby residences. However, engineering controls 
differ in cost and noise reduction capability; more effective 

noise control measures usually require greater investment, whi- 
le less effective measures may have lower costs. Therefore, 
optimization models are desired for helping decision makers 
make tradeoffs between system cost and noise control effi- 
ciency.   
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In the past decades, significant efforts have been made in 
developing optimization models for noise control systems. 
For example, Yeh et al. (2004) developed an optimization mo- 
del for noise reduction in a multiple noise system by using a 
genetic algorithm. Asawarungsaengkul and Nanthavanij (2006) 
proposed six optimization models for identifying the optimal 
noise hazard control strategy, including two models for engi- 
neering controls, two for job rotation and two for the use of 
hearing protection devices. They then applied an algorithmic 
approach to the selection of engineering controls for optimal 
noise redution (Asawarungsaengkul and Nanthavanij, 2007). 
Zachary et al. (2010) developed a multi-impact optimization 
model to reduce aviation noise and emissions at Luxem- 
bourg’s Findel Airport. Prats et al. (2011) proposed a multi- 
objective optimization model for designing aircraft noise aba- 
tement strategies. Also, there are a number of other optimi- 
zation models for identifying optimal noise control strategies 
(Waly and Sarker, 1998; King and Davis, 2003; Mun and Cho, 
2009; Tokmechi, 2011).  

In a practical noise control system, many parameters such 
as noise-reduction effects of different control measures, the 
unit cost of each measure, and acceptable noise levels for 
receptors may have some levels of uncertainty. However, pre- 
vious optimization models are deterministic and only deal 
with parameters with crisp values. Therefore, in this paper, an 
interval binary programming method will be developed and 
applied to a representative noise control system for selecting 
optimal noise reduction measures. Interval solutions for bi- 
nary variables will be analyzed and interpreted to provide 
useful decision alternatives for controlling noise from different 

sources and thus demonstrate the potential applicability of the 
developed method. 
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2. Methodology 

2.1. Interval Linear Programming (ILP) 

In ILP, interval values are allowed to be communicated 
into the optimization process. All parameters and decision 
variables in a linear programming model can be intervals 
(Huang et al., 1992).  

Specifically, an ILP model can be defined as follows: 

 

Min/Max 
1

n

j j
j

f c x  




 

  (1a) 

 
Subject to: 
 

1

, 1, 2, ...,
n

ij j i
j

a x b i m  



    (1b)  

 

0jx  , j = 1, 2, …, n   (1c) 

 
where ija , ib , and jc R   ( R denotes a set of intervals). 
Definitions of interval, the related properties, and operation 

principals are shown in Appendix 1. 

According to Huang et al. (1992, 1995), an interactive 
solution algorithm named the two-step-method (TSM) was 
proposed to solve the above problem. Interval solutions can 
be obtained based on the analysis of detailed interrelation- 
ships between the parameters and variables and between the 

objective function and constraints. The main idea of the TSM 
is to convert the original ILP model into two LP submodels 
corresponding to the lower and upper bounds of the object- 
tive-function value, respectively. In detail, when the objective 
function of model (1) is to be maximized, the first submodel 
would correspond to the upper bound of equation (1a). It can 
be formulated as follows (assume that 0ib  and 0f   ): 

 

1 1

Max
k n

j j j j
j j k

f c x c x    

  

     (2a) 

 
Subject to: 
 

1 1

( ) ( )
k n

ij ij j ij ij j i
j j k

a Sign a x a Sign a x b
       

  

   , i = 1, 2, …, m  

 (2b) 
 

0jx  , j = 1, 2, …, k  (2c) 

 

0jx  , j = k + 1, k + 2, …, n  (2d) 

 
where for n interval coefficients jc (j =1, 2, …, n) in the 
objective function of the

 
model, we assume the former k 

coefficients of them are positive, and the latter (n - k) 
coefficients are negative, i.e. 0jc   (j = k+1, k+2, …, n). 
Solutions of joptx  (j = 1, 2, …, k) and joptx  (j = k+1, k+2, …, 

n) can be obtained through solving sub-model (2). Based on 
solution for submodel (2), the submodel corresponding to the 
lower bound of equation (1a) can be formulated as follows: 

