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ABSTRACT.  In this paper, an inexact fuzzy coal blending model (IFCBM) was proposed for supporting the planning of coal 
blending process with the consideration of national standard for coals in burning boilers. This method integrated interval linear 
programming (ILP) and fuzzy linear programming (FLP) into a general framework, which could tackle the uncertainties expressed as 
interval numbers and fuzzy sets. Then the developed approach was applied to a case study of power coal blending management model, 
considering the environmental constraints for nitrogen oxide (NOx) emission and nitrogen oxide decomposition (De-NOx) process in 
power generation facilities. The generated decision alternatives could help decision makers identify the optimal power coal blending 
schemes under four pollutants removal policy scenarios, reflecting the tradeoffs between socio-economic and environmental benefits 
under desirable system reliability. 
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1. Introduction 

Since the reform and opening-up, China’s electricity con- 
sumption continues to grow rapidly correlating to the level eco- 
nomic development. In 2010, China’s total power generation 
ranked first in the world and the power industry is a typical high 
energy consumption industry. Until renewable energy sources 
can reliably produce significant amounts of energy, the imme- 
diate energy demand is likely to be met by conventional fossil 
fuel combustion, such as coal. However, coal combustion pro- 
duces a large amount of pollutant emissions, which are the chief 
contributors to global air pollution. Thus, blending coal tech- 
nology is considered as a promising option to ensure the con- 
tinued use of coal for electric power production. Also it is re- 
commended as one of technologies which are technically attac- 
tive, economically viable, and environmentally conducive to 
meet the market and environmental requirements of coals (Guo 
et al., 2009; Huang et al., 2010; Yang et al., 2011a; Yang et al., 
2011b; Lin et al., 2012; Riaza et al., 2012).  

During the past decades, a number of systems analysis and 
optimization techniques were proposed to tackle the coal blen- 
ding problems (Ruan et al., 2001; Xiao et al., 2002; Balat, 2007; 
Guo et al., 2009). For example, Ruan et al. (2001) developed 
an optimization expert system for coal blending based on the 
quantification nonlinear features of the relationship between 
blending and single coal characteristics. Xiao et al. (2002) pro- 
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posed a diagnosis model to measure the coal ash slag-buildup 
characteristics by using an improved BP algorithm. Guo et al. 
(2009) conducted coal blending optimization of coal prepara- 
tion production process based on adaptive simulated annealing 
genetic algorithm (ASAGA). However, in practice, coal pro- 
perties vary from mine to mine and seam to seam. Parameters 
such as heating value, moisture, sulfur content, ash and its com- 
position are in general in nature, inevitably generating multiple 
forms of uncertainty, especially for blending coal, which are 
important to keep the quality of coal in maintaining furnace ra- 
ting and reliability (Chakraborty and Chandra, 2005). Besides, 
various parameters of system costs (i.e., coal resources explo- 
ration and utilization, as well as environmental treatment costs) 
usually vary with the changes of market and technologies im- 
provement. Thus, the coal blending management models must 
effectively tackle the uncertainties associated to the model coe- 
fficients. 

Previously, a large number of inexact programming me- 
thods have been developed to tackle the uncertainties and com- 
plexities in environment management systems. The most wide- 
ly adopted technologies mainly include interval linear progra- 
mming (ILP), stochastic linear programming (SLP), and fuzzy 
linear programming (FLP) (Tzeng et al., 1994; Huang et al., 
1999; Huang, et al., 2001; Qin et al., 2006; Cai et al., 2007; 
Cai et al., 2009a-e; Li and Huang, 2008; Guo et al., 2008; Liu 
et al., 2009; Guo and Huang, 2009; Li et al., 2009; Huang and 
Cao, 2011; Fan and Huang, 2012). For instance, Lin and Huang 
(2008) proposed an interval-parameter energy systems model 
(IPEM) for effectively planning regional energy management 
systems under uncertainty. Liu et al. (2009) developed an in- 
exact coupled coal and power management (ICCPM) model 
for supporting the coupled coal and power management sys- 
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tems planning in north China. Cai et al. (2009c) established an 
interval-valued fuzzy robust programming (I-VFRP) model to 
determine desirable municipal solid-waste management sche- 
mes under uncertainty. Specifically, stochastic linear progra- 
mming (SLP) could only tackle the uncertainty parameters with 
known probabilistic distributions which are hard to be get in 
reality. Comparatively, the interval linear programming (ILP) 
is an effective approach in dealing with parameters expressed 
as intervals with certain lower and upper bounds but difficult to 
solve other forms of uncertainties and needs to be combined 
with other methods. Furthermore, though the optimization tech- 
nologies discussed above have been applied into many areas, 
they have rarely been introduced into coal blending manage- 
ment systems. 

