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ABSTRACT.  Drought monitoring is a critical element for agricultural production, food security, water resource management, 
sustainable development, and a healthy environment. In this study, shortwave infrared (SWIR) bands with strong water absorption 
features were used to establish a physically significant water stress index. Two types of indices including SWIR water stress index 
(SIWSI) and SWIR perpendicular water stress index (SPSI) were constructed using near-infrared (NIR) and SWIR bands. A 
representative (semi) arid region in the Ningxia Plain of northwestern China, where droughts are frequent, was used to assess the state 
of dryness using the SIWSI and SPSI indices derived from NIR channel 2 (858 nm) and SWIR channel 6 (1640 nm) or channel 7 
(2130 nm) of moderate-resolution imaging spectroradiometer (MODIS) sensor in combination with ground measurements. Fitted 
regressions indicate significant correlations (P < 0.01) among both indices with the in-situ measurements. Generally, larger indices 
indicate drier lands, and correlations in the 10-cm range were better than those in the 20-cm range. Although SIWSI6, 2 (r2 = 0.75, 
0.74) performs slightly better than SIWSI7, 2 (r2 = 0.73, 0.71), SPSI6, 2 (r2 = 0.70, 0.69) performs marginally weaker than SPSI7, 2 
(r2 = 0.76, 0.74). Ultimately, all four indices reflected dry state under clear sky conditions in the Ningxia Plain. 
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1. Introduction 

Drought is a global phenomenon and a critical factor that 
limits plant survival and development. Drought is an extended 
period (months or years) of water shortage in a given region. 
Among the factors significantly relevant to drought are soil 
moisture and evapotranspiration. Knowledge about the timing, 
severity, and duration of drought is critical for drought-related 
planning and decision making (Tadesse et al., 2005). Severity 
of drought can be assessed as a function of moisture content, 
time duration, and the affected area. Although indices are com- 
monly used to determine the state of drought, no index is suita- 
ble in all hydro-climatic conditions. Thus, different indices ha- 
ve different strengths in detecting different drought condi- 
tions. 

Currently, functions integral to drought monitoring are dr- 
ought planning, drought preparedness, and drought mitigation 
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at regional, national, and local levels. The dynamic nature of 
drought poses tremendous challenge in planning, predicting, 
monitoring, and providing relief to drought-stricken regions. 
Drought variability with unpredictable multi-impacts dictates 
the need for improvements in available tools to efficiently cap- 
ture the spatial and temporal dimensions of a drought condition. 

Several possible ways of monitoring drought include the 
use of ground measurements, hydrological data, climatological 
data as well as using remote sensing data. Traditional methods 
of drought assessment and monitoring rely on rainfall data, 
which are limited in space, often inconsistent, inaccurate, and 
difficult to obtain in real time. In contrast, however, satellite- 
sensor data are consistent, globally available, and can be used 
to detect the onset, duration, and magnitude of a drought 
(Thiruvengadachari and Gopalkrishna, 1993). 

Several studies have excellent contributions on acquisition 
of drought parameters using remote sensing data (Nemani et 
al., 1993; Ghulam et al., 2007a, b; Ghulam et al., 2008; Qin et 
al., 2008; Sandholt et al., 2002). Monitoring drought at high 
temporal and spatial resolutions in pinpoints areas with most 
severe droughts is important for rational reallocation of scarce 
water resources in order to mitigate collateral losses. In China, 
especially in northwestern China, drought is among the most se- 
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vere natural disasters and it accounts for over half of the total 
agricultural loss in the country. Therefore, the development of 
practicable strategies to monitor drought in cultivated regions 
of China is critical and meaningful in mitigating losses and en- 
suring food security. 