 

1 1
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k n

j j j j
j j k

f c x c x    

  

   ,  (3a) 

 
subject to: 
 

1 1
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ij ij j ij ij j i
j j k

a Sign a x a Sign a x b
       

  

    , i = 1, 2, …, 

m  (3b) 
 

0 j j optx x   , j = 1, 2, …, k  (3c) 

 

j j optx x  , j = k + 1, k + 2, …, n  (3d) 

  
From submodel (3), Solutions of joptx  (j = 1, 2, …, k) 

and joptx  (j = k+1, k+2, …, n) can be obtained. Thus, the final 
solution of [ ,  ]opt opt optf f f    and [ ,  ]jopt jopt joptx x x    can be 
obtained for model (1). 

 

2.2. Interval Binary Programming 

In integer programming, all the decision variables are in- 
tegers. An integer programming model can be formulated as 
follows: 

Min/Max 
1

n

j j
j

f c y


   (4a)  

 
Subject to: 
 

1

n

ij j i
j

a y b


 , i = 1, 2, …, m   (4b) 

 
0jy  and yj = integer variable, j = 1, 2, …, n  (4c) 

 
where aij, bj and cj R. 

A well-known approach to solve integer programming 
problems is the branch-and-bound algorithm (Garfinkel and 
Nemhauser, 1972; Blair and Jeroslow, 1982; Achterberg, 
2007). Mixed integer linear programming (MILP) has been 
widely used in many engineering fields since it can deal with 
capacity-expansion issues (Baetz, 1990; Rajagopalan et al., 
1998; Chen et al., 2002). However, it may not be effective 
when uncertain parameters exist (Jenkins, 1982). Therefore, 
Huang et al. (1995) introduced an interval mixed integer 
linear programming (IMILP) method, where input uncer- 
tainties can be expressed as integer-intervals and/or intervals. 
In the IMILP model, the integer-intervals are interval binary 
variables, indicating capacity-expansion options. Therefore, as 
an extension of the IMILP model, an interval binary pro- 
gramming (IBP) method can be formulated as follows: 
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Min/Max 
1

n

j j
j

f c x  




 

  (5a) 

 
Subject to: 
 

1

n

ij j i
j

a x b  



 , i = 1, 2, …, m   (5b)  

 

0jx  , j = 1, 2, …, n  (5c) 

 

0 1jx or  , j = 1, 2, …, n (5d)
 

 
The solutions of the interval binary varibles have four 

possible presentations ([0, 0], [1, 1], [0, 1], and [1, 0]). They 
can represent the related interval decisions (for optimal sce- 
narios) that can be interpreted to provide decision alternatives 
reflecting system condition variation caused by input uncer- 
tainties (Huang et al., 1995).  

These methodologies can be used to optimize the cost 
and effectiveness in the selection of noise-reducing techno- 
logies to mitigate the noise pollution problem outlined above. 
Given costs and the noise reduction potentials of each type of 
technology, IBP can be used to select the optimal combination 
of technologies to most efficiently achieve a desired level of 
noise reduction. 

 
Source 3 

Source 2 

Source 1 
 

Community 2 

Community 1 

Shelter 

Wrapping

Resilience

Barrier 

 
Figure 1. The study system. 

3. Application 

3.1. Overview of the system 

A representative problem has been developed to illustrate 
the IBP modelling approach, based upon cost and technical 
data extracted from the noise control system literature. Noise 
sources considered in the studied system are factories and the 
receivers are adjoining communities. Amounts of sources and 
receivers are defined as I and K, respectively. The original 
generated noise levels in the factories and the acceptable noise 
levels in the communities are shown as ONi (B) and ANk (B), 
respectively. The distance between factory i and community k 
is denoted as Dik (km), and a barrier could be established to 
mitigate noise. Figure 1 presents the hypothetical noise con- 
trol system. Three noise sources and two affected commu- 
nities are considered in this application. There are several 

alternatives that could be used to control noise from the ori- 
ginal sources. In this case, four external noise control mea- 
sures, as well as equipment updates are considered as the 
potential options for controlling noise, as presented in Table 1. 
These four external control measures can also be combined 
with each other to enhance the effect of noise-reduction. 

