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ABSTRACT. Several wildfire simulators have been proposed in recent years. Often, such simulators have been judged to be reason- 
able if they are capable of predicting mean fire growth accurately. However, when the management objective is a burn probability map, 
this kind of assessment will be insufficient, since it does not address the uncertainties intrinsic to fire behaviour. The problem of 
comparing output from a stochastic fire growth simulator with real fire behaviour is difficult in general. Focussing on a single 
(important) aspect of the fire behaviour provides a way through this difficulty. In this paper, we propose a method to judge the 
appropriateness of a particular stochastic fire spread simulator by comparing the variability in the rates of spread in simulated output 
with the variability in the rates of spread seen in some experimental micro-scale fires. The methodology can be applied to other 
stochastic fire spread models and to large-scale fires. 
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1. Introduction 

Wildfire risk assessment is an important problem. Sto- 
chastic models of fire spread are required in order to produce 
burn probability maps which can be used by fire managers to 
identify high risk regions. 

 

Currently, the most frequently used fire growth simu- 
lators, such as PROMETHEUS (Tymstra et al., 2005) and 
FARSITE (Finney, 2004) are deterministic. In tests of these 
simulators against real fires, it has been found that they give 
reasonable behaviour, but the best that can be achieved with a 
deterministic simulator is accurate mean behaviour; it is not 
possible for the inherent unpredictability of fire to be captured 
with such a model. 

The Burn-P3 simulator (Parisien et al., 2005) is based on 
PROMETHEUS, and it produces a form of burn probability 
map, using randomized weather streams. Although weather 
has a major effect on fire behaviour, it should be noted that 
there is much variation in fire behaviour that is left unexp- 
lained by weather. Thus, a certain degree of ad hoc tuning is 
required in order to obtain probability maps that might be 
thought of as reasonable (see Braun et al., 2010, for an exam- 
ple). Another approach was taken by Garcia et al. (2008) who 
attempted to introduce stochasticity to the PROMETHEUS 
model via a block bootstrap procedure. Much work remains to 
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be done in order to test the accuracy of that method, or to 
implement it operationally. 

In the meantime, several other stochastic models have 
been proposed. Boychuk et al. (2007) proposed a stochastic 
lattice-spread model and claimed that it captured many of the 
desirable features of actual fire spread. Burn probability maps 
were produced by repeatedly running the stochastic simula- 
tions and calculating the proportion of time that individual pi- 
xels would be burned. The virtues of the lattice-spread model 
were demonstrated primarily through the use of graphs com- 
paring median probability contours with actual fires. Thus, the 
model was shown to be capable of achieving correct median 
behaviour, but there was no attempt to validate other proba- 
bility levels. Boychuk et al. (2009) further showed that the 
model has the potential to be extended to accommodate spot- 
fires ignited by lofted firebrands, though an accurate mecha- 
nism for this was not worked out and remains an open pro- 
blem. 

In this paper, we will consider the simplest case of the 
stochastic lattice-spread model: fires burn in homogeneous 
fuel and only slope is varied. In addition, we introduce a se- 
cond model with a different rule that governs how burning 
cells extinguish. Our purpose is to investigate whether such 
models have the potential to produce burn probability maps 
which reflect the uncertainty that is intrinsic to fire spread. 
The approach we take is to consider the variability in the rates 
of spread observed in a sample of experimental microfires. 
We wish to determine whether the lattice-spread model is 
capable of simultaneously matching the expected growth be- 
haviour as well as the variability seen in these fires. Our sta- 
tistical methodology is simple and is not restricted to the stu- 
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dy of given lattice-spread model; any stochastic simulator 
could be tested in this way. 

As in Zhang et al. (1992), we are studying the characte- 
ristics of the lattice-spread model in the context of data co- 
llected on tiny fires burned under very controlled conditions. 
Zhang et al. burned ordinary paper. We have chosen to use 
wax paper in our experiment because it burns more cleanly. 
Other researchers have also conducted lab experiments to stu- 
dy fires: Martínez-de Dios et al. (2006) performed indoor bur- 
ning experiments on an adjustable burning table and recorded 
experimental fires with both point and linear ignitions at dif- 
ferent levels of slope using digital and infrared cameras. That 
work was extended to open field experiments by Martínez-de 
Dios et al. (2008) where they demonstrated how such a sys- 
tem could be used to measure and visualize characteristics of 
forest fires in real time. In Rossa and Viegas (2009) a burning 
table was used to study back rates of spread. The data and 
approach we are taking in this paper should be viewed as 
complementary to the lab experiments in such studies. Al- 
though our idea here is not new, it is important to point out 
that even though we are working with very homogeneous fuel 
in zero wind our experimental fires still exhibited a large 
amount of natural variability that needs to be modelled and 
this is the focus of our paper. 