Therefore, in order to reflect the practical uncertainties exi- 
sting in coal blending process, an inexact fuzzy coal blending 
model (IFCBM) will be proposed, which integrates inexact li- 
near programming (ILP) and fuzzy linear programming (FLP) 
within a general optimization framework, tackling the uncer- 
tainties expressed as interval numbers and fuzzy sets. In this 
model, some parameters can be represented by interval num- 
bers with known upper and lower bounds. Meanwhile, the fle- 
xibilities and fuzziness expressed as fuzzy sets and denoted as 
‘fuzzy constraints’ and a ‘fuzzy goal’ are indicated by different 
membership grades corresponding to the degrees of satisfac- 
tion for the constraints and objective. Through considering the 
overall satisfaction, stable selections with the highest system 
satisfaction degrees under uncertainty will be generated (Huang 
et al., 2002; Gomez-Garcia et al., 2005; Skalska et al., 2010). 
Furthermore, environmental problems in the coal blending sys- 
tems can be addressed in this model, such as the NOx and SO2 
emitted from the process of coal combustion, and four scena- 
rios will be established based on the combinations of desulphu- 
rization efficiencies and nitrogen oxide decomposition (De- 
NOx) process. Through computing the model, the generated so- 
lutions (such as the concrete coal blending patterns) could help 
decision makers identify desired coal blending management 
schemes under various social-economic and environmental con- 
ditions and balance the tradeoffs between system costs and re- 
liability.  

2. Methodology 

An interval-parameter fuzzy linear programming (IFIP) 
problem can be formulated as follows (Huang et al., 1993; Li 
et al., 2007; Lin et al., 2008): 

 
Min f C X     (1a) 

 
Subject to: 
 
A X B  


  (1b) 

0X     (1c) 

 
where  m n

A R
  ,  m l

B R
  ,  l n

C R
  ,  n l

X R
   

and R denotes a set of interval numbers; symbols “  ” and 
“ 


” represent fuzzy equality and inequality (Cai et al., 2007). 
On the basis of the principle of fuzzy flexible programming, 
let  value correspond to the membership grade of satisfaction 
for a fuzzy decision. Specifically, the flexibility in the constrain- 
ts and fuzziness in the system objective, which are represented 
by fuzzy sets and denoted as ‘fuzzy constraints’ and a ‘fuzzy 
goal’, respectively, are expressed as membership grades [  ] 
corresponding to the degrees of overall satisfaction for the con- 
straints/objective. Thus, according to Huang et al. (1993) and 
Li et al. (2006), model (1) can be converted to: 

 
Max  (2a) 
 
Subject to:        
 

   1C X f f f            (2b) 

 

   1i i iA X b b b            (2c) 

 

0X     (2d) 
 

0 1    (2e) 
 
where f – and f + are the lower and upper bounds of the objec- 
tive’s aspiration level, respectively; λ± is the control variable 
corresponding to the degree (membership grade) of satisfaction 
for the fuzzy decision. An interactive solution algorithm was 
developed to solve the above problem through analyzing the 
detailed interrelationships between the parameters and the va- 
riables and between the objective function and the constraints 
(Huang et al., 1995; Guo et al., 2008), through which model 
(2) can be divided into two deterministic sub-models, corres- 
ponding to the lower and upper bounds of the objective-function 
value (Huang et al., 1995). Then solutions are generated, re- 
presenting the most optimistic and pessimistic solution sets. A 
sub-model corresponding to λ+ (when the objective function is 
to be maximized) is firstly formulated, and then the relevant 
sub-model corresponding to λ- can be formulated based on the 
solution of the first sub-model. Thus the general solutions can 
be obtained as follows: ,jopt jopt joptx x x      , ,opt opt opt         
and ,opt opt optf f f      . 