 
Table 1. Noise Control Measures for Factory i 

Option 
(j) 

Noise control 
measures 

Noise-reduction 
effect REj(dB) 

Cost  

1 Shelter  [9, 10] [190, 210] 
2 Wrapping   [7.5, 8] [100, 110] 
3 Resilience  [5.6, 6] [55, 60] 
4 Barrier  [11, 12] [240, 260] 
5 Equipment update  [23, 25] [600, 650] 
6 Shelter + resilience  [13.8, 14.5] [260, 280] 
7 Shelter + wrapping  [15, 16] [320, 350] 
8 Shelter + Barrier  [20.5, 22] [520, 550] 
9 Wrapping + Resilience  [10, 11] [200, 220] 
10 Wrapping + Barrier  [18, 20] [400, 435] 
11 Resilience + Barrier  [16, 18] [350, 370] 

 
Source 3 

Source 2 

Source 1
 

Community 2 

Community 1 

Shelter 

Wrapping

Resilience

Barrier 

 
Figure 2. Noise control measures under Scenario 1. 
 

Eleven noise control options could be generated, as 
shown in Table 1. The unit cost for each combination of noise 
control is denoted as REj (B). As for the noise-reduction effect, 
it is related to the noise sources and noise control measures, 
thus Cij ($/B) is employed to represent this effect.  

Table 1 shows the potential noise control measures and 
their combinations, and their related noise-reduction effect 
and unit cost for each measure. In this study, eleven control 
measures are considered for reducing excessive noise from 
different sources. These control measures include sheltering, 
wrapping, resilience features, barriers and combinations of the 

above methods. Equipment update is also one potential mea- 
sure to control noise. The sheltering method reduces emitted 
noise by placing the noise sources inside a shelter; for exam- 
ple, housing noise-generating pieces of equipment inside a 
building. Wrapping is similar to sheltering, but instead of pla- 
cing the sources inside a shelter, each source is separated from 
the environment by wrapping a noise absorbing material 
around it. Resilience features are noise control measures that 

reduce noise generated by placing padding and noise reducing 

materials, thus reducing noise generated from moving parts in 
the equipment. Barriers separate the source and the receiver 
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through placement of a physical obstruction between them. The 
obstruction can absorb or redirect sound pressure, effectively 
reducing the amount of noise that is heard by the receiver. 

 
Table 2. Acceptable Noise Levels of Considered Commu- 
nities 

Community Strict level 
(dB) 

Normal level 
(dB) 

Loose level 
(dB) 

1 (k = 1) 60 61 62 
2 (k = 2) 55 56 57 

 
Table 3. Distance from the Noise Source i to Community k 

Distance 
(km) 

Noise source 1 
(i =1) 

Noise source 2 
(i =2) 

Noise source 3 
(i =3) 

k = 1 150 200 120 
k = 2 140 180 170 

 

Different control measures produce different noise-re- 
duction effects and also have different costs associated to them. 
The original noise levels of noise sources 1, 2 and 3 are [90, 
92], [95, 97] and [100, 102] dB, respectively. For the 2 com- 
munities considered here, the acceptable noise levels are [60, 
62] and [55, 57] dB, respectively. For each community, 3 
scenarios are considered, as shown in Table 2. Table 3 pre- 
sents the distance from Noise Source i to Community k. 

 

3.2. Interval Binary Programming (IBP) Model for Noise 
Control System 

The problem under consideration is that excessive noise 
at emission sources would be reduced by different control 
measures over a given planning horizon. Binary variables (Xij) 
are introduced to denote whether or not the noise-control 
measure is selected. If Xij is equal to one, the jth noise control 
option would be implemented for factory i. Conversely, if the 
value of Xij is zero, the corresponding options would not be 
implemented. In the case of interval binary solutions, [0, 1] 
indicates a conservative model and [1, 0] indicates an opti- 
mistic model. In addition, for factory i, no more than one of 
the J options can be implemented. Since this problem has 
several configurations of options – acceptable noise levels, 
combinations of mitigation methods – this paper will use a 
series of scenarios to describe sets of conditions. There are 

three noise scenarios: strict, normal, and relaxed. The object- 
tive is to minimize the total noise-reduction cost (TC) for 
identifying effective noise-control measures while the noise 
received in the considered communities is no higher than 
acceptable levels. Thus, the following optimization model can 
be formulated: 