In monitoring drought via remote sensing, soil moisture 
or vegetation water content data is used in combination with 
related models/indices, optical reflectance, thermal-infrared 
(TIR), or microwave remote sensing data. In this study, micro- 
wave data are not introduced because of their complexity and 
long-temporal resolution. Currently, optical reflectance and TIR 
band methods focus mainly on vegetation or drought indices 
such vegetation condition index (VCI; Kogan, 1990, 1995), ve- 
getation supply water index (VSWI; Carlson et al., 1990, 1994), 
temperature-vegetation index (TVX; Lambin and Ehrlich, 1995, 
1996), temperature vegetation dryness index (TVDI; Sandholt 
et al., 2002), SWIR water stress index (SIWSI; Fensholt and 
Sandholt, 2003), and SWIR perpendicular water stress index 
(SPSI; Ghulam et al., 2007a).  

VCI, VSWI, TVX, and TVDI use normalized difference 
vegetation index (NDVI) and occasionally in combination with 
land surface temperature (LST), which are in turn based on red, 
infrared, near-infrared (NIR) reflectance, and TIR emissivity. 
However, drought monitoring approaches based on NDVI have 
time lags following drought occurrence (Qin et al., 2008). Mo- 
reover, methods based on LST and NDVI (e.g., TVDI) usually 
need constructions of triangle or trapezoid spaces. Once such 
space is the LST-NDVI feature space, which requires a study 
area large enough to define dry and wet edges where errors 
could easily occur in the process analyses. SIWSI and SPSI use 
only NIR and shortwave infrared (SWIR) band reflectance in 
accessing soil moisture or vegetation water content, and there- 
fore do not need thermal bands. A multitude of studies (Fen- 
sholt and Sandholt, 2003; Ghulam et al., 2007a, b) has shown 
that SWIR reflectance (1300 ~ 2500 nm) from satellite data is 
sensitive to variations in vegetation/soil water. NIR band (858 
nm) has been identified as a good choice for reference band 
suitable for normalization, owing to its relative insensitivity to 
variations in vegetation/soil water content compared to the lon- 
ger wavelengths of NIR and SWIR bands. Hence, in this study, 
the SWIR bands (with strong water absorption features) are 
used to construct SIWSI and SPSI physically meaningful water 
stress indices. 

MODIS data are widely used for detecting droughts be- 
cause of their high temporal resolution and 36 bands, which also 
include three SWIR bands. MODIS data product MOD09A pro- 
vides calibrated reflectance for seven spectral bands in the 
400 ~ 2500 nm spectral interval at 500 m pixel resolution 
(http://modis.gsfc.nasa.gov). Reflectances in band 5 at 1240 
nm, band 6 at 1640 nm, and band 7 at 2130 nm have been used 
to retrieve water contents relative to reflectance in band 2, cen- 
tered at 858 nm (Fensholt and Sandholt, 2003; Gao, 1996; 
Wang et al., 2008; Xiao et al., 2005; Zarco-Tejada et al., 2003). 
Fensholt and Sandholt (2003) developed SIWSI using MODIS 
bands 2, 5, and 6, showing strong correlation with surface soil 
moisture measurements in the semi-arid Sahel zone of West 
Africa, and their work also indicated that the band 6 was sli- 
ghtly better than band 5. However, in the study of Wang et al., 

(2008) for sensitivity analysis of MODIS, SWIR reflectance 
on the soil/leaf moisture, the band 5 is more sensitive to soil 
moisture variations than bands 6 and 7. The MODIS bands of 
2 and 6 were later also used as land surface water index (LSWI; 
Xiao et al., 2005) for surface moisture assessment in NDVI and 
enhanced vegetation index (EVI) tri-index algorithm to moni- 
tor temporal regional patterns in paddy rice fields (Xiao et al., 
2005).  

This paper investigates and tests two kinds of drought in- 
dices with relevant bands of satellite data and in-situ ground 
measurements for the suitability of drought monitoring in the 
Ningxia Plain of northwestern China. In the study, the impor- 
tance of drought monitoring and advantages of SWIR bands 
in sensing soil water are also introduced. The approach, princi- 
ple, and test-site are described in the Methods section. The 
availability of the indices is discussed against ground observa- 
tions of soil moisture in Section 3. Drought indices mapping 
was also performed on several representative days over the 
Ningxia Plain. Finally, the practicality of the method and rela- 
ted issues are discussed. 