The experimental data that we analyze come from 31 
small fires. The only measured factor was slope: several le- 
vels of which were considered, with replicates. Otherwise, the 
fires were burned under identical conditions. It will be seen 
that even under such carefully controlled conditions, differ- 
rences in observed fire behaviour cannot be attributed only to 
differences in slope. Small imperfections in the wax paper and 
other unmeasured factors appear to give rise to relatively large 
amounts of variability between fires. In order to check whe- 
ther the fire spread model gives rise to similar amounts of 
between fire variability, we simulate the 31 fires, holding the 
model parameter values fixed within each level of the slope 
factor. Simple regression models will be used to relate the 
model parameters to the slope. Analogous regression models 
can also be applied to the simulated data as well, leading to a 
way of comparing variability between the simulated data and 
the actual fire data. We will make the comparisons on the 
basis of the residuals coming from both sets of models as well 
as the corresponding estimated error standard deviations. 

The rest of the paper proceeds as follows. The next sec- 
tion contains a description of the stochastic lattice-spread mo- 
del as well as a modified version which may yield realiza- 
tions which more closely resemble actual fires. Then Section 
2 concludes with a discussion of the relation between the scale 
of the grid and the variability induced by the lattice-spread 
model. Section 3 describes the methods employed in this re- 
search: the micro-fire experiments are described as is the me- 
thodology for the comparisons with simulated replicates of 
these fires. Results follow in Section 4, and the paper closes 
with some concluding remarks and directions for further re- 
search. 

 

2. The Fire Simulation Models 

In this section, we summarize the basic features of the 
lattice-spread model proposed by Boychuk et al. (2007). We 
will also propose a variant of that model which yields some- 
what different behaviour. We will refer to the original ver- 
sion of the model as Model A and the new variant as Model B. 

Both models have the same basic structure. The land- 
scape is assumed to be planar, the weather conditions are 
constant, and it assumed that there is no wind. The fuel type 
and density are also assumed to be homogeneous. On this lan- 
dscape we overlay a regular square n × m lattice. Each of the 
grid cells can be in one of three possible states: unburned fuel 
(F), burning fuel (B) or burnt out (O). 

Transitions between these states occur as follows: ini- 
tially (i.e. at time t = 0), the grid cell at the point of ignition (i, 
j) is in state B, while all other cells are in state F. The fire 
burning in cell (i, j) will spread to each of its four cardinal 
nearest neighbors (i.e. north, south, east and west) in random 
amounts of time T0,1, T0,-1, T1,0, and T-1,0, provided it does not 
burn out first. Specifically, at time T0,1, the cell at (i, j+1) ma- 
kes the transition from state F to B, if the cell is not already in 
state B. Similar transitions are made by cell (i, j-1) at T0,-1, cell 
(i+1, 0) at T1,0 and cell (i-1, 0) at T-1,0. These times are 
assumed to be independent and exponentially distributed at 
rate λ, when there are no slope or wind effects. When there 
are such effects, the rate will depend on direction, and there 
are four rate parameters λN, λ S, λ E and λW. 

Once a cell has made a transition to state B, fire spreads 
from that cell to the sites of its nearest neighborhood at a new 
set of independent exponential random times. Under Model A, 
a cell in state B makes the transition to state O according to 
another independent time that is exponentially distributed at 
rate µ. Once in state O, a grid cell will make no further tran- 
sitions. 

Note that, because of the minimum property of indepen- 
dent and identically distributed exponential random variables, 
when there are k burning cells, the time until the first of these 
sites burns out is exponentially distributed with rate kµ. This, 
together with the memoryless property of the exponential dis- 
tribution, provides an equivalent way of specifying the burn- 
out rule for Model A: a cell is randomly selected from the set 
of k sites that are burning at the time of the last event and that 
cell makes the transition to O after the expiration of a simu- 
lated exponential kµ time period. Under Model B, a site is 
chosen to burn out at this same time, but not a randomly se- 
lected site; instead, the site which has been burning longest is 
chosen to burn out. This may be a somewhat more realistic 
rule. This innovation has not been considered previously. In 
this paper we demonstrate that Model A has some deficiencies 
- in particular, its burn out rule can lead to simulations with 
large numbers of unburnt “islands” a phenomenon that does 
not occur in the actual micro fire experiments. Model B's burn 
out rule, which has not been considered previously, leads to 
more realistic behaviour. 
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It should be pointed out that these models are much more 
general than described above. They can handle non-homoge- 
neous conditions with regard to weather, fuel type, moisture 
content, and topography. These issues, as they apply to Model 
A, are described in detail in the Boychuk et al. (2007) paper. 
In that paper, it was argued that the model produced realistic 
fire shapes. The model is not unreasonable from a scientific 
point of view, since it is based on a simple fire propagation 
mechanism: areas of unburned fuel immediately adjacent to 
burning regions will ignite because of the availability of fuel 
and oxygen, combined with sufficient radiant heat. However,  

there has been no attempt at model validation from a statis- 
tical perspective. In what follows, we will present a metho- 
dology that could be used to validate this model for wildfires, 
and illustrate its application using some experimental data 
which we describe in the next section. 
 
