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ABSTRACT.  This paper introduces a novel multi-agent model for simulating water sharing scenarios under various irrigation 
policies, together with a novel self adaptive learning algorithm that achieves efficient resource allocation. The main contribution of this 
work lies in the fact that both the multi-agent model and the proposed learning algorithm operate under the lack of communication 
between the users of the resource, thus, no assumptions about the development of relations of trust between them are made. Moreover, 
the proposed learning algorithm uses only local information and operates in a decentralized manner, thus its implementation does not 
entail significant costs. The model was calibrated using data from a real world ecosystem and experimental results provided statistical 
and qualitative figures of merit for assessing typical irrigation policies. For all the irrigation policies examined, even if the users of the 
resource acted under profit maximization criteria, the proposed learning algorithm provided a means of achieving efficient resource 
allocation, despite the lack of communication. Thus, the proposed model and learning algorithm are valuable tools for assessing 
alternative irrigation policies and providing the best policy for any given scenario. 
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1. Introduction 

Water sharing is a complex and difficult task that tends to 
become more and more irresolvable. Freshwater ecosystems 
gradually become scarce throughout the world and, at the same 
time, the earth’s population is expected to increase by 50% in 
the next 40 years (Feek and Morry, 2003). In countries that 
already face water shortages, this increasing water crisis com- 
bined with inequitable access among the users of a resource, 
leads to confrontations, abuse and finally the depletion of the 
water resource, a condition referred to as ‘the tragedy of the 
commons dilemma’ (Hardin, 1968; Ostrom et al., 1994, 1999; 
Deadman, 1999). 

Policies, consisting of specific set of rules, can be impos- 
ed in order to manage human activities so that harmful effects 
on natural resources would be prevented or reduced. Policies 
regarding water resource sharing usually describe rules under 
which users are entitled to exploit the water resource for irri- 
gation purposes. Two main categories of policies can be found 
in the literature: centralized and decentralized. Centralized 
policies are enforced by central authorities (e.g. governments, 
institutions) and vary according to their complexity, imple- 
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mentation time, costs and the ecological and socio-economic 
impact entailed (Suleiman, 2005; Laycock, 2007; World Bank, 
2007; Queensland Government, 2009; Queensland State, 
2009). Empirical research findings however are not always in 
accordance with the recommendations of such policies (Ostrom, 
2002). In more detail, centralized policies cannot be always 
implemented to their full extent and thus perform poorly. This 
is due to the costs involved, or to the absence of appropriate 
enforcement mechanisms, or even the lack of commitment by 
the users of the resource (Walker, 1989; Gurung, 2004). Fur- 
ther criticism on such policies is that they are based on erro- 
neous assumptions, such as the belief that appropriate orga- 
nization can be achieved only through centralized guidance 
(Ostrom, 2002). 

Decentralized policies distribute decision making power 
over natural resource to local authorities. They are considered 
to outperform typical centralized policies, provided that con- 
trol over the necessary financial and human resources is dis- 
tributed and that local authorities are well organized (Smith, 
1998). In the context of irrigation water sharing, irrigation 
schemes managed by the farmers themselves have in many 
cases outperformed expensive models proposed by govern- 
ments (Shivakoti and Ostrom, 1992, 2002). Thus, a trend to- 
wards decentralized policies is reported in many countries 
(Rasmussen and Meinzen-Dick, 1995; Chemonics Interna- 
tional Inc., 2004; Gurung, 2004). Decentralized policies how- 
ever are not a panacea, since such local systems can also fail 
in many ways (Rasmussen and Meinzen-Dick, 1995; Ostrom, 
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2002). Laboratory experiments have shown that when indivi- 
duals are given the opportunity to exploit a resource, they start 
communicating with each other, they develop relations of 
trust, they exhibit self organization behaviours and they disco- 
ver appropriate rules for efficient resource allocation (Ostrom, 
1990; Ostrom et al., 1999; Ostrom, 2002). On the contrary, 
when such communication is lacking amongst the users of the 
resource, the tragedy of the commons is inevitably reached 
and the resource is destroyed (Ostrom, 1990; Ostrom et al., 
1999; Ostrom, 2002).  

It is thus clear that the interactions amongst the users of a 
resource and with their environment have a crucial impact on 
efficient resource allocation. Moreover, in such a decentra- 
lized management scheme, appropriate tools are required to 
stimulate joint learning and to integrate knowledge in order to 
establish shared understanding and coordination mechanisms, 
in the context of multiple resource users and their conflicting 
relationships (Gurung, 2004). To address these issues, multi- 
agent simulation (MAS) models were developed, that encap- 
sulate the complex procedures of resource sharing and the 
human-environment interactions (Bousquet et al., 1998; Ginot 
and Page, 1998; Barreteau and Bousquet, 2000; Pauly et al., 
2000; Becu et al., 2001). Multi-agent simulation is widely 
acknowledged as an appropriate modelling technique for si- 
mulating human-environment interactions. 

A considerable review of MAS models and their applica- 
tions to natural resource management can be found in Bous- 
quet and Page (2004) and Matthews et al. (2007). In more 
detail, a MAS platform called CORMAS, specifically design- 
ed to simulate resource management by providing a frame- 
work to study various users with varying objectives, is presen- 
ted in Bousquet et al. (1998). Utilizing CORMAS, the over- 
exploited Kairouan water table in Tynisia is examined in 
Feuillette et al. (2003), where a model for the negotiation of 
management decisions about the water table is introduced. 
This is achieved by taking under consideration the global dy- 
namics of the system and non-economic interactions between 
the farmers. In a similar context, CORMAS is used in Barnaud 
et al. (2008) to assist decision making over the allocation of 
rural credit in a small community of farmers in mountainous 
Northern Thailand. A multi-agent platform that outlines the 
consequences of water allocation rules is presented in Bars 
and Attonaty (2001), whereas in Schlüter and Pahl-Wostl 
(2007) a MAS model is presented for investigating the impact 
of the various organizational structures for water management 
to the water scarcity in the Amudarya river. The relation be- 
tween water availability and water use is examined in Oel et 
al. (2010), where farmers modify land use and water use for 
irrigation based on empirical data gathered from surveys. A 
multi-layer MAS model is presented in Berger et al. (2007) 
that encapsulates collective action problems in water markets, 
whereas in Athanasiadis et al. (2005) a MAS model for water 
pricing is introduced that estimates water consumption taking 
into account economic and social parameters. Water manage- 
ment is also the case in Izquierdo et al. (2010), where the 
viability of irrigation in Senegal is examined, and a MAS mo- 
del is used to examine the influence of existing social networks 
and the viability of irrigated systems. Although not utilizing 

agents, water management policies are also assessed in Tzionas 

et al. (2004), where a decision support system is developed to 
compare various policies proposed for the restoration of the 
water level and the rehabilitation of lake Koronia in Greece, 
based on their feasibility, environmental impact and costs. 

Even though in MAS models the behaviour of the agents 
is usually empirically defined (Thebaud and Locatelli, 2001; 
Bousquet and Page, 2004; Schlüter and Pahl-Wostl, 2007; Oel 
et al., 2010), learning algorithms can be employed in the sear- 
ch of an optimal policy, i.e. a policy that achieves optimal 
resource allocation. In Alexandridis (2006), a MAS model for 
simulating the economics of land transition is presented where 
Bayesian learning is employed to adapt the agents’ actions 
towards profit maximization. Janssen introduced a general 
learning method for MAS models that updates an agent’s attar- 

ction to a specific strategy (Janssen and Ahn, 2006), whereas 
Yi-Chen et al. (2009) addresses optimal watershed manage- 
ment with agents objectives being optimized through a bar- 
gain scheme in which an agent announces his action to other 
agents. 