 

Min TC =
1 1

I J

ij ij
i j

C X
 
  (6a) 

 
Subject to:  

(1) The noise received in community k should be no 

higher than the accepted level (ANk). Noise reduction in the 
atmosphere is affected by a number of factors, including 
temperature and air pressure. At standard atmospheric con- 
ditions, noise reduction is 158.8 dB per kilometer, giving us:  

 

1

158.8
/10

1000

1

lg 10

J
ik

i ij j
j

k

D
ON X REI

i

AN


  
  
      

 



 
    
 
  


 , k = 1, 2, …, K   

 (6b) 
 
Noise levels are indicated by decibels, which is on a 
logarithmic scale. The source noise (ONi) is reduced by dis- 
tance and the selected noise control measure (Xij REj). 

(2) The longer the distance, the less the noise effect: For 
each community, we sort the distances between all the noise 
sources (i = 1, 2, …, I) to community k in a descending order, 
which are denoted as D(i)k (i = 1, 2,…, i1, i2, …, I), such that 
D(i1)k ≥ D(i2)k. Thus, we have: 

 

( 1) ( 2)
( 1) ( 1) ( 2)

1

158.8 158.8

1000 1000

J
i k i k

i i jk j i
j

D D
ON X RE ON



      

( 2)
1

,
J

i jk j
j

X RE

  (i1), (i2) = 1, 2, …, I; k = 1, 2, …, K (6c) 

 
(3) No more than one of the J combinations of noise 

control can be implemented for the combination of factory i 
and community k: 

 

1

1
J

ij
j

X


 , i = 1, 2,…, I   (6d) 

 
(4) Technical constraints: 

 
Xij = 0 or 1, i = 1, 2,…, I; j = 1, 2, …, J.  (6e) 
 

A few assumptions are made in this model in terms of 
noise transmission. Sound pressure decreases over distance, 
but this decrease is dependent on air pressure, temperature and 
humidity. Standard atmospheric conditions are assumed. Se- 
condly, sound waves can be absorbed and deflected by obs- 
tacles between the transmitter and receiver. For the purposes 
of this model, obstacles are ignored and it is assumed that 
noise travels unhindered between the sources and teh commu- 
nities. In practical problems, many system parameters related 
to noise control systems such as unit costs, noise-reduction 
effects of different control measures, and noise levels from 
different sources may not be determined as crisp values. Most 
of them may present some levels of uncertainty. Moreover, the 
quality of information that can be obtained for these uncer- 
tainties is generally not good enough to be presented as 
probability information. For example, the original noise levels 
for source 1 may vary with [90, 92] dB, which means that the 
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lowest level of the original noise from source 1 would be 90 
dB and the highest level would be 92 dB. Based on these 
considerations, interval parameters are introduced into the 
noise control optimization model framework to communicate 
uncertainties in Cij, ONi, and REj into the optimization process. 
This leads to an interval binary noise control optimization 
model as follows: 

 

Min 
1 1

TC
I J

ij ij
i j

C X  

 


 

(7a) 

 
Subject to:  
 

1 ( )
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  
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 



 
    
 
  


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 (7b) 
 

( 1) ( 2)
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
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1

1
J

ij
j

X 



 , i = 1, 2, …, I (7d) 

 

ijX  = [0, 1], [0, 0], [1, 0] or [1, 1]; i = 1, 2, …, I, and j = 1, 

2, …, J (7e) 
 

According to Huang et al. (1995), model (7) can be 
transformed to the following two submodels: 

 

Submodel 1: 
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ijX   = 0 or 1; i = 1, 2, …, I, and j = 1, 2, …, J. (8e) 

 
Submodel 2: 
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1

1
J

ij
j

X 



 , i = 1, 2, …, I. (9d) 

ijX   = 0 or 1; i = 1, 2, …, I, and j = 1, 2, …, J. (9e) 

 
Models 8 and 9 above can be solved by the solution 

proposed by Fan et al. (2012). 