2.1. Scale: Grid Resolution 

The size of the grid cells is a critical parameter, since it 
represents the spatial scale of the simulator. The interplay 
between scale and variability in the lattice-spread model can 

 
Figure 1. Top panel: A sequence of observed burn patterns for a fire on a sheet of wax paper (at 0 slope) observed at 1 
second intervals. Time increases from left to right. Second row: A realization of a simulation of Model A under homoge- 
neous conditions with µ = 0.666, λN = 4.448, λS = 4.369, λE = 2.984, and λW = 4.744, observed at approximately 1 second 
intervals. The model was simulated on a 200 x 250 grid. Third row: A realization of a simulation of Model B under 
homogeneous conditions with µ = 0.2, λN = 1.336, λS = 1.312, λE = 0.896, and λW = 1.424, observed at approximately 1 
second intervals. The model was simulated on a 60 × 75 grid. Fourth row: Black area represents regions which burned in 
at least 90% of 1000 simulation runs. Fifth row: Black area represents regions which burned in at least 50% of 1000 
simulation runs. Bottom row: Black area represents regions which burned in at least 10% of 1000 simulation runs. 
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be illustrated very simply using a one-dimensional version of 
the model: we imagine the fire travelling uni-directionally 
along a fuse or wick, letting T denote the time until the fire 
has travelled a distance d from its point of ignition. 

A lattice model applied to this problem would have us 
postulate that T is the sum of k independent exponential ran- 
dom variables (where k is the number of lattice cells the fire 
must traverse before arriving at its destination). If we fix the 
mean of T to be some constant value m, we have that m = kλk, 

where λk is the rate for each independent and identically dis- 
tributed exponential component of T. The variance of T is 
easily seen to be k/λk

2, or m2/k. Hence, the variance of the 
transit time for a sojourn of interest depends on size of the 
cells in the lattice. 

It is not possible to write down a closed-form expre- 
ssion for the mean-variance relation in the more complicated 
model discussed in this paper. Nevertheless, such a relation- 
ship undoubtedly exists - the modelled variance of the time 

 
Figure 2. Top panel: A sequence of observed burn patterns for a fire on a sheet of wax paper (at 0 slope) observed at 1 
second intervals. Time increases from left to right. Second and third rows: Realizations of simulations of Models A and B 
under homogeneous conditions with µ = 0.2, λN = 1.336, λS = 1.312, λE = 0.896, and λW = 1.424, observed at 
approximately 1 second intervals. Both models were simulated on a 60 x 75 grid. Third row: A realization of a simulation 
of Model B under homogeneous conditions with µ = 0.2, λN = 1.336, λS = 1.312, λE = 0.896, and λW = 1.424, observed at 
approximately 1 second intervals. Both models were simulated on a 60 x 75 grid. Fourth row: Black area represents 
regions which burned in at least 90% of 1000 simulation runs. Fifth row: Black area represents regions which burned in 
at least 50% of 1000 simulation runs. Bottom row: Black area represents regions which burned in at least 10% of 1000 
simulation runs. 
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until the fire spreads a certain amount will depend on the size 
of the cells in the lattice. Thus, ideally, information about the 
variance should be used to determine the grid cell size. 
 

3. Methods 

3.1. Collecting Data from Micro-Fire Experiments 
Data for testing the usefulness of the grid-based fire sp- 

read model was obtained from a sequence of small-scale ex- 
perimental fires. These experiments were conducted indoors, 
at a temperature of approximately 10 oC, and the wind was 

considered negligible. The material used for fuel in each case 
was a rectangular sheet of dry wax paper. For each experiment, 
this sheet was suspended horizontally or at various moderate 
slopes. For a non-zero slope, the sheet was always inclined 
from East to West (the slope was always 0 in the North-South 
direction). The slopes used for the various experimental runs 
are listed in Table 1. 

The paper was ignited from below at a variety of loca- 
tions, and an Olympus Stylus® 600 Camera, which was sus- 
pended on a tripod above the paper, was used to record the 
experimental fire until most of the paper was consumed. 