The work presented in this paper introduces a novel 
MAS model that evaluates irrigation policies in cases where 
the users of the resource do not communicate with each other 
and thus they are not capable of self-organization or develop- 
ing relationships of trust. Although humans have the tendency 
to communicate and trust each other, as demonstrated by the 
work of E. Ostrom in (Ostrom et al., 1999; Ostrom, 2002; 
Feek and Morry, 2003), a different approach is followed in 
this paper. We believe that as the economic crisis expands, 
farmers may be forced to take actions under extreme econo- 
mic pressure, competing against each other, as water becomes 
scarce and could not sustain all the farmers of a community. 
When operating under pressure however, the self interest na- 
ture of individuals leads them to choices that improve imme- 
diate rewards, thus may lead them to self-lucrative behaviours 
(Sen et al., 1996). So, the assumptions of ”good will” and ”trust” 
existing amongst the farmers cannot be considered to hold for 
all cases of resource sharing. Thus, in the proposed work, it is 
chosen to investigate cases where although some communi- 
cation between the farmers may exist, such information is not 
considered to affect their behaviour notably, and thus it is 
ignored. These assumptions distinguish the proposed model 
from all other MAS models proposed in the literature of na- 
tural resource sharing. Although MAS models applied in other 
disciplines (i.e. economics as argued in (Li, 2011)) may emp- 
loy reduced inter-agent communication or partial knowledge 
of other agents utilities, the proposed MAS model does not 
assume any type of farmer communication (direct or indirect) 
at any part of its design; farmers are considered to act inde- 
pendently, consulting only their self interest and local know- 
ledge. Additionally, since the lack of communication will most 
certainly lead to the tragedy of the commons (Ostrom, 2002), 
a novel multi-agent learning method that employs no commu- 
nication amongst the farmers is introduced for the first time in 
this paper. The proposed learning algorithm operates as an 
additional layer of complexity to any given policy, and is ca- 
pable of adapting the behaviour of the farmers towards effi- 



N. Barbalios et al. / Journal of Environmental Informatics 21(2) 119-135 (2013) 

 

121 

cient resource allocation, thus avoiding the tragedy of the 
commons. The main contribution of the work presented in this 
paper is:  

 the introduction of a new MAS model for investigating 
water sharing schemes in the absence of communication 
amongst the users of a resource, capable of evaluating 
policies in scenarios where decisions are made with self- 
lucrative criteria and based on local information. As a re- 
sult, the simulations that evaluate irrigation policies are 
not affected by unreliable assumptions, such as the assu- 
mption of “good will” or “trust”. It should be also noted 
that the MAS model is directly related to (Tzionas et al., 
2004), where various strategies were also evaluated, but 
only from an economical and environmental point of 
view, since the interaction with the farmers community 
was ignored. 

 the introduction of a novel self-adaptive learning algori- 
thm that achieves efficient resource allocation using exc- 
lusively local information, without employing any means 
of inter-agent communication. This is an advancement 
compared to typical multi-agent learning algorithms that 
mostly depend on communication or observation for coor- 

dinating the agents in order to reach their goals (Bu̧soniu 
et al., 2008). 

Extensive simulations were conducted, and experimental 
results have shown that the proposed model is capable of 
assessing irrigation policies based on their environmental and 
socio-economic impact. More specifically, the model was 
initially calibrated and its performance was verified based on 
empirical data derived from the ecosystem of lake Koronia. 
Representative irrigation policies were studied, and simula- 
tions were conducted in two-steps: initially with farmers emp- 
loying only the policies under study, and subsequently with 
farmers adopting the learning algorithm introduced in this 
paper. The performance of each policy was evaluated using 
statistical and qualitative criteria, namely the condition of the 
lake at the end of the season and the survival rate of the 
farmer’s community. These criteria were mapped on a new 
variable introduced in this paper, called community value, that 
provided a global means of assessing the performance of a 
policy. As it will be shown, the proposed MAS model and 
algorithm provide a means of adapting the farmers behaviour 
towards efficient resource allocation. Additionally, it will be 
shown that although no assumptions about trust or communi- 
cation are necessary to be made, even if farmers act under 
profit maximization criteria, the introduction of the proposed 
learning algorithm will ensure both the sustainability of the 
resource and the maximization of their profit. In this sense, 
the proposed model and learning algorithm are valuable tools 
for assessing alternative irrigation policies and providing the 
best policy for any given simulation scenario. 

2. Lake Koronia 

Lake Koronia is presented in this section of the paper, 
since it will be used for the calibration of the proposed model, 
as it can serve as a representative example of the tragedy of 

the commons (Ioannidou et al., 2003; Tzionas et al., 2004).  

Lake Koronia is one of the ten most important Ramsar 
protected wetlands, located 15 km northeast of the town of 
Thessaloniki in the region of Macedonia in Northern Greece, 
at a latitude of 40o56’ N and a longitude of 23o15’ E, and with 
a mean altitude of 75 m above sea level. During the 1970s, the 
lake was part of a sustainable environment, connected to the 
nearby lake Volvi that lies about 15 km to the downstream, it 
had a surface of 47 km2 and a mean depth of 5 meters. In the 
last 20 years however, the lake suffered from a negative water 
balance, due to increased water diversion for irrigation purpo- 
ses, that led to a dramatic water level decline, increased pollu- 
tant loads and reduced surface runoff. As a result, the area of 
the lake decreased dramatically to 30 km2, the depth was dec- 
reased to 1 meter and the water quality deteriorated. These 
factors gave rise to the current hypertrophic conditions, which 
cannot support fish or any living organism. Particularly, the 
water level decline coupled with the water quality deterio- 
ration led to the death of a large number of fish and fish 
production was minimized in the summer of 1995 (Piesold et 
al., 1999; Ioannidou et al., 2003). 

The aforementioned situation was additionally deteriora- 
ted by water-consuming irrigation schemes used by farmers of 
the area, coupled with water demanding agricultures, mainly 
consisted of corn. Another factor that further deteriorated the 
condition of the lake, was the failure of all central irrigation 
policies due to the lack of enforcement infrastructures (Tzio- 
nas et. al., 2004). A master plan was conducted, funded by the 
EC Directorate General XVI, Regional Policy and Cohesion 
Fund (Piesold et al., 1999), that suggested actions and mea- 
sures to be taken in order to restore the water balance of the 
lake and ensure the viability of the overall ecosystem. 

Regarding the restoration of the water resource, the lake 
water level and negative water balance was suggested to be 
restored through the transfer and artificial recharge of 45 
million m3 of water per year. Several restoration strategies 
were proposed to achieve that goal, including water diversion 
from nearby rivers, such as the Aksios river, Strymon river or 
Aliakmon river. Alternatively, the water required to restore the 
lake could be found either by diverting water from the Lag- 
gadiki and Scholari torrents, or by utilizing rainfall water from 
the village of Asvestochori. Restoration strategies also included 
water draining from the deep aquifer, or from the nearby lake 
Volvi. Finally, the master plan proposed the adoption of new 
water saving irrigation techniques and the limitation of water 
pumps and drills through a state regulatory policy. 

Out of all the strategies that the master plan proposed, 
none was actually adopted, either due to controversial envi- 
ronmental impact, or due to implementation costs or even 
because some of these solutions cannot be considered sus- 
tainable unless accompanied by a drastic cut-off of agricul- 
tural activities across the lake (Kolokytha, 2010). Additionally, 
a fall in precipitation is observed that coupled with the high 
evapotranspiration will further diminish the natural inflows to 
the lake and will eventually lead to the reduction of the water 
reserves (Ministry of Rural Development and Floods, 2000). 
It is thus of great importance to examine the efficiency of 
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irrigation policies using appropriate tools that not only capture 
the mathematical essence of the elements involved but also 
capture the socio-economical dynamics entailed in the comp- 
lex water sharing procedure. The above findings support the 
motivation for developing novel water sharing models aiming 
at optimal resource allocation, such as the one proposed in 
this paper. 

3. Proposed Model 

In order to encompass the widest variety of irrigation 
schemes and deal with the imposed constraints, it was re- 
quired for the proposed model and learning algorithm to be as 
modular, flexible and expandable as possible. Although seve- 
ral MAS platforms have been tested, such as Sesam (Klügl 
and Puppe, 1998), Cormas (Bousquet et al., 1998), RePast 
(Collier and North, 2011), NetLogo (http://ccl.northwestern. 
edu/netlogo/), MASON (Luke et al., 2004), none of them 
could meet these requirements adequately. Thus, the proposed 
model and learning algorithm were developed from scratch in 
the C++ programming language, which further to the flexi- 
bility and modularity also contributed to the encapsulation of 
novel parameters that were introduced in this paper.The model 
will be described using the ODD (Overview, Design Concepts 
and Details) standard protocol for describing agent based 
simulation models, presented in (Grimm et al., 2006).  

3.1. Overview of the Model 

Following the ODD protocol (Grimm et al., 2006) a ge- 
neral overview of the model is given, that provides a first in- 
sight about the model resolution, focus and complexity. 