3. Case Study 

In this case, four kinds of coals (A, B, C, and D) are pro- 
vided to a 300 MW thermal electric plant, which are all bitu- 
minous coals and their concrete characteristics are presented 
in Table 1. Furthermore, the air pollution control has been paid 
more attention in electric facilities in recent years. However, 
different power plants have different emission characteristics 
depending on the plant size, coal type, coal mineral matter con- 
tent, combustion system, and boiler type, etc. Meanwhile, since 
NOx and SO2 emitted from the electric generating process are 
responsible for many environmental problems, NOx and SO2 
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constraints will be brought into models to make sure that re- 
sults could satisfy both the latest national standards and profit 
demands of generation facilities (Shown as in Figure 1).  

 

 
Figure 1. Structure of power coal blending system. 

 

The target of coal blending is to search for a minimum eco- 
nomic and environmental cost, including purchasing cost for 
raw coal and treatment cost for sulfur and ash removal. And the 
constraints of coal blending mainly refer to the national stan- 
dard restraints for different coal incinerators, such as heating 
value, moisture, sulfur content, ash content, volatile compo- 
nent, softening temperature of ash (ST), and hardgrove grinda- 
bility index (HGI) of various kinds of coals, etc (Zhou et al., 
2004). Then, an inexact fuzzy coal blending model (IFCBM) 
for coal blending under the consideration of environmental con- 
straints for thionic and nitrogenous compound emissions is de- 
veloped, and the specific formulations are presented as follows: 

 

1 1 1

in
I I I

i i i i i i
i i i

M f C m CA A m CS S m      

  

           
   

     

 (3a) 
Subject to: 
 
(a) Constraint for volatile component 
 

min max
1 1

/
I I

i i i
i i

V V m m V    

 

 
  
 
  

  (3b) 

(b) Constraint for heating value 
 

min max
1 1

/
I n

i i i
i i

Q Q m m Q    

 

 
  
 
  

  (3c) 

 
(c) Constraint for total heating value 
 

1 1000

I

i i
i

E HR
Q m

 
 




   (3d) 

 
(d) Constraint for moisture 
 

max
1 1

/
I I

i i i
i i

M m m M   

 

 
 

 
  

  (3e) 

 
(e) Constraint for ash content 
 

max
1 1

/
I I

i i i
i i

A m m A   

 

 
 

 
  

  (3f) 

 
(f) Constraint for sulfur content 
 

  max
1 1

1 /
I I

i i i
i i

S m m S    

 

 
   

 
  

  (3g) 

 
(g) Constraint for softening temperature of ash 
 

max
1 1

/
I I

i i i
i i

ST m m ST   

 

 
 

 
  

  (3h) 

 
(h) Constraint for HGI 
 

max
1 1

/
I I

i i i
i i

HGI m m HGI   

 

 
 

 
  

  (3i) 

 
(i) Constraint for nonnegative variables 
 

0,im i     (3j) 

 
where f = the total cost of coal blending system, ¥/t; i = differ- 
rent types of coals; Ci = coal price per unit, ¥/t; CA = treatment 
cost per unit of ash, ¥/t; CS = desulphurization cost per unit, 
¥/t; mi = consumption of coal i per year, t/year; Vi = volatile  

Table 1. Properties Values of Blending Coals  

Coal quality and index 
Coal 

M (%) A (%) Q (GJ/t) V (%) S (%) C (RMB) ST HGI (°C) 