 
Figure 3. Top panel: A sequence of observed burn patterns for a fire on a sheet of wax paper (at slope 0.03) observed at 1 
second intervals. Time increases from left to right. Second and third rows: Realizations of simulations of Models A and B 
under homogeneous conditions with µ = 0.2, λN = 1.336, λS = 1.312, λE = 0.808, and λW = 1.665, observed at 
approximately 1 second intervals. Both models were simulated on a 60 × 75 grid. Fourth row: Black area represents 
regions which burned in at least 90% of 1000 simulation runs. Fifth row: Black area represents regions which burned in 
at least 50% of 1000 simulation runs. Bottom row: Black area represents regions which burned in at least 10% of 1000 
simulation runs. 
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3.2. Data Extraction and Measurement of Rate of Spread 

 
Table 1. Measured Rates of Spread (Inches/s) in Each Direc- 
tion: East, West, North and South for each of 31 Experimental 
Fires at Given Slopes 

Run Slope ROSE ROSW ROSS ROSN Time 
1 0.00 0.74 0.90 0.49 1.06 7 
2 0.03 (0.51) 0.93 0.78 0.95 6 
3 0.03 0.68 1.02 1.12 0.88 4 
4 0.03 (0.51) 0.90 1.18 0.95 4 
5 0.03 (0.51) 1.06 (0.81) (0.84) 5 
6 0.03 0.45 1.18 0.60 0.95 4 
7 0.03 (0.51) 1.02 1.32 0.70 4 
8 0.03 (0.51) 0.98 0.94 0.80 5 
9 0.03 0.50 (1.04) 1.05 0.98 4 
10 0.03 (0.51) 1.65 0.80 0.77 4 
11 0.07 (0.51) 1.37 0.72 0.55 6 
12 0.07 0.60 (1.22) 0.66 0.54 5 
13 0.07 0.33 1.07 0.68 0.68 6 
14 0.02 0.68 0.88 0.60 0.78 5 
15 0.02 0.82 1.18 0.93 1.32 4 
16 0.03 0.46 1.06 0.62 0.82 5 
17 0.03 0.33 1.33 1.17 0.70 3 
18 0.05 0.43 1.00 1.35 0.97 4 
19 0.05 0.42 0.82 0.95 1.05 4 
20 0.08 0.38 (1.26) 0.78 0.85 6 
21 0.13 0.50 (1.59) 0.82 (0.71) 5 
22 0.13 0.48 (1.59) 0.78 0.86 5 
23 0.13 0.30 (1.59) (0.89) (0.71) 7 
24 0.17 0.50 1.96 (0.93) (0.66) 5 
25 0.17 0.33 (1.92) (0.93) (0.66) 6 
26 0.17 0.32 (1.92) (0.93) (0.66) 5 
27 0.14 0.26 (1.68) (0.90) (0.69) 5 
28 0.09 0.42 (1.35) (0.86) (0.76) 5 
29 0.09 0.35 (1.35) (0.86) (0.76) 6 
30 0.00 0.45 1.02 0.57 0.60 6 
31 0.00 0.58 0.60 0.70 1.04 5 

* Measured over the given time period of each (measured in seconds). 
Values in brackets were imputed from regressions of log(ROS) on slope for 
each direction, using the available completely observed data. 
 

Windows® Movie Maker was used to freeze-frame the 
movie at approximately 1 second intervals to obtain clear ima- 
ge-captures with time-stamps. These captured images were 
then saved as .png files. For illustrative purposes, images for 
some of the fires are shown in the top panels of Figures 1, 2 
and 3. The first two figures show fires burned under identical 
conditions with no slope; this gives a visual impression of the 
sampling variability between fires. Figure 3 shows a fire burn- 
ed at a slope of 0.03 (inclined from East to West). 

Approximate values of the rate of spread (ROS, in inch- 
es/s) were obtained for each fire by measuring the distance 
travelled by the fire front in the four cardinal directions. 
Although crude, this method is not unlike the method com- 
monly used in experimental forest fires where rates of spread 
are estimated by timing the passage of the flaming front 

between two landmarks (Forest Encyclopedia Network, 20- 
11). 

Table 1 contains the ROS measurements for the given 
fires. In some cases, the fire was ignited near the edge of the 
sheet; in such cases, it was not possible to measure ROS in all 
directions. This resulted in partially missing observations. 

Simple imputation was used to replace the missing va- 
lues; simple regressions were computed for log(ROS) for each 
of the four directions, using the complete data as described at 
the beginning of the next subsection. The missing rates of sp- 
read were then imputed by exponentiating the predicted 
values of log(ROS) coming from the fitted models. The im- 
puted rates of spread appear in brackets in Table 1. 
 