3.1.1. Purpose of the Model 

This paper introduces a new MAS model that simulates 
the draining of a resource by a community of farmers, similar 
to the situation that arose in lake Koronia, and evaluates 
alternative irrigation policies. Additionally, a novel self-adap- 
tive learning algorithm is introduced that is capable of achie- 
ving efficient resource allocation. The purpose of the model is 
two-fold: (a) it provides a simulation tool that reveals under- 
lying behaviours of the farmers as well as the environmental 
and socio-economical impact of water management policies; 
the main assumption here is that communication amongst the 
users of the resource does not affect or alter their behaviour 
considerably; (b) it reveals that, provided the proposed learn- 
ing algorithm is applied, behavioural self adaptation based 
solely on the maximization of profit (and not on communi- 
cation skills or even bonds of trust developed amongst the 
farmers as suggested in (Ostrom, 2002; Ostrom et al., 1999; 
Ostrom, 1990) ) can also lead to coordination towards the 
mutual benefit of the environment and the farmers commu- 
nity. 

3.1.2. Variables and Scales 

The model entails two main entities: a) the water resour- 
ce, described by a hydrological model, that defines its water 

balance over a period of time, and b) the users of the resource 
that represent farmers draining water for irrigation purposes 
only. Users of the resource are considered only to drain water 
for irrigation purposes, since all other human related water 
consumptions from the resource (i.e. industrial needs, urban 
needs etc.) are considered insignificant (Kolokytha, 2010) and 
are incorporated within the hydrological model. The morpho- 
logy of the ground is implicitly taken under consideration as 
well, by limiting the amount of water actually drained by the 
farmers to a certain degree when the resource water level rea- 
ches a certain threshold T. This can be realized by considering 
that below that certain threshold T, the resource degrades to a 
series of disconnected ponds, resulting to loss of water pre- 
ssure, exposed or un-submerged water draining pipes etc. In 
general, the resource can be described by its initial water level 
X, the threshold level T, the amount of water provided under 
the threshold level WT, and by the hydrological model emp- 
loyed. 

The population of the users of the resource consists of 
farmers that drain water from the resource utilizing the same 
irrigation policy (i.e. behaviour) πi. Farmers are characterized 
by their goal Gi, which is a variable defining the total amount 
of water they wish to drain throughout the season to cover 
their needs. These needs should ideally be derived from the 
type of cultivation and the field area. Unfortunately, however, 
this is not always the case since many farmers over-drain 
water either for self lucrative reasons (by over-irrigating with- 
out knowing which is the appropriate amount of water for 
their type of cultivation) or in order to compensate for water 
losses during water transfer from the lake to their field (igno- 
ring the fact that all the excessive water is wasted, at least for 
the specific cultivation period). To that extent a ‘greediness’ 
variable g is introduced, to account for all these issues and in 
order to differentiate between the amounts of water each 
farmer drains. Study of research reports of the lake Koronia 
ecosystem (Tsiouris et al., 2002; Tzionas et al., 2004), reveal- 
ed that five distinct categories should suffice to depict the 
different behaviours in the community of the farmers, with 
respect to their degree of greediness. As it will be shown in 
Section 3.3 (Initialization/Calibration), this categorization is 
adequate to encapsulate the various farmer behaviours of the 
nearby area of lake Koronia. The full set of values for the 
greediness variable is g = 1, 2, 4, 6 and 10, which practically 
means that farmers are clustered in 5 greediness categories; 
for the purposes of this paper a farmer of greediness category 
4 is considered to drain 4 times more water than a farmer of 
greediness 1, and so on. 

Additionally, a learning method is introduced within the 
model that based on machine learning principles, provides a 
means of modifying the behaviour of each farmer towards 
efficient resource allocation. In that sense, water otherwise 
wasted by greedy farmers over-irrigating their cultivation, is 
re-distributed to non-greedy farmers that need it in order to 
meet their goals sufficiently. 

3.1.3. Process Overview and Scheduling 

The model advances in daily time steps, denoted by the 
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index t throughout this paper, and each simulation is consi- 
dered to be concluded in 160 days that nearly corresponds to a 
cropping season of the year. During each time step the 
following procedure takes place: 

 Each farmer takes an action i.e. requests a certain quan- 
tity of water from the lake. The action is selected out of a 
set of predefined available actions (i.e. water quantity 
requests) that are the same for all the farmers of the same 
greediness category. 

 Each farmer receives the appropriate amount of water from 

the lake. This amount of water drained is either equal to 
the quantity requested, if the water level of the resource 
is above the predefined threshold T or equal to a prede- 
fined quantity WT, if the resource is nearly dried out. 

 Each farmer perceives the condition of the resource. Due 
to the constraints imposed by the model (i.e. lack of com- 
munication and observation), this is done with a novel 
feedback signal that utilizes only local information. 

 Based on the irrigation policy πi a farmer employs (i.e. 
his behaviour), he takes a decision about what action to 
take the next day, i.e. what quantity of water to drain the 
following day in order to reach his goal. Practically, the 
irrigation policy adopted by the farmer defines the 
appropriate action to be taken, based on some criteria (e.g. 
profit, environment sustainability, environmental aware- 
ness and others) which vary for different policies π.  

 The procedure is repeated iteratively until the end of the 
experimental period, i.e. for 160 days. It should be noted 
that this is the time window of interest that is examined 
by the model. In this sense, if the lake is not completely 
drained during this period, it is not considered to be 
depleted. 

3.2. Design Concepts 

Following the ODD design (Grimm et al., 2006), the ge- 
neral concepts that describe the underlying design of the mo- 
del are given in this subsection.  

3.2.1. Emergence 

Several behaviours related with the environmental aware- 
ness of the population and the sustainability of the ecosystem 
have emerged through the model simulations. These beha- 
viours can be depicted by using specific figures of merit. Such 
a figure is the community value VC, introduced in this paper as 
an index that characterizes the overall performance of a policy 
with respect both to the sustainability of the resource and to 
the economic survival of the farmers population. 

3.2.2. Adaptation 

The behaviour of the farmers is adapted to two hierar- 
chical levels: On the first hierarchical level, farmers adapt 
their behaviour based on their reasoning process, as defined 
by the adopted irrigation policy. Such an irrigation policy 
defines the appropriate action, i.e. the quantity of water, a 

farmer should drain. Three such policies are implemented in 
the current version of the model: a) a non-rational policy where 

farmers decisions are solely based on personal beliefs about 
their actual water needs. In this case, any available feedback 
from the environment is ignored. b) a profit driven policy that 
maximizes a multivariate utility function whose parameters 
are configured accordingly in order to maximize profits, simi- 
larly to utility functions found in the literature (Monticino et 
al., 2007; Brown et al., 2008; Lin et al., 2008) and c) an envi- 
ronmental friendly policy, which can be derived by an appro- 
priate parameter reconfiguration of the multivariate utility 
function utilized in b, so as the sustainability of the resource is 
maximized. 

On the second hierarchical level, the quantity of water to 
be drained by the adopted irrigation policy can be further ad- 
justed towards efficient resource allocation, by utilizing the 
learning algorithm introduced in this paper. 

3.2.3. Sensing 

The main novelty of the model introduced in this paper 
lies in the lack of any communication between the farmers. 
Although it is widely accepted that humans communicate, 
develop relations of trust and discover rules of efficient re- 
source allocation (Ostrom, 1990; Ostrom et al., 1999; Ostrom, 
2002), it is more than certain, in our opinion, that the econo- 
mic crisis will force farmers to take actions under extreme pre- 
ssure, leading to self-lucrative behaviours (Sen et al., 1996). 
Thus, we consider that any communication or bonds of trust 
developed between the farmers cannot be considered reliable 
and that information is ignored. However, farmers are capable 
of making some implicit observations of the water level that 
are used by the self adaptive learning algorithm introduced in 
this paper. To that direction, an appropriate feedback signal 
has been defined in this paper that uses only local information, 
which can be used by farmers to perceive changes in the con- 
dition of the lake. 

3.2.4. Interaction 

Due to the imposed constraints, farmers can only interact 
with the water resource and not with each other. 

3.3. Details of the Model (Sub-models) 

3.3.1. Hydrological Model of the Lake 

The hydrological model of the lake was developed based 
on the water balance over a period of time, as it is analytically 
described in (Katirtzoglou, 2001; Mylopoulos et al., 2007; 
Kolokytha, 2010). Literature is rather vague on this issue, 
since parameters such as the hydraulic communication between 

the shallow and the deep aquifer as well as the lake-aquifer 
interaction are not fully clarified (Mylopoulos et al., 2007). 
For the purposes of this paper, data and measurements pre- 
sented in (Katirtzoglou, 2001; Mylopoulos et al., 2007; Kolo- 
kytha, 2010) were utilized for the estimation of the water ba- 
lance equation, presented in Table 1. To our knowledge, these 
are the most accurate and official measurements of lake Koro- 
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nia inflows/outflows. It should be noted that, outflows due to 
irrigation are purposefully excluded from the estimation of the 
water balance equation, since this is the exact procedure simu- 
lated in the proposed model by the farmers’ actions. As a 
result, using the formula )inflows otaloutflows/t total(100  , a 
water balance is approximated were the total amount of out- 
flows equals 78.2% of the total inflows. 

