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ABSTRACT. Using a traditional numerical approach in subsurface contaminant transport models generates unavoidable deviation due 
to unknown or uncertain sources, inaccurate transport and hydraulic parameters, and numeric scheme errors. As a result, stochastic data 
assimilation or filtering techniques have been employed in the subsurface simulation processes to improve the accuracy of model 
results. The Kalman Filter (KF) has been widely used for estimation and tracking of linear systems. In the subsurface transport model, 
even if the system dynamics are linear, it can become a nonlinear one because of the presence of the unknown parameters. The 
Unscented Kalman Filter (UKF) is one of the data assimilation filters that offer a potential solution to the problem of model 
development with noisy and incomplete data when the system is nonlinear. The objective of this study was to apply the UKF in 
subsurface contaminant transport models and to find the contaminant plume. The performance was then evaluated in comparison with 
the KF and numerical model. A two dimensional transport model with advection and dispersion was used as the deterministic model of 
a conservative contaminant transport in the subsurface. Random Gaussian noises were added to the numerical method result to 
simulate the true solution and the observation data. Then the UKF and KF filtering techniques were applied for the data assimilation. 
An Error Standard Deviation (ESD) of pollutant concentrations was used to examine the effectiveness. The UKF can reduce 6~75% 
and 2~52% of prediction errors when compared with the numerical and KF results, respectively. 
 
Keywords: stochastic process; Error Standard Deviation (ESD); Kalman Filter (KF); Unscented Kalman Filter (UKF); contaminant 
transport 

 
 

 

1. Introduction 

The prevention and control of groundwater contamination 
can be enhanced if the sources of contamination, types of con- 
taminants, and the movement of contaminants through porous 
media are taken into consideration. Subsurface contaminant 
transport models play an important role to groundwater risk 
and clean-up processes. One of the main goals of subsurface 
contaminant transport modeling is to predict the contaminant 
concentration with limited parametric information. Subsurface 
contaminant transport models can be one, two, or three dimen- 
sional. Mathematical deterministic models (Goovaerts, 1999; 
Kim and Parizek, 1999; Ren and Zhang, 1999; Parkin et al., 
2007) are widely used in subsurface contaminant transport pro- 
cesses. However, a numerical method suffers, with its numeri- 
cal errors including the truncation error (TE) and convergence 
error. When these numerical methods are used in the subsur- 
face transport model, it provides deviated predictions due to 
the inherent randomness and uncertainty in the transport sys- 
tem. Two major factors contribute to these uncertainties. Firstly, 
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field observations provide the environmental model parame- 
ters and data. Unavoidable variability of hydraulic properties 
exists on those field observations due to the heterogeneous 
subsurface flow (Heuvelink and Webster, 2001; Zheng and 
Bennett, 2002; Hu et al., 2009). Secondly, these uncertainties 
are also caused by errors in model mechanisms and numerical 
schemes. By incorporating the random field with the determi- 
nistic numerical model, the stochastic dynamic system of trans- 
port process can be represented (Hamed et al., 1996; Van et al., 
1999; Pham, 2001; Chan and Govindaraju, 2006; Saad, 2007; 
Zhang et al., 2009). Furthermore, the deterministic system mo- 
del cannot work well alone. Thus the system model updated 
by observations can provide better solution than those by a tra- 
ditional deterministic model. Thus, the stochastic data assimi- 
lation filtering technique can be used to overcome the traditio- 
nal deterministic model problems.  

The Kalman Filter (KF) has been widely used for estima- 
tion and tracking of linear systems due to its simplicity and ro- 
bustness (Grewal and Andrews, 1993; Schreider et al., 2001). 
Most of the contaminant transport models possess some degree 
of nonlinearity. The degree of nonlinearity depends on the type 
of assumption and the relevant equations used to solve the mo- 
del (Magnus et al., 2000; Li and Zhang, 2010). In most cases, 
the linear approximation may not be accurate enough and non- 
linear process models are necessary for the state estimation 
(Creveling, 2008). The most common way of applying the KF 
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to a nonlinear system is in the form of the Extended Kalman 
Filter (EKF). In the EKF, the PDF (Probability Density Func- 
tion) is propagated through a linear approximation of the sys- 
tem at each time step. In doing so, the EKF needs the Jacobian 
matrices which may be difficult to obtain for higher order sys- 
tems, especially in the case of time-critical applications (Costa, 
1994; Pastres et al., 2003). In order to overcome the drawbacks 
of the EKF, other nonlinear state estimators have been develo- 
ped such as the Unscented Kalman Filter (UKF) (Julier and 
Uhlmann, 1997, 2004). The UKF method yields a filter that is 
more accurate than an EKF and easier to implement than an 
EKF or a Gauss second-order filter (Simon et al., 2000; Wan 
and Rudolph, 2000). UKF and KF are state space models that 
can be used as a dynamic technique. The state space model is 
a method for analyzing a wide range of time series models. 
When the time series is represented by the state space model 
(SSM), the KF and UKF are used for filtering, prediction, and 
smoothing of the state vector. Thus, they can assimilate new 
measurement (information) dynamically. The objective of this 
paper is to apply the UKF in subsurface contaminant transport 
modeling and to find the contaminant plume. The performance 
is then evaluated in comparison with the KF and deterministic 
numerical model. 