2. Methods 

2.1. Study Area 

The study area was located in the Ningxia Plain, which is 
a typical arid region in northwestern China with an average an- 
nual precipitation (AAP) of 160 ~ 650 mm. The field campaigns 
were conducted in Yongning and Guyuan Counties, located in 
north and south of Ningxia, respectively (Figure 1). There is 
an obvious difference in AAP in the two counties: approxima- 
tely 200 mm in Yongning and 400 mm in Guyuan. 

The periods of wheat and maize cultivation in the two tes- 
ted regions were 1 April ~ 20 July and 2 May ~ 8 September, 
respectively. A total of six square plots were selected as the test 
sites, with two plots in Yongning and four in Guyuan. Each of 
the six plots was about 1 km2 in area. Two of the plots in Yong- 
ning were planted with spring wheat and summer maize in a 
mixed cropping system during May ~ July. While the plots are 
under wheat only before May, they are under maize only after 
July 20. Two plots of spring wheat and another two of summer 
maize were used in Guyuan. Furthermore, the plots were un- 
der either wheat or maize before planting and after harvest, and 
thereafter the fields laid bare. Due to labor constrains, field 
measurements in Guyuan was ended after July 3. 

Field measurements were conducted in sync with the time 
of satellite overpass under clear sky conditions during the sea- 
sons of crop growth in 2009 (Table 1). Although MODIS SWIR 
data resolution is 500 m (details in the next paragraph), 1 km2 
plots were used to mitigate MODIS data registration errors and 
field-sampling edge effects. Five diagonal points were sam- 
pled in each plot, geo-located using GPS and then averaged 
for pixel information of MODIS (Figure 1). The study 
measures gravimetric soil moisture, bulk density, and field 
capacity at 10 and 20 cm soil depths. It should be noted that 
the volumetric soil moisture was adopted to eliminate the 
effects of soil texture and to avail the description of spatial 
information on drought. 
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Figure 1. Location map of the study area. 
 
Table 1. Time of Ground Observations under Clear Sky 
Conditions in the Ningxia Plain Study Area  

County 
ID Date (year-month-day) 

Yongning Guyuan 
1 2009.04.03  + 
2 2009.04.13  + 
3 2009.04.25  + 
4 2009.05.04  + 
5 2009.05.22 +  
6 2009.05.26 + + 
7 2009.05.29 +  
8 2009.05.31  + 
9 2009.06.08 + + 
10 2009.06.14 +  
11 2009.06.17 +  
12 2009.06.26 + + 
13 2009.06.30 + + 
14 2009.07.03 + + 
15 2009.07.14 +  
16 2009.07.23 +  
17 2009.08.05 +  
18 2009.08.07 +  
19 2009.08.26 +  
20 2009.09.02 +  
21 2009.09.11 +  
* “+” denotes the existence of observation. 
 
2.2. Remote Sensing Data 

The MODIS data was used in this study that unlike TM 
data, which are limited in temporal coverage, are free, available 
in daily-time steps, and have narrow bandwidth ranges, wide- 
scan ranges, and moderate spatial resolutions. A total of 21 
temporal images― daily surface reflectance (TERRA/MODIS 
MOD09GA) ―of MODIS products corresponding to ground 
observations are ordered from NASA at http://edcimswww.cr. 
usgs.gov/pub/imswelcome/. The MYD09 data product is a 7- 
band product with 500 m resolution that provides estimates of 
surface spectral reflectance in each band. 