 
Table 1. Inflows and Outflows of Lake Koronia 

Inflows (×106
 m3 water) Outflows (×106 m3 water) 

Surface Water 25.3 Εvapotranspiration 107.1
Rainfall 147.6 Lake evaporation 30.0 
Groundwater 22.0 Groundwater outflow to Volvi 5.3 
  Urban Needs 2.1 
  Industrial needs 4.0 
  Outflow to Scholarion aquifer 4.0 
Total Inflows 194.9 Total Outflows 152.5

 

3.3.2. Actions Performed by the Farmers 

 Let A be the set of available actions, defined as 
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where a* describes the nominal action i.e. the amount of water 
that agent ideally requires to cover his irrigation needs, Gi is 
the goal of farmer i, i.e. the amount of water each farmer 
wishes to drain in 160 days, and g is the greediness variable 
used to create heterogeneous categories of agents that have 
different needs, require different water quantities, have a di- 
fferent action space and different goals (as described in Sec- 
tion 3.1). The action selected by farmer i on day t is denoted 
by ai,t. 

3.3.3. Farmers’ Perception of the Water Level 

Since farmers do not communicate with each other, infor- 
mation regarding the condition of the resource should stem 
from their interactions with it. The only available information 
to the farmer i is the water actually drained on day t, denoted 
by ri,t, and given by the formula: 
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 , if water level >T

 , if water level <T
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And the overall amount of water each farmer has drawn 
so far. To compensate for the lack of communication and 

assist farmers perceive the state of the resource using only 
local knowledge, a novel feedback signal fi,t, is introduced in a 
multi-agent model for the first time in this paper, defined as: 

p

a
f ti

ti
,

,    (3) 

where ai,t the action selected by farmer i on day t and 
Xlp / is a decaying parameter, involving the lake initial 

level X and current level l. Parameter p actually modifies the 
farmers reward according to the current lake level, thus imp- 
licitly providing knowledge about the current state of the re- 
source. The parameter p is an indirect measure of the water 
level and could be related to other available physical quan- 
tities such as any visual feedback a farmer can have to get a 
hint about the water level (which is commonly the case) or 
even, the electrical current drawn by a water draining pump, 
that should typically increase as the water resource gets empty, 
etc. 

A farmer i perceives the rate of change of the resource ci,t 
at day t, according to Equation 4, that provides an estimate 
about the rate it is drained rather than about the actual water 
level of the resource. Thus p does not need to be accurately 
estimated (as it could not be due to its vague nature): 

dt

fd
c ti

ti
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3.3.4. Irrigation Policies of the Farmers 

For the purposes of this paper, farmers are considered to 
choose actions based on one of the following available beha- 
viours (i.e. irrigation policies): 

 Non-rational policy (NR): This is the simplest form of 
reasoning a farmer can employ. No adaptation takes place 
and a farmer always drains the same amount of water 
considered to be adequate to cover his needs, despite the 
condition the resource is in. Under the non-rational policy, 
the farmers’ behaviour is driven exclusively by profit in a 
self-lucrative manner. At any time, the farmer always 
chooses the actions that maximize their immediate rewar- 
ds. This policy represents an extreme example of self- 
lucrative behaviour and, to our knowledge, it resembles 
the actual behaviour of farmers in the ecosystem of lake 
Koronia in Greece that lead to its depletion. (Tsiouris et 
al., 2002; Tzionas et al., 2004; Laycock, 2007). 

 Profit driven policy (PD): Under this policy, actions that 
maximize a specific utility function are selected, similar- 
ly to (Monticino et al., 2007; Brown et al., 2008; Lin et 
al., 2008) and the decision support systems presented in 
(Bazzani, 2003; Shajari et al., 2008). Utility functions are 
usually defined either from experience, surveys or focus 
group sessions, as is the case in (Monticino et al., 2007). 
In this paper, a multivariate utility function is introduced, 
of the form U = KWUW + KPUP, similarly to (Monti- 
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cino et al., 2007). It is consisted of two partial utility 
functions UW and UP modeling water preservation and 
profit, respectively. Regarding UW, actions resulting to a 
low rate of draining of the resource should be mapped to 
higher values than actions that lead to a high rate of 
draining of the resource. Thus, the marginal utility func- 
tion for water preservation was defined as a decreasing 
exponential function of the rate of change of the resource 
ci,t, as defined in Equation 4. The marginal utility func- 
tion for profit UP was defined as an increasing exponen- 
tial function of a farmers’ demand ai,t, similarly to (Lin et 
al., 2008). The total utility function takes the following 
form: 
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    where R serves as a parameter defining the slopes of the 
partial utility functions (set to the value of 6 for the 
purposes of this paper, similarly to Lin et al., (2008)). 
The weighting parameters kW, kP indicate the relative va- 
lue that a farmer places on water preservation and profit, 
respectively. Setting kP > kW, as is the case in this policy 
where kP = 0.6 and kW = 0.4 similarly to Monticino et al. 
(2007), represents a policy where farmers are primarily 
interested in profit maximization. 

 Environmental friendly policy (EF): This policy is a va- 
riation of the profit driven policy, as it is derived by a 
different configuration of the same multivariate utility 
function. In more detail, the weighting parameters are 
configured so that kW > kP, (i.e. kW = 0.6 and kP = 0.4 simi- 
larly to Monticino et al. (2007)) thus representing a policy 

where farmers are interested in water preservation rather 
than profit.  

3.4.5. Initialization/Calibration 

The model proposed in this paper was calibrated with 
respect to data and observations from the lake Koronia eco- 
system. The information available about the ecosystem con- 
sists of a) the lake inflows/outflows over a short period of 
time (Katirtzoglou, 2001; Mylopoulos et al., 2007; Kolokytha, 
2010), b) a dataset of water losses during the period 1988 to 
1995 with respect to the increase of agricultural activities 
during that same period (Piesold et al., 1999; Hellenic Mini- 
stry of Agriculture, 2001; Ioannidou et al., 2003), c) observa- 
tions that where derived by studying research reports of the 
lake Koronia ecosystem (Piesold et al., 1999; Hellenic Mini- 
stry of Agriculture, 2001; Ioannidou et al., 2003; Tzionas et 
al., 2004). It should be noted that the dataset of water losses 
was divided in a train set that was used for calibration (50% 
of the data), and a test set that was used for validation (re- 
maining 50% of the data). Moreover, for calibration purposes, 
farmers considered to employ the non-rational policy, since 
this seems to correspond to their actual behaviour that lead to 
the explosion of agricultural activity and eventually dried out 

the lake (Tsiouris et al., 2002; Laycock, 2007). Additionally, it 
should be noted that water level values and thresholds were 
normalized in order to extract some quantitative results 

The hydrological model was manually calibrated, as 
described in Section 3.3, and the greediness categories (i.e., g 
= 1, 2, 4, 6, 10) were derived after studying (Tsiouris et. al., 
2002; Tzionas et. al., 2004). The remaining parameters were 
calibrated in a two-step procedure: During the first step, ob- 
servations from (Piesold et al., 1999; Hellenic Ministry of 
Agriculture, 2001; Ioannidou et al., 2003) were employed to 
provide initial estimates of the model parameters. Subsequen- 
tly, to improve the accuracy of the model, the train set of the 
water loses dataset was employed to fine-tune these initial 
estimates. The random calibration method was employed (Jaffe 

et al., 1988): the initial estimates were slightly altered in ran- 
dom, so that model – predicted water losses match the actual 
water losses observed in the lake. Farmers were distributed in 
various greediness categories, corresponding to a similar inc- 
rease of agricultural activities and goodness of fit was mea- 
sured using the mean absolute deviation between the model 
output and the data of the train set. The final model para- 
meters after the calibration procedure are presented in Table 2. 
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Figure 1. Percentage variations of water losses of lake 
Koronia with respect to percentage variations of agricultural 
activities in the area, for the time period of 1988 to 1995. The 
two data lines refer to the observed data and the output of the 
proposed model after calibration, based on observations from 
lake Koronia. 
 