3.3. Relating ROS to Slope 

Using the non-missing data, regressions of log(ROS) on 
slope were calculated for each of the East and West direc- 
tions: 

log(ROSW) = -0.116 + 4.56 × slope (s = 0.1972)   (1) 

log(ROSE) = -0.580 - 3.01 × slope (s = 0.2552)  (2) 

Here, s (the term in brackets) corresponds to the estima- 
ted residual standard deviation for each model. Because the 
slope in the northerly and southerly directions was 0, simple 
averages (on the log scale) were calculated for these direc- 
tions: 

log(ROSN) = -0.181 (s = 0.2246)   (3) 

log(ROSS) = -0.198 (s = 0.2831)   (4) 

Note that, because of missing values, the above regre- 
ssions were carried out on 20, 24, 23 and 24 observations, 
respectively. The log scale was used, because it was the reco- 
mmended Box-Cox transformation (Box and Cox, 1964) for 
all directions but North. A square root transformation would 
be more appropriate in the North direction, but the log scale is 
only moderately sub-optimal, and using the same form of 
transformation in all directions leads to a more parsimonious 
over-all model. Furthermore, standard diagnostic procedures 
(residual-versus-fitted plots, normal QQ-plot of residuals, 
influence plots) indicate a substantial improvement in the 
behaviour of the residuals when a log transformation is used 
as compared with no transformation at all. 

Note also, that even though the slopes in both the North 
and South directions are 0, we have not imposed an equality 
constraint on the ROS in these directions, since we allow for 
the possibility that the wax paper has a “grain” or some other 
property which could lead to a systematic bias. In fact, the 
ROS estimates given above in (3) and (4) do not support such 
a conclusion, since their difference lies within one standard 
error. 

All of the above calculations were undertaken in R (R 
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Core Development Team, 2011) with the use of the boxcox() 
function (Venables and Ripley, 2002). 

 
3.4. Relating the Exponential Rates to the Fitted ROS 
Values 

Our next step was to use the fire spread simulator to ge- 
nerate replicates of the 31 recorded fires. The exponential ra- 
tes for the simulator were taken to be proportional to the rates 
of spread predicted from the models obtained in the previous 
section. The proportionality constant was chosen by trial and 
error from comparisons between the simulated realizations 
and the observed fires. The objective here was to achieve a 
rough matching between the fire growth behaviour in the 
observations and in the simulations. Specifically, we ran 
individual simulations at the 200 × 250 grid resolution, using 
different parameter settings. For each simulation run, the rate 
of spread in each cardinal direction was measured, and the 
proportion of simulated burned area was noted. Parameter va- 
lues for subsequent simulation runs were increased if the si- 
mulated rate of spread values were lower than the observed 
rate of spread values, and decreased if the simulated values 
were higher. The burnout rate was chosen similarly, but using 
only the output from the final observation time: if the pro- 
portion of black area in the simulated fire appeared to be 
larger than in the observed fire, the burnout rate for the sub- 
sequent simulation run was decreased. If the simulated burned 
area appeared to be too small, then the updated burnout rate 
was increased. The procedure was stopped after only a few 
iterations, when a reasonable qualitative match was observed 
between the simulated and observed fires. The 5 parameter 
estimates (4 spread rates and 1 burn-out rate) were then scaled 
down to the lower resolutions by simple division, e.g., for the 
60 by 75 resolution, each parameter estimate was divided by 
3.33. Statistical estimation of the model parameters is ongoing 
work. 

The exponential rate parameters λN, λS, λE and λW are 
given in Table 2 at the grid resolution of 200 × 250. The 
burn-out rate was set at µ = 0.667. The ignition locations for 
each simulated fire were taken at the same locations as for the 
original fires. 

Exponential rate parameters used for other grid dimen- 
sions were obtained by dividing the rates in Table 2 by cons- 
tants in order to adjust for different sizes of grid cells: for a 60 
× 75 resolution, the rates were divided by 3.33, for a 80 × 100 
resolution, the rates were divided by 2.5, for a 100 × 125 
resolution, the rates were divided by 2, and for a 120 × 150 
resolution, the rates were divided by 1.67. The burn-out rates 
were similarly scaled and are given in Table 3. 

Simulations were conducted in order to replicate the set 
of 31 fires under Models A and B using each of the grid di- 
mensions listed in Table 3. Since there is insufficient space to 
display pictures of all of these simulated fires, we have 
arbitrarily selected three for illustrative purposes. 

One of the simulated fires (under Model A, correspond- 
ding to a slope of 0, and using a 200 × 250 grid) is pictured in 

the second row of Figure 1. This simulation realization was 
chosen to demonstrate the appearance of output when a fine 
resolution is used. A simulation realization for Model B using 
the coarser 60 × 75 resolution is pictured in the bottom row of 
Figure 1. The second and third panels of Figures 2 and 3 
exhibit simulation realizations using the 60 × 75 grid dimen- 
sions under Models A and B. The exponential growth rate 
parameters used for these simulations were appropriate for 
slopes of 0 and 0.03, respectively. Notice the appearance of 
many unburnt “islands” in Model A's simulated output. 