4. Results and Discussion 

Table 4 presents the solutions obtained from the IBP 
model for noise abatement under uncertainty. The results 
show that different measures would be applied to different 
noise sources to mitigate the noise effect on nearby residences. 
Moreover, for one factory, the preferred noise control measure 
may be different under different acceptable noise levels. 

Three scenarios have been considered for this problem. 

Scenario 1 is the strictest, with the lowest acceptable noise 
levels, Scenario 2 is the middle range and Scenario 3 has the 
highest accepted noise levels. The type of scenario applicable 

to the problem would depend on the type of communities 
nearby – a residential community with retirement homes, for 
example, should have lower acceptable noise levels than a 
commercial area. 

Scenario 1 corresponds to the strictest standard, where 
both Communities 1 and 2 are exposed to the lowest 
acceptable noise levels. In this scenario, option 6 (i.e. Shelter 
and Resilience) would be applied to control noise for factory 
1 under the optimistic condition, which corresponds to the 
lower bound of the objective-function value, while option 7  
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Table 5. Results for Scenario 1 
  Optimistic Conservative 

  Option Cost Option Cost 

Source 1 6 260 7 350 

Source 2 7 320 10 435 

Source 3 8 520 5 650 

System Cost 1100 1435 

 
Table 6. Results for Scenario 2 

  Optimistic Conservative 

  Option Cost Option Cost 

Source 1 4 240 6 280 

Source 2 6 260 10 435 

Source 3 10 400 5 650 

System Cost 900 1365 

 
Table 7. Results for Scenario 3 

  Optimistic Conservative 

  Option Cost Option Cost 

Source 1 9 200 6 280 

Source 2 6 260 7 350 

Source 3 10 400 8 550 

System Cost 860 1180 

 
would be considered under the conservative condition, as 
shown in Table 5. 

This is because the optimistic condition would predomi- 
nately focus on reducing system cost while the conservative 
condition mainly considers the effects of noise reduction. Un- 
der the optimistic condition, the noise-reduction effect is con- 
sidered to achieve its upper bound (e.g. 14.5 dB for option 6) 
and the cost of each option goes to its lower bound (e.g. $260 
for option 6), as presented in Table 1. Consequently, the noise 
from factory 1 (i.e. noise source 1) can just be reduced 
through option 6 to satisfy the acceptable noise levels for 
these two communities.  

Conversely, the conservative condition primarily wants to 

guarantee the noise control effect, which regards all control 
measures as achieving their lower bounds (e.g. 15 dB for 
option 7) and the cost of each control measure as achieving its 

upper bound (e.g. $350 for option 7), as shown in Table 1. 
Therefore, option 7 should be applied to control noise from 
source 1 to satisfy the standards of the two communities. For 
noise source 2, the noise control options would be similar to 

noise source 1. A less expensive option (i.e. option 7) is to be 
applied under the optimistic conditions while a more expen- 
sive option (option 10) is to be used under conservative 
conditions. For noise source 3, option 8 (i.e. Shelter and 
Barrier), which will cost less and has a lower efficiency, 
would be used to control noise under optimistic conditions 
while option 5 (i.e. Equipment Update), which is more ex- 
pensive but more effective, would be applied under conserva- 
tive conditions.  

Scenario 2 would allow normal standards for both com- 
munities, indicating acceptable noise levels to be 61 and 56 
dB for Communities 1 and 2, respectively (as shown in Table 
2). In this scenario, the solution of 14X  = [1, 0] means that 
option 4 (i.e. Barrier) is used to control the noise from factory 
1 (i.e. noise source 1) under optimistic conditions, as shown in 
Table 6. 

The solution of 16X  = [0, 1] indicates that option 6 is 
applied to control the noise from source 1 under conservative 
conditions. Compared with the options for source 1 in scena- 
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Figure 3. Noise control measures under Scenario 2. 