2. Methodology 

2.1. Advection-Dispersion-Adsorption Model 

A two dimensional transport model with advection and 
dispersion was used as the deterministic model of a conserva- 
tive contaminant transport in the subsurface. The advection- 
dispersion model in subsurface describes contaminant trans- 
port in the groundwater by means of partial differential equa- 
tions derived from solute mass balances. In this study, a two- 
dimensional subsurface contaminant model in the horizontal 
plane (x - y) and advection in the x direction was used to exa- 
mine the effectiveness and accuracy of the numerical KF and 
UKF results relative to the true solution. In the model, sorption 
is also considered as an important factor. The advection-dis- 
persion-adsorption model is represented by the following equa- 
tion: 

 
2 2

2 2
-yx

DDC C C V C
t R x R y R x

   
   

 (1)

 
 
Here R is the retardation factor which is defined by: 
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where C = contaminant concentration (mg/l); t = time (s), Dx, 
Dy = dispersion coefficients in the x and y direction, respectively 
(m2/s); x, y = cartesian space coordinates (m); V = the average 
linear pore liquid velocity (m/s); R = retardation factor, dimen- 
sionless; ρ = dry bulk density of the soil (mg/l); kd = distribu- 
tion coefficient for the solute in the soil (l/mg); φ = volumetric 
moisture content of the soil, dimensionless. 

In this study, an initial spontaneous point mass source at 
(x0, y0) and a constant boundary condition has been taken. The 
boundary condition of the two dimensional mass transport with 
an instantaneous point source is expressed as: 

 

0, 00
( , , ) ( )It

C x y t C x y

  and ( , , ) BC x y t C


  (3) 

 
where CB is constant concentration at boundary Ω, and Ω is 
chosen as a square boundary in this study. 

 

2.2. State-Space Formulation of the Contaminant 
Transport Modeling 

In order to solve the two-dimensional advection-disper- 
sion-adsorption equation numerically, a Forward-Time and 
Central-Space (FTCS) differencing scheme was developed. 
Zou and Parr (1995) used this explicit finite-difference method 
(FDM) in their research to predict contaminant transportation 
in a two-dimensional aquifer condition. Similarly, Chang and 
Jin (2005) proposed the use of FTCS in their contaminant mo- 
deling approach using the Kalman Filter. In this paper, the 
same numerical approach is used to generate the deterministic 
numerical model. Gaussian random noises were used with this 
numerical solution to generate the true solution and accompan- 
ying observation. That observation was used to guide the filte- 
ring process. A MATLAB program was developed to solve the 
numerical model explicitly and to estimate the concentration 
of the conservative contaminant spatially and temporally. After 
solving Equation (1) by using FTCS, the general form of the 
Equation (1) can be rewritten in a state-space form as: 

 

(t+1) (t)x =A*x
 

(4) 

 
where (t+1)x  is the vector of contaminant concentration at all 
nodes at time t + 1; (t)x  is the vector of contaminant concen- 
tration at all nodes at time t; A is the State Transition Matrix 
(STM) containing the parameters for the model. 

The convergence and stability criteria for the scheme are 
given as: 
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(5) 

 
where, x , y and t are the discretized space in x and y direc- 
tion and time, respectively. Capitalized bold letter denotes ma- 
trices and small bold letter denotes vectors. 