 
Table 2. Estimated Exponential Rates to be Used in the 
Simulations of the Replicates of the 31 Fires 

Run Slope λN λS λE λW 
1 0.00 4.45 4.37 2.98 4.74 
2 0.03 4.45 4.37 2.69 5.54 
3 0.03 4.45 4.37 2.69 5.54 
4 0.03 4.45 4.37 2.69 5.54 
5 0.03 4.45 4.37 2.69 5.54 
6 0.03 4.45 4.37 2.69 5.54 
7 0.03 4.45 4.37 2.69 5.54 
8 0.03 4.45 4.37 2.69 5.54 
9 0.03 4.45 4.37 2.69 5.54 
10 0.03 4.45 4.37 2.69 5.54 
11 0.07 4.45 4.37 2.42 6.52 
12 0.07 4.45 4.37 2.42 6.52 
13 0.07 4.45 4.37 2.42 6.52 
14 0.02 4.45 4.37 2.84 5.12 
15 0.02 4.45 4.37 2.78 5.29 
16 0.03 4.45 4.37 2.76 5.33 
17 0.03 4.45 4.37 2.76 5.33 
18 0.05 4.45 4.37 2.56 5.99 
19 0.05 4.45 4.37 2.56 5.99 
20 0.08 4.45 4.37 2.37 6.72 
21 0.13 4.45 4.37 2.04 8.45 
22 0.13 4.45 4.37 2.04 8.45 
23 0.13 4.45 4.37 2.04 8.45 
24 0.17 4.45 4.37 1.80 10.24 
25 0.17 4.45 4.37 1.80 10.24 
26 0.17 4.45 4.37 1.80 10.24 
27 0.14 4.45 4.37 1.96 8.95 
28 0.09 4.45 4.37 2.27 7.19 
29 0.09 4.45 4.37 2.27 7.19 
30 0.00 4.45 4.37 2.98 4.74 
31 0.00 4.45 4.37 2.98 4.74 

*Using grid dimensions 200 × 250. These rates are based on scaled fitted 
values from the regressions in (1) to (4). 

 
Table 3. Burn out Rates at each Grid Cell Resolution 

Grid Dimensions µ 
60 × 75 0.200 
80 × 100 0.267 
100 × 125 0.333 
120 × 150 0.400 
200 × 250 0.667 
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Rates of spread in each direction were measured for each 
of the simulated fires. For the different grid dimensions, the 
rates of spread have been scaled so as to be directly compa- 
rable with the rates measured on the actual fires as listed in 
Table 1. As a proof of concept, simple burn probability maps 
were computed using model B and the 60 by 75 grid resolu- 
tion, using the same parameters as for the model B simulation. 
The 4th row of plots shows (in black) the locations that would 
burn with 10% probability by the given time, the 5th row 
displays the corresponding 50% plots and the bottom row 
contains the 90% plots. The 10% plots give an indication of 
the minimal expected fire area, while the 90% indicate how 
large such a fire could usually be expected to be. Note that in 
2 of the 3 cases, the actual burned area (in time sequence) lies 
between the median (50%) area and the 90% area. In the third 
case, the actual fire outside the area predicted by the 90% 
probability map. The accuracy of this map has likely been 
compromised somewhat by inaccuracy in the model parame- 
ter estimates. Since a proper parameter estimation method- 
logy is still under development, we will not discuss these pro- 
bability maps further in this paper. 
 
Table 4. Regression Results for Simulated Data - West 
Direction. Compare with Model in Equation (1) 

Grid Dimensions β0W β1W σW 
Model A 
60 × 75 -0.0552 2.48 0.179 
80 × 100 -0.141 3.09 0.286 
100 × 125 -0.126 3.07 0.129 
120 × 150 -0.133 4.18 0.120 
200 × 250 -0.104 3.70 0.133 
Model B 
60 × 75 -0.126 2.94 0.180 
80 × 100 -0.107 2.66 0.166 
100 × 125 -0.036 3.15 0.145 
120 × 150 -0.083 3.98 0.129 
200 × 250 -0.061 3.72 0.148 

 
Table 5. Regression Results for Simulated Data - East 
Direction. Compare with Model in Equation (2) 

Grid Dimensions β0E β1E σE 
Model A 
60 × 75 -0.522  -4.16  0.429  
80 × 100 -0.535  -2.35  0.215  
100 × 125 -0.548  -1.69  0.209 
120 × 150 -0.523  -2.31  0.166 
200 × 250 -0.480  -1.87  0.138 
Model B 
60 × 75 -0.512  -1.87  0.281 
80 × 100 -0.520  -1.16  0.285 
100 × 125 -0.435  -1.34  0.161 
120 × 150 -0.366  -2.34  0.197 
200 × 250 -0.344  -2.12  0.095 