The model was validated after the calibration with the 
test set, following the same procedure, i.e. by redistributing 
farmers in various greediness categories, so that similar inc- 
rease of agricultural activities was achieved. The results are 
illustrated in Figure 1, where the x-axis refers to the percent- 
tage variations of agricultural activities and the y axis to the 
percentage variations of water losses. It is clearly demons- 
trated that the output of the model matches the measured data, 
as demonstrated by the two plots of Figure 1. In more detail, 
median absolute deviation between measured data (from the 
lake) and the model output is 0.015.  
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Thus, it is verified that the calibration of the model with 
respect to lake Koronia was satisfactory. Additionally, since 
the model predicted water losses match the actual water losses, 
it is verified that the values for the model parameters that 
were excluded from the calibration procedure (i.e. the hydro- 
logical model and the classification of farmers to five gree- 
diness categories) are sufficient. 

3.4. Self-Adaptive Learning Algorithm 

Learning in such dynamic settings, where all agents learn 
simultaneously without communicating with each other, is a 
difficult task. The lack of communication is an inhibitory 
factor for the coordination of the agents (farmers), as most 
multi-agent learning algorithms in the literature rely on obser- 
vation or communication (Bu̧soniu et al., 2008). Moreover, 
measurement uncertainties and noise are almost certain to 
occur, due to the large number of agents (farmers) and the 
continuous nature of the problem under study. Furthermore, 
even though most multi-agent learning algorithms converge to 
optimal policies that focus on the maximization of the agent’s 
utilities, a different approach should be followed. Due to the 
nature of the problem under study, it is critical that any viable 
solution should not only focus on the agent’s utilities but on 
the preservation of the water resource as well. Such solutions 
however are difficult to be found, since they cannot be easily 
mapped to a unique equilibrium (Mannor and Shamma, 2007). 
In this sense, most existing multi-agent algorithms proposed 
in the literature are inappropriate to solve the problem under 
study. It is thus made clear that learning in settings such as the 
one entailed in this work is a hard task.  

To achieve learning in such a constrained setting, we 
introduce a learning algorithm that modifies the actions pres- 
cribed by any policy, towards efficient resource allocation. 
This is achieved by adding an additional layer of complexity 
in the decision making process of the agents (i.e. their policy), 
which incorporates specific rules that are based on empirical 
findings of the decision support system for lake Koronia 
presented in (Tzionas et al., 2004). In more detail, the action 
ai,t of farmer i in day t is modified by the following factor: 

 

Q

ti

t

m

mi

t

m

mi

ti

crf

























































,

0

,

0

,

,
1

modFactor



 (6) 

where )95.01/()95.01( tm  is a discount factor com- 
monly met in reinforcement learning algorithm used to weight 
the rewards a farmer has received in the past (latest rewards 
weight higher than old ones to allow the function to converge 
to an optimal solution),  

t

m mir0 ,  is the actual sum of water 
drained by farmer i until day t (see Equation 2) , ci,t is the rate 
of change of the resource (see Equation 4) and Q is a regula- 
ting exponential factor, controlling the impact the overall mo- 
dification factor has to the farmer’s initial water request (simi- 

Table 2. Model Parameter Values Based on Data and Obser- 
vations from Lake Koronia 

Parameter Value 

Lake initial level (X) 10000 units 
Lake level threshold (T) 2000 units 
Water provided under threshold (WT) 12.5 units 
Number of agents (N) 50 
Goal of agent i (Gi) 160 units 
Number of greediness categories 5 (g = 1, 2, 4, 6, 10) 
Water balance equation  
(irrigation outflows excluded) 

Outflows = (0.78) 
inflows 

 

lar to the learning rate of machine learning algorithms). To 
estimate the optimal value for Q a series of extensive tests 
were carried out, validating Q values over the range 0.01 to 
0.5. This range refers to relative small Q values, since large 
learning rates may lead to steep state variations that would 
cause the instability of the learning algorithm. It should be 
noted however that the precise and analytical determination of 
Q is part of our future work. Out of the tested Q values, 0.2 
gave the best results and that value was used throughout the 

experiments, when the self-adaptive learning algorithm is 
employed.  

A closer examination of Equation 6 reveals that each 
farmer’s policy is modified at a predefined learning rate, utili- 
zing: a) local knowledge (as depicted in the amount of water 
gathered), b) the perceived rate of change of the resource, and 
c) experience, represented by the feedback accumulated over 
time by the farmer, according to machine learning principles 
(Bishop, 2007). As a result, the overall quantity of the water 
drained from the lake is modified.  

 In more detail, the terms of Equation 6 can be justified 
as follows: 

 Since the rate of change of the resource is crucial for 
sustainability, farmers should modify their requests in a 
manner inverse proportional to it, as encapsulated in the 
term tic ,/1 . 

 As farmers accumulate more and more water, they should 
limit their requests, so that water would suffice for others 
as well. This rule is depicted in term  

t

m mir0 ,/1 .  

 Considering that the feedback signal fi,t increases as the 
water level of the resource decreases in time, term 

 


t

m mifr
0 ,/1  adapts the farmers behaviour so that the 

resource is exploited in a more conservative manner. 

Although a farmer’s behaviour is initially defined by the 
irrigation policy employed, Equation 6 allows adaptation of 
his behaviour in a self-regulated manner. The amount of water 
a’i,t a farmer will request under the proposed self adaptive 
learning algorithm will be: 

, , ,modFactori t i t i ta a     (7) 

It should be noted that the proposed algorithm does not 
modify the greediness degree of each farmer and, subsequent- 



N. Barbalios et al. / Journal of Environmental Informatics 21(2) 119-135 (2013) 

 

127 

ly, the overall greediness degree of the population. According 
to his greediness degree, each farmer self-adjusts the quantity 
of water he drains through Equation 7. As it will be shown in 
the results section, the terms employed in Equation 6 and 
discussed above, are adequate for simultaneously improving 
both the viability of the resource as well as the economic 
survival of the farmers population.  

As far as the practical implementation of the proposed 
learning algorithm is concerned, Equation 6 and Equation 7 
can be easily implemented by a computerized control system 
that could be installed in every field. Any computer enhanced 
with an input/ output interface could serve as such a 
computerized system, that would: 

 gather measurements from the water pumps in order to 
keep track of all the required variables of Equation 6 (i.e. 
the change of rate of the resource, water drained so far, 
etc). Measuring such variables is quite simple given 
today’s sensoring devices. Also, the cost of such sen- 
soring devices is insignificant. 

 control the amount of water drained by the pumps, by 
implementing Equation 7. Given the advancement of to- 
day’s computer systems, any computer/laptop could be 
modified with appropriate input/output devices, to con- 
trol the pumps through Equation 7. 
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Figure 2. Penalty function used to evaluate the percentage of 
relative deviation from the optimal goal. The threshold line 
denotes the value under which the decay diminishes rapidly, 
resulting to a severe penalty. 

 
Due to the design of the learning algorithm, since learning 

is based only on local information, no centralized computer is 
required to organize the farmers, nor do the computers have to 
communicate with each other. Thus, the need of a global 
regulator is avoided. As a result, costs are further reduced, as 
in any other case a computer network or an internet conec- 
tion would be required, which is a highly inhibitory factor for 
most agricultural landscapes. In this sense, the implement- 
tation of such a computerized control system is not only 
simple (given the simplicity of Equation 6 and Equation 7 and 
the estimation of its variables), but also affordable, as any 

computer can be used for the implementation and no network 
is required. 

 Although incentives provided by government or legisla- 
tion would be more than welcome, the use of the proposed 
system does not require government intervention or farmer 
training, as it would automatically control the pumps to auto- 
regulate the amount of water drained. Also, as previously 
mentioned, no significant costs are involved. Considering the 
effectiveness of the solution, that will be presented in the 
experimental results, we argue that there is no need of special 
motivation for the farmers to adopt this solution as a) it does 
not entail significant costs, b) does not require any special 
education, as it can be fully automatic, c) ensures that more 
farmer will have increased profits, d) preserves the resource 
(in most cases). Thus, it is self evident that enabling such a 
decentralized and distributed management procedure, benefits 
both the farmers’ income and the sustainability of the envi- 
ronment, at all times. 

4. Policy Assessment 

4.1. Environmental Impact 

In the context in this paper, the water remaining at the 
end of the season is the only parameter used for evaluating the 
impact the irrigation policies have to the environment. 

 

4.2. Impact on the Population of the Farmers 

The survival of a farmer’s cultivation depends on the 
overall amount of the water gathered, since the production of 
a cultivation field is directly related to the quantity of irri- 
gation water. The goal of each farmer during the cultivation 
period is to gather enough water for his cultivation to ‘survi- 
ve’ and make a profit. Depending on the type of the cultiva- 
tion, there is a threshold ST defining the minimum quantity of 
water that the crop should be irrigated with during the cultiva- 
tion period or else it is destroyed. Farmers that gather less 
water than this threshold are not considered to survive, either 
because their cultivation is destroyed or because their profit 
was not enough to sustain them financially. 