Table 4. Solutions from IBP Model under Different Scenarios 

Xij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10 j = 11 TC 

Scenario 1 
i = 1 0 0 0 0 0 [1, 0] [0, 1] 0 0 0 0 
i = 2 0 0 0 0 0 0 [1, 0] 0 0 [0, 1] 0 
i = 3 0 0 0 0 [0, 1] 0 0 [1, 0] 0 0 0 

[1100, 1435] 

Scenario 2 
i = 1 0 0 0 [1, 0] 0 [0, 1] 0 0 0 0 0 
i = 2 0 0 0 0 0 [1, 0] 0 0 0 [0, 1] 0 
i = 3 0 0 0 0 [0, 1] 0 0 0 0 [1, 0] 0 

[900, 1365] 

Scenario 3 
i = 1 0 0 0 0 0 [0, 1] 0 0 [1, 0] 0 0 
i = 2 0 0 0 0 0 [1, 0] [0, 1] 0 0 0 0 
i = 3 0 0 0 0 0 0 0 [0, 1] 0 [1, 0] 0 

[860, 1180] 
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Figure 4. Noise control measures under Scenario 3. 
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Figure 5. Acceptable noise levels for Communities 1 and 2. 
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Figure 6. Upper and lower bounds of costs for recommended 
noise reduction systems. 

 

rio 1, the control measures in scenario 2 would be less effect- 
tive but also less expensive due to the loosening of the 
acceptable noise level constraints for the two communities. 
For noise source 2, option 6 ( 26X  = [1, 0]) would be applied to 
control its noise under less stringent conditions, while the 
same option as scenario 1 (i.e. option 10) would be used under 
more stringent noise control requirements. For noise source 3, 
the main difference for control measures between scenarios 1 
and 2 is that a less effective option ( 310X  = [1, 0]) is desirable 
under advantageous conditions. Under demanding conditions, 
the noise control measure would be the same (i.e. option 5) 
for these two scenarios.  

In scenario 3, which implements the loosest noise control 
standards in two communities, the main difference for noise 
control measures for three sources under optimistic conditions 
is that source 1 requires a less effective and less expensive 
measure (i.e. 19X  = [1, 0] with a cost of $[200, 220] and a 
noise-reduction effect of [10, 11] dB). Under conservative 
conditions, both sources 2 and 3 would change to some less 
effective noise control measures due to the relaxation of the 

standards. Options 7 and 8 (i.e. 27X  = [0, 1] and 38X  = [0, 1]) 
would be applied to noise sources 2 and 3, respectively. 

Generally, the above results indicate that through the 
proposed modeling approach, uncertainties presented as in- 
tervals in parameters can be communicated into the IBP mo- 
del process. Table 4 provides the total system cost from the 
IBP model under different scenarios. The results suggest that 
different acceptable noise levels for the two communities 
would lead to varied objective function values. The system 
cost would have an opposite tendency to that of the acceptable 
noise levels for the two communities. As shown in Figures 5 
and 6, both the lower and upper bounds of the system cost will 

decrease as acceptable noise levels increase. This is because 
as higher acceptable noise levels are implemented, lower effe- 
ctive noise control measures are required, and thus system 
costs are lowered.  

Under each scenario, the lower-bound cost corresponds 
to optimistic conditions where noise control measures are 
assumed to be most effective, while the upper-bound cost is 
associated with more demanding conditions where the same 
measures are assumed to be less effective. For example, the 
system cost would be $[1,100, 1,435] under scenario 1, indi- 
cating that the system cost would be $1100 under advan- 
tageous conditions and $1,435 under demanding conditions. 
Moreover, the system cost would fluctuate within $1,100 and 

$1,435 as the model parameters vary within their lower and 
upper bounds. The system costs under the other two scenarios 
would have similar characteristics as that under scenario 1. 
Furthermore, the lower bound of the system cost is obtained 
under such consideration that each noise control measure 
would achieve the upper bound for the noise-reduction effect. 
Therefore, this may generate the highest risk of violating the 
acceptable noise levels of two communities. Conversely, the 
upper bound of the system cost is obtained with the most 
conservative noise-reduction effect of each control measure to 
be considered. This would definitely guarantee acceptable 

noise levels to be satisfied but may lead to excessive costs. 
Therefore, decision makers can make tradeoffs between sys- 
tem costs and the violation risk of acceptable noise levels, 
based on the solutions from the IBP model. 