3.5. Comparisons with Regressions on the Simulated Data 
For each of the 5 sets of experimental runs listed in Table 

3, the measured rates of spread were regressed against slope, 
analogously to the technique used for the actual fires. That is, 
the following models were fit to each of the 5 data sets: 

log(ROSW) = β0W + β1W × slope + ε   (5) 

log(ROSE) = β0E + β1E × slope + ε  (6) 

log(ROSN) = β0N + ε  (7) 

log(ROSS) = β0S + ε   (8) 

The error terms were assumed to have constant variances 
σ2

W, σ2
E, σ2

N and σ2
S, respectively. 

 
Table 6. Regression Results for Simulated Data - North 
Direction. Compare with Model in Equation (3) 

Grid Dimensions β0N σN 
Model A 
60 × 75 -0.234  0.252 
80 × 100 -0.223  0.182 
100 × 125 -0.229  0.144 
120 × 150 -0.190  0.137 
200 × 250 -0.163  0.120 
Model B 
60 × 75 -0.160  0.245 
80 × 100 -0.128  0.161 
100 × 125 -0.125  0.158 
120 × 150 -0.155  0.142 
200 × 250 -0.088  0.081 

 
Table 7. Regression Results for Simulated Data - South 
Direction. Compare with Model in Equation (4) 

Grid Dimensions β0S σS 
Model A 
60 × 75 -0.307  0.352 
80 × 100 -0.297  0.235 
100 × 125 -0.194  0.158 
120 × 150 -0.171  0.139 
200 × 250 -0.163  0.120 
Model B 
60 × 75 -0.160  0.245 
80 × 100 -0.226  0.190 
100 × 125 -0.152  0.093 
120 × 150 -0.143  0.128 
200 × 250 -0.132  0.085 

 
Each of the above models was fit only to simulated ob- 

servations which corresponded to non-missing observations in 
the actual fire data set. This ensured that exactly the same 
number and type of observations were used in the simu- 
lation-based regression models as in the actual-fire-based 
regression models. Thus, model (5) was fit only to the obser- 
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vations which corresponded to the 20 non-missing observa- 
tions used to fit model (1). Model (6) was fit to 24 observa- 
tions, model (7) was fit to 23 observations and model (8) was 
fit to 24 observations. 

The parameter estimates are displayed in Tables 4-7. Also 
displayed are the estimates of the error standard deviations for 
each case. 
 
3.6. Residual QQ-Plots 

Recall, our focus is to compare the variability in the si- 
mulated rates of spread to that which was observed. The resi- 
duals from the ROS regressions for the actual fires in equa- 
tions (1) through (4) contain information about the variability 

in the fires which can be compared with the corresponding 
residuals for ROS regressions for the simulated fires. The error 
standard deviation estimates give a numerical summary mea- 
sure, but additional distributional information can be obtained 
from quantile-quantile (QQ) comparisons. 

Figures 4 and 5 contain QQ-plots of the residuals from 
the regressions of the actual fire rates of spread against the 
residuals from the regressions of the simulated fire rates of 
spread. These plots were constructed for the five different grid 
dimensions studied and for each of the two models. 
 

4. Results and Discussion  
The full set of fires and corresponding simulation realiza- 
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Figure 4. QQ-plots of residuals from regression models (5) to (8) fitted to observed data and to data simulated at a 
coarse resolution using from Model A (left side) and Model B (right side). Top panel: simulation grid resolution is 60 × 
75. Bottom panel: simulation grid resolution is 80 × 100. 
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tions are documented in Braun and Woolford (2011). What 
can be observed in these pictures is that when the ignition 
point is sufficiently far from the edge, the simulated fire beha- 
viour apparently matches the actual fire behaviour. Thus, on 
the basis of visual comparisons between the simulated and 
actual fire realizations, it is possible to reinforce the conclu- 
sion of Boychuk et al. (2007) that the lattice-spread model is 
capable of reproducing observable fire growth. When the ac- 
tual fire reaches the edge, the simulator appears to be incapa- 
ble of reproducing the correct fire behaviour, tending to sp- 
read more slowly than the actual fire. This is likely due to the 
fact that more oxygen is available for consumption at the edge, 
and the simulation model does not account for this process 
change. 

Note also the tendency for the Model A output to have 
many isolated burning grid cells in the interior, while the 
burning cells in Model B are concentrated at the fire perime- 
ter. Model B's behaviour appears to more closely match the 
experimental fires. The occurrence of these “islands”, which 
are not generally observed in the actual fire experiments fires, 
is greatly reduced with the use of Model B's new burn out 
rule. 