3. Stochastic Process 

Stochastic processes are introduced for modeling the com- 
plicated real-world transport systems which usually have un- 
known or uncertain sources, inaccurate transport parameters, 
or numeric errors. The stochastic dynamics can be represented 
as deterministic dynamics of transport and a random noise 
term (Pham, 2001; Saad, 2007).It can be written as: 
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t+1 t tx = Ax + p , t = 0, 1, 2, 3, …, tn (6) 

 
where tx

 
and

 
t+1x  are the subsurface state variables at time t 

and t + 1, respectively. A is the finite-difference operator that 
advances the tx

 
by one time step. tp  is the model system 

error, the difference between the model prediction and the 
optimal estimate of the true value. The model error vector tp  
is assumed to have covariance matrix Qt  

and zero mean.  

Observation tz are described by data conversion matrix 
H and error to . Similarly, to

 
is assumed to be the error of 

observations that has covariance matrix R t  
and zero mean: 

 
T

t t tz = Hx + o   (7) 

 
3.1. Data Assimilation with Kalman Filtering (KF) 

Considering a stochastic process defined by Equations (6) 
and (7) above, the Kalman optimal estimator (Grewal and 
Andrews, 1993 ; Schreider et al., 2001) is:  

 

t+1 t+1 t+1 t+1 t+1(+) (-) (-)x = x + K [z - Hx ]  (8)
 

 
where t+1(+)x indicates the estimated value after the KF adjust- 
ment, and t+1(-)x the value before the KF adjustment, i.e. the 
predicted value from the model. The matrix t+1K is determined 
by: 

 
-1

t+1 t+1 t+1 t+1(+) (-) (-)T TK = P H (HP H + R )  (9)
 

 
where t+1P is the optimal estimate error covariance matrix. ( )T

 

and ( )-1
 

denote the transpose and inverse of matrix, respecti- 
vely. The t+1P can be obtained by the following recursive 
calcula- tion: 

 
T T 1

t+1 t+1 t+1 t+1 t+1(+) (-) (-) (-)-P = P - P H [(HP (-)H + R] HP  (10)
 

 
T

t+1 t t(-) (+)P = AP A + Q  (11)
 

 
As seen in Equation (8), t+1K determines how much the 

estimated value can gain from the observations; therefore, 

t+1K  in Equqation (9) is called the Kalman optimal gain ma- 
trix or Kalman Filter. In addition to advancing a time sequence, 
the system operator A also simultaneously applies to a space 
sequence, x[i], i = 0, 1 , 2, ... , n where index i indicates the 
space positions and n is the total spaces. Therefore, the KF 
has the potential for assimilating data in both space and time. 
Accordingly, the observational data pattern matrix H can re- 
present the incomplete and irregular pattern of observations in 
both space and time. Note that KF can be conveniently imple- 
mented since the model dynamic system itself has already been 
integrated in the assimilation (Grewal and Andrews, 1993; Jin, 
1996; Chang and Jin, 2005). 

 

3.2. Optimal Estimation and Data Assimilation with 
Unscented Kalman Filter  

The Unscented Kalman Filter (UKF) was developed to 
address the deficiencies of the linearization of the Extended 
Kalman Filter (EKF) by providing a more direct and explicit 
mechanism for transforming the mean and covariance informa- 
tion (Rambabu et al., 2008). The UKF is founded on the pre- 
mise that it is easier to approximate a probability distribution 
than an arbitrary nonlinear function or transformation (Simon 
et al., 2000). Although the UKF method superficially resem- 
bles the Monte Carlo method and the particle filter method, it 
differs in that the samples in the UKF are not drawn at random. 
Rather, the samples are deterministically chosen so that they 
can capture specific information about the distribution. As a 
result, high-order information about the distribution can be 
captured with a fixed, small number of points. In general, this 
scheme can be applied to capture many kinds of information 
about many types of distributions (Julier and Uhlmann, 1997, 
2004; Rudolph and Eric, 2001; Gove and Hollinger, 2006).  

Let xn be the dimension of state vector x with mean x  
and covariance Px. A set of sigma points σ consists of 2nx + 1 
vectors and associated weights S = {σi, Wi; i = 0, 1, 2, …, 2nx}. 
The weights Wi can be positive or negative but, to provide an 
unbiased estimate, they must obey the condition: 
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The selection scheme for sigma points and weights are: 
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(17) 

 

where 2
x xλ = α (n + κ) - n  the scaling parameters λ, α and β 

are tuning parameters. Choosing κ ( κ ≥ 0) guarantees positive 
semi-definiteness of the covariance matrix; a common default 
is κ = 0. If κ  is negative there is the possibility, as with all 
approximation algorithms, that the predicted covariance will 
be non-postitive semi-definite. The range of the values of α is 
10-4 ≤ α ≤1, which controls the spread of the sigma points and 
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should ideally be a small number to avoid non-local effects 
when the nonlinearities are strong. β is a non-negative weight 
which can be used to incorporate knowledge of the higher 
order moments of the distribution. For the Gaussian case, the 
optimal choice is β = 2 (Cheryl and Juergen 2008). (m)Wi and 

(c)Wi represent the weight components to calculate the mean 
and covariance, respectively. The UKF state update and mea- 
surements update equations are stated below (Andrei and José, 
2004).  