The ratio of the number of farmers exceeding that 
minimum quantity of water ST (N1), to the total number of 
farmers (N), i.e. 

N

N
SR

1  (8) 

is defined as the ’Survival Rate’ SR. It should be noted that SR 
is estimated at the end of each simulation, thus farmers that do 
not eventually survive continue to drain water throughout the 
160 days of a simulation. 

 

4.3. Overall Impact 

In order to assess the performance of the irrigation 
policies under study, with respect both to the farmers and to 
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the environment, a new variable is introduced in this paper, i.e. 
the community value VC. Actually, VC is the weighted sum of 
all local values vi that depict how well farmer i has performed 
during the cultivation period. 

In order to evaluate vi, and thus VC, it is essential to 
calculate the deviation each farmer has from his initial goal 
(ga), formulated as: 

 

goal actual water gathered
ga

goal

  
  (9) 

 

In this sense, a ga value of 0.35 denotes that a farmer has 
reached 65% of his optimal goal. The local value vi of each 
farmer is estimated as the product of two functions: a penalty 
function and a reward function. Considering that a cultivation 
may be completely ruined if not irrigated at least by a specific 
amount of water that depends on the type of the agriculture, it 
is evident that the profit and survival of a farmer highly de- 
pends on the water gathered throughout the season. This high 
correlation between the survival of the farmers and the per- 
centage of the goal achieved, indicates that farmers that have 
not met their season goal, or at least a significant portion of it, 
should be punished since they do not contribute to the overall 
community value. Thus, the exponential decaying function 
shown in Figure 2 was selected for this purpose, i.e. 

  xexf 2
1 /1 . The form of this penalty function was further 

justified from empirical findings that emerged by studying the 
situations that arose in lake Koronia (Ioannidou et al., 2003). 
A closer examination reveals that the function output dimi- 
nishes rapidly for ga values higher than 0.35, as highlighted in 
Figure 2. This implies that farmers that do not reach at least 
65% of their goal should receive a severe penalty. It should be 
noted that by tuning the exponential decay and the 0.35 
threshold, the model can be adjusted to include different type 
of cultivations. 

Besides the penalty function, a reward function is re- 
quired in order to favour farmers that managed to gather more 
water than others, attaining higher profits (within the expected 
profit limits related to their cultivation as set by ST, under 
which the cultivation is considered to be destroyed, and 100%) 
and thus contributing to higher overall system values. For this 
purpose, function   8.0108.2 2

2   xxf , was selected, using 
linear regression principles. Empirical data were used for the 
linear regression, that were derived after studying the decision 
support system of Tzionas et al. (2004), that deals with the 
lake Koronia ecosystem. Evidently, the ‘strictness’ of the pe- 
nalty and reward functions are encapsulated in their respective 
gradients. 

As a result, the local value of a farmer i is defined, in the 
context of this paper: 
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and the total community value VC is thus given by: 
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where l is the final water resource level and X the initial water 
resource level. As expected, all local vi values are weighted 
the same, for the estimation of the global VC value. The expo- 
nential weighting coefficient preceding the summation of E- 
quation 11 is introduced in order to punish farmer communi- 
ties that adopt irrigation policies leading to low lake levels. In 
this sense, VC also encapsulates the environmental impact of 
an irrigation policy, with policies of higher final water levels 
mapped to higher VC values, and vice versa. Thus VC is a 
non-linear combination of the two main measures used in this 
paper: a) the final water level related to environmental sus- 
tainability and b) the survival rates reflecting the farmers wea- 
lth. 

5. Results and Discussion 

In order to explore a) the performance of irrigation po- 
licies under the lack of communication amongst farmers and b) 
the consistency of the proposed self-adaptive learning algori- 
thm in producing efficient resource allocations under any sce- 
nario, a series of extended simulations were conducted. These 
simulations include numerous computer-generated case studies, 
corresponding to the depletion of the resource, in analogy to 
actual situations that arose in the lake Koronia ecosystem 
(Piesold et al., 1999; Hellenic Ministry of Agriculture, 2001; 
Ioannidou et al., 2003; Tzionas et al., 2004; Mylopoulos et al., 
2007; Kolokytha, 2010). Simulation scenarios that correspond 
to different combinations of farmer behaviours with respect to 
their greediness degree were created using a Monte Carlo 
approach similar to (Berger and Schreinemachers, 2006). A 
farmer was assigned to the equivalent greediness category by 
means of a random number generator producing numbers 
between 1 and 5. This procedure was repeated until all the 
possible combinations of farmers assignment to greediness 
categories was achieved. It should be noted that the proposed 
procedure was repeated for every irrigation policy under study, 
since all farmers are assumed to employ the same policy du- 
ring each simulation. Thus, a farmer community was produ- 
ced, that can be characterized by a ‘greediness degree’, which 
is the sum of all the greediness variables of the farmers con- 
sisting the population. Each one of these produced farmer 
communities is considered a simulation scenario. Although 
each simulation advances in daily time steps (until the limit of 
160 days is reached) simulation results in this section are 
shown with respect to the greediness degree of the community. 
This is because that variable differentiates the farmer commu- 
nities produced with the Monte Carlo procedure.  

Considering that a population of 50 farmers was used for 
the conducted experiments, the expected range of values for 
the greediness degree lies between 50 and 500. It is evident 
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that there are many combinations of possible farmer greedine- 
ss values that could lead to a given greediness degree. Figure 
3 depicts the number of such distinct combinations for each 
greediness degree.  

 
Table 3. Min, Max and Median Standard Deviations of the 
Distinct Combinations for Each Greediness Degree, for all the 
Parameters under Study 

 min max median 

Water level 0 3.2 2.1 
Survival Rate 0 1.5 0.9 
Community Value 0 4.2 2.0 
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Figure 3. Number of distinct combinations of greediness 
values for every greediness degree. 
 

It should be noted however, that the simulations for all 
the distinct combinations of a given greediness degree do not 
vary significantly. This is because the simulation outcome de- 
pends on the overall greediness degree. This is clearly depi- 
cted in Table 3, that presents the minimum, maximum and 
median standard deviations of the distinct combinations for 
each greediness degree, for all the respective parameters under 
study (presented in Section 4). 

To that extent, in order to ensure the simplicity and clarity 
of the representations, each point plotted on the following 
figures corresponds to the average value of the respective pa- 
rameters at the end of the 160 days, over the distinct combina- 
tions of each greediness degree. 

The irrigation policies under study and the self adaptive 
learning algorithm introduced in this paper were evaluated 
utilizing the figures of merit presented in Section 4, in a two 
step procedure: in the first step, simulations employ each irri- 
gation policy under study and farmers behave according to 
them. The goal of this step is to demonstrate the impact of 
each irrigation policy to the environment and to the farmers’ 
community, given the imposed constraints (i.e. lack of com- 
munication/observation). In the second step, the policies em- 
ployed in the first step are augmented with the self adaptive 
learning algorithm, thus adapting each farmer’s behaviour 
towards efficient resource allocation. The goal of the second 
step is to evaluate the robustness of the proposed learning 

algorithm, i.e. its ability to produce efficient resource alloca- 
tions under any simulation scenario and irrigation policy. It 
should be noted that this type of evaluation (i.e. in terms of 
robustness) is considered appropriate for multi-agent learning 
algorithms that deal with complex, real world problems which 
entail solutions that cannot be described by a unique typical 
equilibrium (i.e. Nash) (Mannor and Shamma, 2007). 

 

5.1. Performance Evaluation with Respect to Water Level 

The impact of each policy to the environment was asse- 
ssed by evaluating the water level of the resource at the end of 
the season. The distribution of the water level at the end of the 
season with respect to the greediness degree of the community 
is presented in Figure 4. The horizontal axis denotes the gree- 
diness degree of a farmers community, i.e. a simulation scena- 
rio, and the vertical axis denotes the average water level over 
the distinct combinations of each greediness degree (i.e. simu- 
lation scenario). 

It can be noticed that as the greediness degree increases, 
the water level decreases rapidly to 0 for all irrigation policies 
under study, denoting that in most experiments the resource is 
completely dried out (i.e. tragedy of the commons (Ostrom, 
2002)). These results are also supported by findings in the 
ecosystem of lake Koronia, where irrigation policies resem- 
bling the NR policy (coupled with the lack of environmental 
awareness and the primitive infrastructures available to regu- 
late water draining) were adopted resulting to its depletion 
(Piesold et al., 1999; Tzionas et al., 2004; Kolokytha, 2010). 