Pictures of actual fires and simulated fires cannot be used 
to make variability comparisons. For this purpose, the regre- 
ssions of log(ROS) on slope are more useful. First, it should be 
pointed out that the slope and intercept estimates listed in 
Tables 4 through 7 do not always match the slope and inter- 
cept estimates for the regressions based on the actual fires. In 

                                Model A                                        Model B  
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Figure 5. QQ-plots of residuals from regression models (5) to (8) fitted to observed data and to data simulated at a fine 
resolution using Model A (left side) and Model B (right side). Top Panel: simulation grid resolution is 100 × 125. Middle 
Panel: simulation grid resolution is 120 × 150. Bottom Panel: simulation grid resolution is 200 × 250. 



W. J. Braun and D. G. Woolford / Journal of Environmental Informatics 22(1) 1-12 (2013) 

11 

the cases of the North and South directions, there is a good 
correspondence between the simulations and the actual fires. 
However, while the intercepts for the West direction match 
reasonably well, the slopes for the simulations tend to be 
considerably smaller in magnitude than the slope estimate ba- 
sed on the actual fires. With one exception, the same can be 
said for the East direction. These discrepancies are due to the 
fact that the parameters used in the simulation have been cho- 
sen in a fairly ad hoc manner; we have not yet pursued a 
careful estimation strategy. In addition, as observed earlier, 
the simulated fires tend to spread slower than the actual fires 
when the edge has been reached by the fire front. This is also 
a likely contributor to a systematic under-estimation. 

The more important comparison, from the standpoint of 
the current paper, is the residual standard deviation. As con- 
jectured in the introduction to this paper, there is a tendency 
for the residual standard deviation to decrease as the grid di- 
mensions increase. 

The residual/simulated residual QQ-plots in Figures 4 
and 5 provide an elaboration on the preceding statement. It 
appears that the error distributions do not match well at all for 
high grid dimensions (Figure 5) but that there is a reasonable 
correspondence at the coarser resolutions (Figure 4). 

On the basis of the results given in the tables and fi- 
gures, one might suggest that the fires could be simulated 
reasonably well with Model B at a 60 by 75 grid resolution, or 
Model A at the 80 by 100 resolution. It is clear that both of 
these models are capturing the rate of spread variability ade- 
quately. In fact, it might be argued that they are capturing 
other aspects of the rate of spread distribution as well. It is 
worth emphasizing that a simple visual assessment may have 
led an “expert” to conclude that a higher resolution was ade- 
quate; this would perhaps lead to correct mean behaviour, but 
the variability between fires would have been under-estimated 
substantially. 

The choice between Model A and B would have to be 
made on a different basis, such as the visual comparison dis- 
cussed above. 
 

5. Conclusions 
This work is part of an ongoing investigation into the sui- 

tability of a simple lattice-based model for stochastically mo- 
delling forest fire spread. Ultimately, we wish to fit such a 
model to sequences of satellite-based photographs of wild- 
fires or infrared photographs obtained from helicopters such 
as those analyzed by Dold et al. (2010). Then, simulations of 
the model could be used to produce the maps of fire spread 
risk that are in demand by forest fire managers. Before doing 
so, a systematic methodology must be developed for estima- 
ting the exponential rate parameters. This is the subject of an 
upcoming paper by the authors. 

The model needs to be further validated on data collected 
under experimentally controlled conditions. The current paper 
represents the analysis of one such experiment. Further fo- 
llow-up studies on additional experimental fires are necessary 
prior to drawing firm conclusions on the validity of this pro- 

cess as a model for fire spread. In particular, experimental 
fires incorporating wind need to be studied. 

What can be firmly concluded on the basis of the current 
work is that the lattice-spread model and its variant have the 
flexibility to capture the nature of the variability exhibited in 
the kinds of micro-fires studied here. A critical element here is 
scale. We have shown that the “natural” grid-cell size is rela- 
ted to the variability in the observed rates of spread. Given the 
appropriate scale, the stochastic spread simulator is then capa- 
ble of generating images of fires which have the same range 
of fire spread rates which could be observed in the micro-fires 
burned under the given conditions.  

There is no reason for us to think that this relation be- 
tween variability and scale would be any different than what 
would be observed in large scale experiments. Generally ma- 
ny variables would affect large scale fire spread and the rate 
parameters would need to account for locally observed cova- 
riates (e.g., wind, topography, fueltype and density). There 
will be uncertainty induced by the imprecision in how these 
factors would be measured and that would also translate into 
uncertainty that would need to be modelled in the way that we 
modelled it. Even if we considered all this, there's still natural 
variability that we need to account for. Looking at variability 
allows us to choose scale. This is an important step toward 
demonstrating that such a model will indeed produce valid 
burn probability maps. 
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