A [5.6, 7.7] [21.9, 28.8] [20.4, 24.0] [17.3, 21.5] [0.67, 1.14] [260, 275] [54.2, 59.2] [1239.2, 1250.8] 
B [4.6, 6.8] [30.4, 35.9] [19.9, 21.1] [32.0, 36.8] [2.42, 3.15] [220, 240] [50.3, 58.3] [1198.3, 1237.3] 
C [7.8, 10.6] [22.6, 27.8] [19.1, 22.2] [37.8, 40.1] [1.46, 2.08] [245, 265] [67.3, 73.3] [1352.4, 1387.6] 
D [10.5, 11.6] [25.9, 30.1] [20.3, 23.2] [22.3, 26.7] [1.32, 1.51] [250, 265] [60.2, 62.7] [1375.7, 1395.7] 
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Table 2. Allowable Property Values for De-NOx Constraints  

Property Parameter M (%) A (%) ST S (%) 

Property Value [9, 11] [30, 32] [60, 64] [0.51, 1.00]
Property Parameter HGI (°C) Q (%) V (%) VN (%) 
Minimum Value [1260, 1280] [18, 21] [15, 16] [25, 27] 
Maximum Value [1330, 1350] [26, 27] [30, 32] [32, 34] 
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Figure 2. The percentages of coals under different scenarios. 
 

 
Figure 3. The system satisfication degrees under four 
scenarios. 

 
Figure 4. The system cost under foure scenarios (106 ¥/a). 
 

component value of coal i, %; Qi = heating value of coal i, GJ/t; 
Mi = moisture value of coal i, %; Ai = ash content value of coal 
i, %; Si = sulfur content value of coal i, %; STi = parameters of 
ST (softening temperature) of coal i; HGIi = parameters of 
HGI of coal i, °C; Vmax, Vmin = the upper and lower limitation 
bound of volatile component; Qmax, Qmin = the upper and lo- 

wer limitation bound of heating value; Mmax = the upper limi- 
tation bound of moisture content; Amax = the upper limitation 
bound of ash content; Smax = the upper limitation bound of sul- 
fur content; STmax = the upper limitation bound of softening tem- 
perature of ash; HGImax = the upper limitation bound of HGI; 
S = total sulfur content limitation derived by conversion stan- 
dard, %; E = annual power generation amount, kWh; HR = 
heat consumption for power generation per kWh of electricity, 
MJ/kWh;  = desulphurization efficiency. 

In this model, according to the Development Research Cen- 
ter of the State Council (DRCNET), the new facilities which 
are approved for construction in the twelfth-five-year period 
could discharge NOx under 200 mg/Nm3 (dry basis), which re- 
quires burning coals consisting of more than 25% volatiles (daf). 
The cost for desulphurization and treatment cost for per unit 
of ash are chosen as [2.3, 4.0] and [7.8, 9.9] ¥/t, respectively. 
The consumption of heat value for per kWh of electricity is no- 
ted as [24.8, 27.9] MJ/kWh. By introducing GB/T 5795-1986 
and National Emission Standards for Coal-fired Power Plants 
(NESCPP) into the constraints, two reduction targets are adop- 
ted: one is the coal property index under the present emission 
control (e.g. SO2) requirement; another is the stringent redu- 
cing objective of environment pollution in the future (e.g. De- 
NOx). And four scenarios are established according to the prac- 
tical situations, including scenario a-Low desulphurization ef- 
ficiency, b-High desulphurization efficiency, c-Low desulphu- 
rization efficiency with De-NOx, and d-High desulphurization 
efficiency with De-NOx. Then, the inexact fuzzy programming 
approach is applied into this coal blending management sys- 
tem. According to the proposed method, the fuzzy sets will be 
introduced into the constraints for heating value, total heating 
value, moisture, ash content, sulfur content, softening tempe- 
rature of ash, and HGI. Finally, the solutions (such as coal blen- 
ding patterns) can be obtained under the preconditions of mee- 
ting the national standards requirements and minimizing the 
total cost of power generation.  

4. Results and Discussion 

Results under different scenarios (a to d) are shown in Ta- 
ble 3 and Figures 2 to 4.  