A closer examination of Figure 4a reveals that the EF 
policy outperformed the other two policies. Before depletion, 
and for scenarios of the same greediness degree, more water is 
preserved under the EF policy. Alternatively, depletion of the 
resource is reached for scenarios of higher greediness degree, 
corresponding to higher water demands. This is in accordance 
with the EF policy design criteria (i.e. kW > kP) which ensures 
that environmental sustainability is the key factor of greater 
importance when selecting an action under that policy. For 
scenarios of high greediness degree however, corresponding 
to communities with increased water needs, the lack of com- 
munication between the farmers forced the EF policy to fail, 
verifying that the tragedy of commons is inevitable when 
communication is lacking (Ostrom, 2002). Both the PD and 
NR policies performed poorly, as it was expected, since 
actions under these policies are selected based on profit maxi- 
mization criteria. In more detail, they both resulted to the dep- 
letion of the resource for small greediness degree values, with 
the PD policy providing worse results. This can be justified by 
considering that actions selected under the PD policy are of a 
more self-lucrative nature than the ones selected by the NR 
policy. 

When the irrigation policies under study were augmented 
with the self-adaptive learning algorithm introduced in this 
paper, a significant degree of improvement for all the three 
policies under study was achieved (Figure 4b). It should be 
noted that there seems to be a sudden change in the behaviour, 
occurring around greediness degree 100. This is due to the 
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increased water needs of the population, as the overall reque- 
sts of the farmers exceed the capacity of the lake, drain it 
below the threshold value T and their needs are further su- 
ppressed by the hydrological model of the lake (Equation 2). 
By cross examining the water level values of Figure 4a and 
Figure 4b it is clear that more water is preserved for the same 
greediness degree scenarios, under all policies. Additionally, 
for all the policies under study, the resource is depleted only 
at much higher values of greediness degree. It is evident then, 
that the employment of the self adaptive learning algorithm 
led to a significant increase in the preservation of the water of 
the resource, thus avoiding the tragedy of the commons despi- 
te the lack of communication amongst the farmers.  

 
Table 4. Median and Average Water Levels at the End of the 
Season, for all Policies under Study (a) without the 
Self-adaptive Learning Algorithm and (b) with the Self 
Adaptive Learning Algorithm 

(a) NR PD EF 

Median 0 0 0 
Mean 118 93 156 
(b) NR PD EF 

Median 327 18 388 
Mean 564 171 612 

 

In order to perform a quantitative comparison between 
the policies under study, the average and median values of the 
distributions of Figure 4 were extracted and presented in 
Table 4. In general, the median value is considered to be more 
representative in describing the central tendency of a distri- 
bution, since it is more robust to outliers. The median values 
of the water level at the end of the season are 0 for all policies 
under study (1st row of Table 4a), denoting that for most gree- 
diness degree scenarios, farmers dried out the resource. These 
results are also supported by findings in the ecosystem of lake 

Koronia, where irrigation policies resembling the NR policy, 
coupled with the lack of environmental awareness and the 
primitive infrastructures to regulate water draining, were ado- 
pted resulting to its depletion. To investigate the remaining 
scenarios, where water was preserved (for low greediness de- 
gree scenarios), the average of the water level at the end of the 
season was estimated (2nd row of Table 4a). The EF policy 
achieves the highest water level (156 units), verifying that 
action selection is targeted towards resource sustainability. 
The self-lucrative nature of farmers adopting the NR and PD 
policies results to lower water levels, i.e. 118 and 93 respec- 
tively. It is thus demonstrated that actions aiming at profit 
maximization when combined with the lack of communica- 
tion amongst the farmers, lead to catastrophic results. 

The 1st and 2nd rows of Table 4b correspond to the median 
and mean water level at the end of the season, respectively, 
under the self adaptive learning algorithm introduced in this 
paper. Median values are increased for all irrigation policies, 
demonstrating that more water is preserved in the resource 
(and thus less water is drained by the farmers). It should be 
noted that even policies that select their actions based on 
profit maximization criteria, i.e. PD policy, exhibit a signify- 
cant relative increase in water level when augmented with the 
self-adaptive learning algorithm. These findings are also depi- 
cted in the average value of the water level, where 3.19 times 
more water was preserved in average, across all policies 
(comparing the 2nd rows of Tables 4a and 4b, respectively). 
Thus it is clear, that the self-adaptive learning algorithm co- 
ordinates the actions of the farmers towards the benefit of the 
environment, despite the specific policy employed. 

 
5.2. Performance Evaluation with Respect to the Farmers 
Economic Survival Rate 

The economic impact the policies under study have to the 
farmers community and their production is evaluated by 
utilizing the survival rate SR of the population (Equation 8). 
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Figure 4. Water level after D days with respect to the greediness degree in the population (a) without the self adaptive 
learning algorithm and (b) with the self adaptive learning algorithm (diagrams are shown on the same scale for comparison 
purposes). 
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Again, utilizing a Monte Carlo approach in order to produce 
farmer communities with varying greediness degree, the survi- 

val rate was estimated for a survival threshold ST = 60% of the 
predefined goal Gi of each farmer. Figure 5 illustrates the 
average survival rate over the distinct combinations of each 
greediness degree (i.e. scenario), for all the irrigation policies 
under study. 

For small greediness degree values (horizontal axis), 
which correspond to farmer communities with limited water 
needs, all farmers manage to survive, regardless the policy 
they adopt (demonstrated by high values on the vertical axis). 
As the greediness degree increases however, there is a decay 
in the survival rate distributions. Since the NR policy selects 
actions in a self-lucrative manner, it manages to sustain the 
economic survival of only a portion of the farmers and for low 
greediness degree scenarios (up to 200). It is outperformed by 
the sophisticated profit maximizing nature of the PD policy, 
that supports the economic survival of more farmers and for 
higher greediness degree scenarios (up to 300). However, the- 
ir survival is achieved at the expense of the survival of other 
farmers in the community and also at the expense of the 
environment, since the NR and PD policies usually result to 
the depletion of the resource (see Figure 4a for the same 
greediness degree scenarios, e.g. 250). The EF policy provi- 
des the lowest survival rate for every greediness degree sce- 
nario, revealing that water preservation under the EF policy 
(see Figure 4a) is achieved at the expense of the economic 
survival of the farmers who are driven to an almost certain 
economic extinction. Given the specifications of each policy 
and the lack of communication amongst the farmers, it is 
evident that the water drained from the lake is not distributed 
evenly amongst the farmers, leading to the economic extinct- 
tion of a significant portion of their population. 

The respective survival rates are significantly improved 
when the self-adaptive learning algorithm is employed, as illu- 
strated in Figure 5b. There is an absolute increase of the sur- 
vival rate value under all three policies, as survival rates that 
correspond to the same greediness degree as in Figure 5a are 
now higher (as depicted in the vertical axes of Figures 5a and 

5b). Additionally, for all the policies under study, the eco- 
nomic survival of a portion of the farmers is supported for 
higher greediness degree scenarios (as depicted in the hori- 
zontal axes of Figures 5a and 5b). Interestingly, in the case of 
the PD policy, a small portion of the farmers manages to 
survive regardless the greediness degree of the population. 
This clearly demonstrates that the self-adaptive learning algo- 
rithm proposed in this paper, provides a means of efficiently 
distributing the drained water, to the farmers community. 

 
Table 5. Average Survival Rate of the Farmer Population for 
all Policies under Study (a) without the Self Adaptive 
Learning Algorithm and (b) with the Self Adaptive Learning 
Algorithm 

(a) NR (%) PD (%) EF (%) 

Median 0 20 0 
Mean 15 33 10 

(b) NR (%) PD (%) EF (%) 

Median 20 38 20 
Mean 32 47 29 

 
Again, a quantitative comparison between the policies 

under study is performed, with the aid of the average and 
median values of the distributions of Figure 5 presented in 
Table 5. In more detail, when the NR and EF policies were 
employed none of the farmers managed to economically sur- 
vive for most of the greediness degree scenarios (1st row of 
Table 5a). This is due to a) the non adaptive nature of the NR 
policy, that didn’t modify the farmer’s behaviour while the 
resource dried out, and b) the high environmental awareness 
implied in the EF policy, expressed by the inequality kW > kP 
shown in Equation 5. On the contrary, a percentage of at least 
20% of the farmers’ population managed to economically sur- 
vive under the PD policy, as a result of its profit maximization 
nature. The 2nd row of Table 5a accounts for greediness degree 
scenarios where at least a portion of the farmers managed to 
survive. Under the NR and EF policy, this portion is 15 and 
10% in average, respectively. The PD policy ensures the 
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Figure 5. Survival rate with respect to the greediness degree in the population (a) without the self adaptive learning 
algorithm and (b) with the self adaptive learning algorithm (diagrams are shown on the same scale for comparison 
purposes). 
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economic survival of 33% of the population in average, but it 
must be stressed once again that this comes at the expense of 
the environment, since these scenarios lead to the depletion of 
the resource. 