5. Conclusions 

An interval binary programming (IBP) method has been 
proposed and applied to a representative noise control pro- 
blem. As an extension of the binary programming method, 
IBP can explicitly address complexities and uncertainties in a 
noise control system. Parameters in the IBP model can be 
expressed as intervals, and also such uncertainties can be 
effectively incorporated within the model solution process. 
Two submodels corresponding to the lower and upper bounds 

of the objective-function value would be obtained based on an 
interactive algorithm, and interval solutions are then gene- 
rated by solving the two submodels sequentially. 

Results of the model application indicate that useful 
solutions for noise control practices can be generated. A num- 
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ber of decision alternatives have been obtained and analyzed 
under different acceptable noise levels for the two commu- 
nities. They reflect complex tradeoffs between environmen- 
tal and economic considerations. A willingness to pay higher 
operating costs will guarantee meeting the noise control stan- 
dards; however, a desire to reduce the costs will run into the 
risk of potentially violating acceptable noise levels. 

Although this study is a new application for the IBP me- 
thodology, the results suggest that this approach is appli- 
cable to practical noise control problems that are associated 
with highly complex and uncertain information. 

Appendix 1  

Definition 1. Let x denote a closed and bounded set of 
real number. An interval number x± is defined as an interval 
with known lower and upper bounds but unknown distribution 
information for x (Huang et al., 1992): 

 
x± = [x-, x+] = {t ∈ x| x- ≤ t ≤ x+} 
 
where x-

 and x+
 are the lower and upper bounds of x ± , 

respectively. When x- = x+, x±

 becomes a deterministic 
number, i.e. x±

 = x- = x+. 

Definition 2. Let R’ denote a set of real integer numbers. 
An interval integer is an interval number with integer lower 
and upper bounds, and all of its elements are integers (Huang 
et al., 1995): 

 
y± =[y-, y+], y-R’, y+   R’ any y   y±, y   R’ 
 

Definition 3. An interval binary number is an interval 
integer with its two bounds being 0 and 1, and its elements 
can only be 0 or 1 (Huang et al., 1992). 

Definition 4. Let *{+, -, ×, ÷} be a binary operation 
on interval numbers. For interval numbers x±

 and y±, we 
have (Huang et al., 1995): 

 

x±* y±= [min(x*y), max(x*y)], x- ≤ x ≤ x+, y - ≤ y ≤ y+ 
 

In the case of division, it is assumed that 0y  . Hence we 
have: 

 
x± + y± = [x- + y-, x+ + y+] 
 
x± - y± = [x- - y+, x+ - y-]

  
x± × y±= [min(x × y), max(x × y)], x- ≤ x ≤ x+, y- ≤ y ≤ 
y+ 
 
x± ÷ y± = [min(x ÷ y), max(x ÷ y)], x- ≤ x ≤ x+, y- ≤ y ≤ 
y+ 

Definition 5. For an interval number, we have (Huang et 
al., 1995): 

x± ≤ y± iff x- ≤ y- and x+ ≤ y+, 

 
x± < y± iff x- < y- and x+ < y+, 

 
Definition 6. For x± = [x-, x+] and y± = [y-, y+], we have 

their order relations as follows (Huang et al., 1995): 

 
x± ≤ y± iff x- ≤ y- and x+ ≤ y+, 

 
x± < y± iff x- < y- and x+ < y+, 

 
Definition 7. For an interval number x±, we define 

Sign(x±) as follows (Huang et al., 1995): 

 

1 x 0
Sign(x ) =

1 x 0

if

if






 

 

 

 
Definition 8. For an interval number x±, we define its 

grey absolute value |x|± as follows (Huang et al., 1995): 

 

| x | x 0
| x | =

| x | x 0

if

if

 


 

 

 

 

 
Thus we have  
 

| x | x 0
| x | =

| x | x 0

if

if

 


 

 

 

 

 
and 
 

| x | x 0
| x | =

| x | x 0

if

if

 


 

 

   
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