 

4.1. Low Desulphurization Efficiency (η = 0.5) 

Limited by the low desulphurization efficiency, the amoun- 
ts of coals A (38.3 × 104 t/a) and D (53.5 × 104 t/a) would be 
several times larger than those of coals B ([5.4, 33.5] × 104 t/a) 
and C (11.5 × 104 t/a). Shown as Table 1 and Figures 3 and 4, 
the total sulfur contents in coals B and C would be at high le- 
vels, thus the amounts of coals B and C (considered as mid- 
high-sulfur coal) blended in must be cut to low level to fulfill 
the requirement of the environmental standards. Since the sa- 
tisfaction degrees λ± represent the probability of satisfying the 
objective function and constraints, the upper bound of variable 
is corresponding to the lower bound of λ±, while the lower bou- 
nd is corresponding to the upper bound of λ±, which would all 
decrease with increase of satisfaction degree. Specifically, the  
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Figure 5. System costs under   and   values. 
 

blending amount of coal B would decrease when the degree of 
satisfaction (λ±) increases, for instance, which means that it 
would undertake a larger system risk when blending more 
coal B, though the price of coal B is very low.  

 

4.2. High Desulphurization Efficiency (η = 0.9) 

In this situation, thorough-going changes would be gene- 
rated in the blending amounts of coals A, B, C and D. Since 
more funds and techniques are employed for desulphurization, 
mid-high-sulfur coal could be fully used and much more of th- 
em could be blended with the low-sulfur coal. Then, coals B 
and C would be blended more than A and C due to their price 
advantage. Compared to scenario a, the blending amounts of 
coals B and C would be 54.3 and [30.4, 58.3] × 104 t/a, while 
coals A and D would be 17.1 and 12.1 × 104 t/a. Similarly as 
scenario a, the increased amount of coal C would decrease with 
increase of the system satisfaction degree. Moreover, coal C 
would be the best choice when the blending amount increases, 
which may be influenced by the higher limitation of desulphu- 
rization efficiency and the lowest cost per heating value. 

4.3. Low Desulphurization Efficiency (η = 0.5) with De-NOx 

Low NOx combustion technology is now wildly adopted 
in power generation facilities in China, but it is far than enough 
to fulfill the NOx emission standard established in the near fu- 
ture (200 mg/m3 in the draft of NESCPP). According to the 
Coal and NOx Conversion Rate (CNCR) in the Handbook of 
discharge coefficients for industrial pollutions in first national 
survey of pollution sources (Volume X), only when the lower 
limitation bound of volatile component is raised to [25, 27] % 
and De-NOx technology (e.g. selective catalytic reduction) is 
adopted, NOx emissions could be cut into a normal level limi- 
ted by the new standard. As a result, the quantities of four kin- 
ds of coals pouring into the boiler would change with their res- 
pective properties. Owing to the stricter constraints for volatile, 
high volatile bituminous coals A and C would be used in large 
amounts. Specifically, quantities of coals A, B, C and D would 
be [55.7, 55.7], [12.4, 41.8], [35.9, 35.9] and [5.9, 5.9] × 104 t/a 
in this state. The amount of coal C would be more than that in 
scenario a for its high volatile, in spite of its higher price and 
higher sulfur content when the De-NOx is considered. And the 
degrees of satisfaction would decline to [0.043, 0.824] compa- 
red to [0.115, 0.838] in scenario a. 

 

4.4. High Desulphurization Efficiency (η = 0.9) with De- 
NOx  

In this scenario, [0, 14.1], 52.3, 31.9 and [30.7, 41.9] × 104 
t/a would be the suggested blending amount of coal A, B, C 
and D. Due to the higher desulphurization efficiency than sce- 
nario c, coals B, C and D would be blended more than A for th- 
eir higher quantities of volatile component in spite of their hi- 
gher quantities of sulfur content. The blending amounts of A 
and D would increase with the decrease of satisfaction de- 
grees of this system. Surely, total cost of this strictest scenario 
would be the highest. Compared to scenario b, blending amount 
of coal D would make a sharp growth, for coal D is believed 
to have a higher performance price ratio than that in scenario 
b. Since the quantity of volatile component in coal D is higher 
than that in coal A, and the high desulphurization efficiency 
make us neglect its high sulfur content. 