The bands were corrected for the effects of atmospheric 
gases, aerosols, and cirrus clouds (Vermote and Vermeulen, 

1999). MYD09GA includes quality control descriptions and has 
been widely tested/validated (in time and space) with ground- 
truth data. The data were downloaded in SIN (sine) projection 
with HDF format and then re-projected to Albers equal area 
projection in GeoTIFF format using MRT (MODIS Re-projec- 
tion Tool) platform. All the images were acquired for days with 
clear skies. 

 

2.3. Shortwave Infrared Water Indices 

This study used an approach involving information from 
the NIR shortwave lengths and two configurations of tested 
SWIR water stress indices. Regarding MODIS, SWIR bands 
were the 5 (1230 ~ 1250 nm), 6 (1628 ~ 1652 nm), and 7 (2105 
~ 2155 nm) bands. However, there was severe stripe noise in 
band 5 of the images for China because of complex environ- 
mental and instrumental factors, affecting calculations and ap- 
plications of several of the MODIS SWIR parameters. Although 
some correction methods exist (Rakwatin et al., 2007; Wang 
et al., 2008; Wang et al., 2011), MODIS band 5 was not used 
due to the limited correction accuracy and index convenience. 
Hence, only MODIS bands 6 and 7 were eventually used in 
this work. 

The index SIWSI is computed as follows: 

 

2

2

( ,2) i

i

SIWSI i
 
 





  (1) 

 
where ρi is MODIS channel 6 or 7 reflectance and ρ2 is MODIS 
channel 2 reflectance. The SISWI is a normalized index whose 
value theoretically varies between −1 and 1. SISWI index abo- 
ve zero indicates that reflectance in band 6 or 7 is higher than 
that in band 2, which in turn indicates canopy/soil water stress. 
In addition, SISWI index below zero indicates a consequence 
of higher reflectance in channel 2 than in channel 6 or 7, whi- 
ch in turn indicates the existence of sufficient soil pore water. 
SIWSI6, 2 and SIWSI7, 2 were eventually constructed from the in- 
dex series. 

The other index SPSI was first developed by Ghulam et 
al. (2007a) to estimate vegetation water content from TM data. 
The index also adopts NIR and SWIR bands, wherein the for- 
mer serves as a reference channel and the latter as a measured 
channel. This reference-measured channel configuration has 
been confirmed to be sensitive to water absorption (Cheng et 
al., 2008; Ghulam et al., 2007b; Fensholt and Sandholt, 2003). 
Ghulam et al. (2007a) also showed that this index has a good 
potential for estimating vegetation water content. As vegetation 
water is mainly supplied by stored soil water, the index could 
be closely related to the soil water content. SPSI index can be 
expressed as follows: 

 

2

1
( )

1
SWIR NIRSPSI R R

M
 


  (2) 

 
where M is the baseline slope of NIR-SWIR and RSWIR and RNIR 
are the atmospherically corrected reflectances of NIR and 
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SWIR bands, respectively. See Figure 2 for the plotted series 
of SPSI. 
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Figure 2. Sketch map of SPSI, here dashed lines refer to FMC 
isolines (Cited from Ghulam et al 2007a). 

 

In NIR-SWIR space, the distance from a random point G 
to L represents vegetation water stress for a vegetated surface. 
It implies that more the distance between NIR and SWIR, the 
stronger the water stress and the soil water stress. More impor- 
tantly, this eventually implies that information on drought or 
soil water content can be detected and mapped using SPSI in- 
dex. Thus, SWIR bands 6 and 7 were used to derive SPSI6, 2 
and SPSI7, 2, respectively. 

3. Results and Discusssions 

3.1. Relationship among SIWSI, SPSI, and Soil Moisture 

Several SWIR drought indices derived from satellite 
SIWSI6, 2, SIWSI7, 2, SPSI6, 2, and SPSI7, 2 were tested against 
ground-based measurements of soil moisture (Figure 3 and 
Figure 4). Volumetric soil water contents in the 10 and 20 cm 
soil layers reflect water availability for plant photosynthesis. 
In addition, the decreasing soil moisture leads to an increase 
in the satellite-derived indices. 