The survival rates were significantly improved by the use 
of the self-adaptive learning algorithm introduced in this 
paper, as presented in Table 5b. The median values are 
significantly higher, as at least 20% of the farmer population 
manages to gather enough water to sustain survival under the 
NR or EF policies. In the case of the PD policy, that already 
outperformed the other two, the introduction of the self- 
adaptive learning algorithm increased the survival rate to 38%. 
The average values of all policies are improved by a factor of 
2.15, denoting that the number of farmers that additionally 
survive are more than twice. Returning to the previous discu- 
ssion about the tragedy of the commons, where it was shown 
that less water is drained under the self adaptive learning 
algorithm, it must be pointed out that this significant increase 
in SR denotes that the water drained is also more efficiently 
distributed. This is because, water otherwise wasted by greedy 
farmers is now more efficiently utilized, as it is now redis- 
tributed to non-greedy farmers, assisting them to meet their 
goals and survive. Thus, one could consider that farmers 
implicitly coordinate their action in order for the whole com- 
munity to survive. 

 

5.3. Overall Performance Evaluation  

The total community value VC was introduced in Section 
4 as a measure of the joint performance of the policies from 
an environmental and economic survival point of view, simu- 
ltaneously. Figure 6 depicts the average community value 
over the distinct combinations of each greediness degree (i.e. 
scenario), for all the irrigation policies under study. High 
values of VC correspond to simulations where most of the far- 
mers have gathered enough water to sustain their production 
and at the same time, the resource was not depleted. On the 
other hand small values of VC correspond to simulations whe- 
re farmers did not manage to gather enough water to sustain 

their cultivation, and thus they are financially ruined, and at 
the same time there was a severe negative environmental im- 
pact since the resource was dried out. 

The plots of Figure 6a reveal the fact that the penalty and 
reward functions (chosen in Section 4) were adequate to dis- 
tinguish the different behaviours exhibited by the farmer popu- 
lations in all simulations. The distributions for the EF and the 
PD policies follow a similar path, as discussed previously: 
under the EF policy the priority is given to the resource pre- 
servation and farmers do not gather enough water to econo- 
mically survive whereas, on the contrary, under the PD policy 
the farmers do manage to survive but this is at the expense of 
the resource depletion. In accordance with the previous find- 
ings, the introduction of the self-adaptive learning algorithm 
results to a significant increase in the community value plots, 
as denoted in Figure 6b. By cross-examining the community 
value VC of Figures 6a and 6b it is clear that the introduction 
of the self-adaptive learning algorithm, introduced in this 
paper, significantly increased its value for the same greediness 
degree scenarios, under all policies. Alternatively, the commu- 
nity value VC diminishes for higher greediness degree sce- 
narios, where there are higher water needs in the farmers 
population. 

Table 6 presents statistical measures derived from Figure 
6. Cross-examining Tables 4 and 5 with respect to Table 6, 
reveals that policies corresponding to low final water levels 
(Table 4) and low survival rates (Table 5) are assigned to low 
community values (Table 6). On the contrary, policies leading 
to high water levels and high survival rates are assigned to 
high community values. This was as expected, according to 
the definition of VC in Equation 11. In more detail, the low 
survival rates and water levels related to the NR policy 
(Tables 5a and 4a respectively) are reflected in a low commu- 
nity value (VC = 124). The PD policy may have a more nega- 
tive environmental impact (Table 4a) but it achieves signifi- 
cantly higher survival rates (Table 5a), thus assigned to a 
greater VC value, i.e. 204. The EF policy outperforms the other 
two policies, resulting to a community value of 241. This is as 
expected, since the EF policy may have performed worse in  
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Figure 6. Community values with respect to the greediness degree in the population for all type of agents (a) without the 
self adaptive learning algorithm and (b) with the self adaptive learning algorithm (diagrams are shown on the same scale for 
comparison purposes). 
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terms of the economic survival of the farmers (Table 5a), but 
it achieved the highest final water levels (Table 4a). 

 
Table 6. Average Community Values, for All Policies under 
Study (a) without the Self Adaptive Learning Algorithm and 
(b) with the Self Adaptive Learning Algorithm 

(a) NR PD EF 

Mean 124 204 241 
(b) NR PD EF 

Mean 387 343 412 

 
Similarly to the other performance evaluations, Table 6b 

presents the improvement achieved by the introduction of the 
self-adaptive learning algorithm. In more detail, the communi- 
ty values VC were increased by a factor of 1.8 in average, 
demonstrating the fact that the performance of all policies is 
improved both with respect to the resource preservation as 
well as to the economic survival of the farmer population. 
Although a different policy outperforms the other two in each 
of the Tables 4 and 5, this is due to the fact that the respective 
policy evaluation criteria are different, i.e. final water level in 
Table 4 and the survival rate in Table 5. However, the deter- 
mination of the best policy when taking under consideration 
both criteria is made clear when examining the VC values pre- 
sented in Table 6. There the EF policy augmented by the self- 
adaptive learning algorithm provides the best results, as refle- 
cted in the community value VC. Thus, an overall balance 
between resource sustainability and survival of the farmers 
population is achieved, as discussed in the previous sections. 

6. Conclusions 

In this paper, a novel MAS simulation model was 
presented that simulates the exploitation of a water resource 
by a community of farmers. The novelty of the model lies in 
the fact that it employs agents/farmers that do not communi- 
cate with each other and they do not develop relations of trust 
with each other. This assumption was made since when far- 
mers operate under economic pressure, they exhibit self- 
lucrative behaviours (Sen et al., 1996). Moreover, since if no 
other measures are taken the depletion of the resource is con- 
sidered inevitable (Ostrom, 2002), a novel self-adaptive learn- 
ing algorithm was introduced that provided a means of achie- 
ving efficient resource allocation using only local knowledge, 
despite the lack of communication. 

 Three typical irrigation policies were examined in a two- 
step procedure: The first step aims at demonstrating the impact 
of each irrigation policy to the environment and to the farmers 
community, given the imposed constraints. During the second 
step, each irrigation policy was augmented with the self- 
adaptive learning algorithm, in order to examine the robust- 
ness of the proposed algorithm. Extensive experiments were 
conducted following a Monte Carlo procedure, and objective 
figures of merit were used to estimate the impact of each 
irrigation policy to the environment, to the farmers commu- 
nity and to the overall ecosystem. It was verified that the lack 
of such communication lead to the depletion of the resource in 

most cases, despite the policy imposed (i.e. tragedy of the 
commons (Ostrom, 2002)) as none of the policies under study 
was capable to produce efficient resource allocation schemes.  

When the proposed self-adaptive algorithm was employ- 
ed (i.e. second step), results were significantly improved. 
Compared to the results of the first step (without the self- 
adaptive learning algorithm), the resource was depleted only 
at much higher values of greediness degree across all policies. 
At the same time, a higher portion of their community was 
supported for higher greediness degree scenarios. This means 
that, in most cases the resource was preserved and, at the 
same time, more farmers managed to sustain survival. Water 
was more efficiently distributed, since water otherwise wasted 
by greedy farmers was redistributed to non-greedy farmers, 
allowing them to meet their goals and survive. These findings 
were also depicted on the VC value that provided a global 
measure of assessing the policies. It was thus demonstrated 
that in any case, even when farmers acted under profit maxi- 
mization criteria, the introduction of the proposed learning 
algorithm ensured both the sustainability of the resource and 
the maximization of the farmers’ profits. Considering the effe- 
ctiveness of the proposed learning algorithm, the simplicity of 
its implementation and the minimal requirements that reduce 
costs, we strongly believe that farmers would adopt such a 
system without any special motivation. In this sense, the 
proposed model and learning algorithm are valuable tools for 
assessing alternative irrigation policies and providing the best 
policy for any given scenario. Further research on the subject 
is carried on, investigating the optimal values of several para- 
meters of the proposed learning algorithm, as well as further 
extending the model to be applied to different ecosystems and 
cases of natural resource sharing. 
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