As shown in Table 3, the total system costs would vary ac- 
cording to the different environmental requirements under va- 
rious degrees of satisfaction (λ±

 values). Specifically, the system 
cost would be [275.552, 338.830] × 106 ¥/a under scenario a, 
[271.065, 340.734] × 106 ¥/a under scenario b, [276.826, 3 
42.956] × 106 ¥/a under scenario c, and [272.471, 338.452] × 
106 ¥/a under scenario d, with their degrees of satisfaction (λ±  

Table 3. Results of IFCBM 

Whether or not 
consider De-NOx 

Desulphurization efficiency Scenario Coal A 
(×104 t/a) 

Coal B 
(×104 t/a) 

Coal C 
(×104 t/a) 

Coal D 
(×104 t/a) 

 = 0.5 a [38.3, 38.3] [5.4, 33.5] [11.5, 11.5] [53.5, 53.5] No 

 = 0.9 b [17.1, 17.1] [54.3, 54.3] [30.4, 58.3] [12.1, 12.1] 

 = 0.5 c [55.7, 55.7] [12.4, 41.8] [35.9, 35.9] [5.9, 5.9] Yes 

 = 0.9 d [0, 14.1] [52.3, 52.3] [31.9, 31.9] [30.7, 41.9] 
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values) being [0.115, 0.838], [0.004, 0.898], [0.043, 0.824], and 
[0.003, 0.861], respectively. Decision alternatives can be acqu- 
ired by adjusting the decision variable values within their solu- 
tions intervals which are flexible in reflecting the variations of 
system conditions introduced by uncertainties, while the deter- 
ministic solutions are not affected by uncertainties. Therefore, 
the two decision projects corresponding to the upper and the 
lower bounds of f± represent two extreme decisions concer- 
ning the trade-off of environmental and economic. In other 
words, the results indicate that planning the energy system wi- 
thout treatment of nitrogen oxides would lead to a lower system 
cost; in comparison, planning with a high system cost would 
lead to lower emissions. Thus, the trade-off between economic 
development and environmental risks can be reflected by the 
interval solutions.  

The λ± value represents the probability of satisfying the 
objective function and constraints under the given system con- 
ditions in accordance with the decision makers’ preference re- 
garding environmental and economic tradeoffs. In detail, λ- co- 
rresponds to a high system cost and high decision variable va- 
lues, while λ+ corresponds to low system cost and low decision 
variable values. Generally, the expected system cost would de- 
crease and the satisfaction degree would increase as the λ± le- 
vel is raised; in comparison, the system cost would increase 
and the satisfaction degree would decrease as the λ± level is re- 
duced (Li and Huang, 2008). The relationship between lower- 
bound system costs and λ+ values would adhere to the same ch- 
ange regularity (shown in Figure 5). For instance, the system 
cost would reach to ¥ 340.56 million with the satisfaction de- 
gree being 0.838 (the minimum λ+ value); in contrast, the sys- 
tem cost would decrease to ¥ 273.72 million with the satisfac- 
tion degree being 0.907 (the maximum λ+ value).   

5. Conclusions 

With the continuous improvement of the operating system 
and technology for thermal power generation units, the techni- 
cal requirements and environmental standards for thermal reac- 
tors have become much stricter. And besides, mid-high-sulfur 
coals consist more than 20% of the coal mining resources in 
China. Thus, in order to effectively utilize various kinds of coa- 
ls and protect the environment, it is significantly important to 
blend mid-high-sulfur coals into the coals in high grade, whi- 
ch can also bring total cost cut. Therefore, in this study, an in- 
exact fuzzy coal blending model (IFCBM) was developed for 
the planning of power coal blending management systems, 
which was an integration of interval linear programming and 
fuzzy linear programming. Specifically, this study could: (1) 
tackle the uncertainties expressed as both interval numbers 
and fuzzy sets; (2) provide optimal solutions for decision ma- 
kers under their desirable system satisfaction degrees; (3) 
generate effective coal blending schemes under four pollu- 
tants removal policy scenarios, helping balance the tradeoffs 
between environmental requirements and system costs; (d) 
conclude that if mid-high-sulfur coal is burned in the coal 
power plant with higher desulphurization ratio, system cost 
and the total pollutant amount will both decrease. 
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