SIWSI6, 2 and SIWSI7, 2 were plotted against soil moisture 
(Figure 3) for the period between April 3 and September 11. A 
linear relation was determined between SIWSI6, 2 and r2 = 
0.75 and 0.74 at the 0 ~ 10 and 0 ~ 20 cm soil depths, respec- 
tively. The scatter around the regression line appeared to be 
higher for low values of SIWSI6, 2, indicating no water stress 
conditions. The relation between SIWSI7, 2 and soil moisture 
was also high (r2 = 0.73) (Figure 3). The results indicated that 
the SIWSI6, 2 performs slightly better than SIWSI7, 2. The sca- 
tter around the regression line was of similar magnitude as that 
in SIWSI6, 2, but the range of dynamics in SIWSI7, 2 was larger 
than in SIWSI6, 2. This demonstrates that SIWSI could well re- 
flect variations in the soil water content, revealing its potential 

for applications in evaluating the state of dryness of a given re- 
gion. 

In relation to other methods such as the Ts/NDVI space 
approach (Fensholt and Sandholt, 2003), SIWSI is a valuable 
supplement when used to derive information on canopy water 
stress. This is because SIWSI could be used in very sparse ve- 
getation regions (MODIS NDVI < 0.4). It is therefore reasona- 
ble to state that SIWSI is suitable for under-vegetated conditions 
in terms of band configuration. Furthermore, SIWSI is better 
than Ts/NDVI space approach in assimilating MODIS data be- 
cause SIWSI uses SWIR bands with spatial resolution of 500 
m, whereas Ts/NDVI uses thermal bands with a resolution of 
1 km. 

Similarly, SPSI6, 2 and SPSI7, 2 were plotted against soil 
moisture in Figure 4 for the period between April 3 and Sep- 
tember 11. However, in comparison with SIWSI, the best-fit 
relationship between SPSI indices and soil moisture was loga- 
rithmic. This is similar to the relation between SPSI and cano- 
py water content reported by Ghulam et al. (2007a). The loga- 
rithmic relation for SPSI6, 2 has r2 = 0.70 and 0.69 for 10 and 
20 cm soil depths, respectively. The scatter around the regres- 
sion line also appears to be higher for low values of SPSI6, 2, 
indicating no water stress conditions. The relation between 
SPSI7, 2 and soil moisture (Figure 4) is also high with r2 = 0.76 
and 0.75 for 10 and 20 cm soil depths, respectively. In these 
plots, SPSI6, 2 performs marginally weaker than SPSI6, 2. SPSI 
has also been shown to be a good indicator for soil water con- 
tent under vegetation conditions (Ghulam et al., 2007a). 

Although good relationships were noted among the indi- 
ces and soil moisture, a bi-data cluster is obvious in the plots 
in Figure 3 and Figure 4. There are high-value and low-value 
clusters of soil moisture, induced by the geographical differen- 
ces between Yongning and Guyuan Counties. The medium va- 
lue is relatively scarce, accounting for about 10 ~ 20% of the 
values. Because of the cluster nature of the plots, more data is 
needed for further studies to cover the whole range of soil wa- 
ter content.  

In addition, although some studies (Fensholt and Sandholt, 
2003; Wang et al., 2008) show which band is superior in MO- 
DIS SWIR bands 5, 6, and 7, e.g., the MODIS band 6 is sligh- 
ter better than band 5 as per Fensholt and Sandholt (2003) and 
the MODIS band 5 is most sensitive to soil moisture among the 
three bands as per Wang et al. (2008). But the MODIS band 6 
has no obvious evidence of superiority than band 7 for the po- 
tential of estimating canopy/soil water content in this study 
(band 5 has not been discussed for its speckle, more work is 
required). 

As outlined in the Introduction section of this paper, seve- 
ral studies (Gao et al., 2008, 2011; Ghulam et al., 2008; Fen- 
sholt and Sandholt, 2003; Patel et al., 2009; Qin et al., 2008; 
Wang et al., 2004) have been conducted in relation to the app- 
lications or comparisons of these methods including VSWI, 
TVX, TVDI, SPSI, and SIWSI. Hence, in this study, the me- 
thods have not been compared again. The two selected indices 
were tested against in-situ soil moisture and mapped for dry- 
ness in the Ningxia Plain study area. 
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Figure 3. Relations between SIWSI and volumetric soil water at 10-cm (a and b) and 20-cm (c and d) depths. 
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Figure 4. Relations between SPSI and volumetric soil water at 10-cm (a and b) and 20-cm (c and d) soil depths. 
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3.2. Drought Index Mapping  

From the analysis in Section 3.1, the SPSI and SIWSI in- 
dices had good ability for detecting drought signals. The indi- 
ces were therefore used to determine map out dryness in the 
Ningxia Plain for days with clear sky conditions (Figures 5 ~ 
8). From Figures 5 ~ 8, it is obvious that the SPSI and SIWSI 
indices have similar abilities to detect dryness. Furthermore, it 
is clear that the central region of the Ningxia Plain is drier 
than both the northern and southern regions. This could be 
due the fact that the northern Ningxia Plain has rich irrigation 

conditions due to its proximity to the Yellow River. In addition, 

the southern Ningxia Plain has a relatively high rainfall, 
inducing high soil moisture in this region. The overall indi- 
cation is that the results of monitoring drought by the SPSI 
and SIWSI remote sensing-derived indices are consistent with 

those obtained from field investigations in the Ningxia Plain, 
suggesting that the indices reliably detect signals of spatial 
dryness. As drought complexity is a phenomenon usually 
determined by such conditions as soil moisture, soil/plant 
water demand, and plant evapotranspiration, it was not analy- 
zed in this study. We plan to focus on issues such as threshold 
establishment of droughts in future. 
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Figure 5. Map plots of SIWSI6, 2 for the Ningxia Plain study area in northwestern China. 
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4. Conclusions 

In this study, two indices (SIWSI and SPSI) constructed 
from MODIS NIR and SWIR bands were tested against ground- 
based measurements of soil water content and used to describe 
the state of dryness in the Ningxia Plain of northwestern China. 
The SIWSI–SPSI configurations, denoted as SIWSI6,2, SIWSI7,2, 
SPSI6, 2, and SPSI7, 2 were then compared with the measured 
soil moisture in the 10 and 20 cm soil layers. The analysis of 
the two indices shows strong correlation with soil moisture, 
with slightly higher correlation in the 10 cm soil layer than that 
in the 20 cm soil layer. Although SIWSI6, 2 performs marginally 
better than SIWSI7, 2, SPSI6, 2 performs slightly weaker than 
SPSI7, 2. Given the due limited study and close performances 

of the shortwave bands 6 and 7, it is difficult to conclude whi- 
ch is better.  

The 2009 fieldwork in this study is not completely perfect 
due to limited data on soil moisture in the middle 10 ~ 20% of 
the study area. The SIWSI and SPSI indices should therefore 
be tested against time series or more inclusive in-situ measure- 
ment data (such as ground-based data in the central region of 
the Ningxia Plain). Irrespectively, however, the analysis shows 
that the method used in this study sufficiently supplements other 
determination methods of soil moisture.  

It is also important to note that the use of the indices ana- 
lyzed in this study is not limited to MODIS data or the selected 
bands. It could also be extended to other SWIR bands and re- 
mote sensing data, including hyper-spectral data. From SIWSI  
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Figure 6. Map plots of SIWSI7, 2 for the Ningxia Plain study area in northwestern China.   
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and SPSI dryness indices, the state of drought in the Ningxia 
Plain for representative clear sky days was successfully map- 
ped. 
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