 
3.2.1. Time Update Equations 

Propagate each sigma point through the update function: 

 

, 1 , 1, 1 ( , );i t i ti t tY g u    x0,1, 2, ..., 2i n
 

(18) 

 
The mean, covariance and the cross covariance are calculated 
as follows: 
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where u is the system noise and Ru is the system noise cova- 
riance matrix. 

 

3.2.2. Measurement Update Equations 

Transform the observation values through the measure- 
ment update equations: 
 

, 1 x, 1 , 1( , ); 0,1, 2, ..., 2i ti t t i t tZ f O v i n    (22) 

 

and the mean, covariance and cross-covariance of the measure- 
ment are calculated as follows: 
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where O is the observation, ν is the measurement noise and 

vR  is the measurement noise covariance matrix 

The Unscented Kalman gain (U) is given by: 

1

,t ty z z ttU P P   (26) 

 
and the UKF state estimation and its covariance are computed 
from the standard Kalman update equations: 
 

(+) (-) (-)( )
t tt ty y U z z    (27) 

 

(+) (-) (-)
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T
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4. Case Study 

4.1. Components of Parametric Input 

The system parameters used in this paper are based on 
the work of Zou and Parr (1995) and several research works 
previously conducted on the subsurface cotaminant transport 
model. In this study, the model area in the two-dimensional 
plane has 400 grid points with grid intervals of, Δx =1.5 and 
Δy = 1.5 m. Therefore the model area is 30 × 30 m2. The time 
interval per each time step Δt = 0.20 day with a total time step 
of 50. Therefore, the total simulated period is 10 days. V and 
R are assumed to be 2.10 m/d and 1.525, respectively. The 
numerical solution was generated with different velocity than 
the true solution. Dx and Dy are 1.554 and 0.4662 m2/d, res- 
pectively. This model is developed to deal with a conservative 
contaminant; hence the chemical decay term is eliminated. An 
instantaneous initial concentration of 1000 mg/l of any kind of 
conservative contaminant is injected into the grid point at co- 
ordinate (5, 10). In this research, a time-independent Gaussian 
system error having a standard deviation of 10% is injected 
into the numerical model to generate the process or system 
model, a 5% Gaussian system error is also injected into the 
numerical model to generate the measurement or observation 
model. 

 
4.2. Generation of the True Solution 

In this study an artificial uncertainty system is created as 
the true solution, TF. The true solution is simulated by using the 
numerical solution with injected random noises. In addition to 
that noise, a very small percentage of random noises is injected 
cumulatively with respect to the time step. The true solution 
also differed by generating a different State Transition Matrix 
(STM) than in the numerical solution [Equation (4)]. The true 
solution used At as a STM. Due to the random error injection 
to the system model and its operational pattern, the matrix tA  
varies with each time step. The average pore liquid velocity, V 
[Equation (1)] used is 1.5 m/day, which differs from the velo- 
city used in the numerical solution. The numerical solution 
has no information about the changed velocity used in the true 
solution. In this study, an arbitrary 40% (2.10 m/d) higher ve- 
locity was used in the numerical model. As the transport pro- 
cess is being simulated, the UKF and KF are not informed of 
the existence of TF, except in the limited observations that are 
extracted from the TF. The simulation results provided by the 
UKF and KF can then be compared with the TF

 
for examina- 

tion. 
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4.3. Generation of Observation Data 

The state-space model works with limited system parame- 
ters like contaminant velocity, porosity of soil media, retarda- 
tion factor, dispersion etc. These parameters may not be accu- 
rate enough to predict the true behavior of pollutants. There- 
fore, observation data is needed to guide the deterministic sys- 
tem model to assimilate the true state of the contaminant. In 
reality, limited observation data exists since it is quite expen- 
sive and laborious to collect groundwater observation data. In 
this study, 9 grid points out of 400 have been used to simulate 
the observation site data. Observations are available at coordi- 
nates (5, 5), (5, 10), (5, 15), (10, 5), (10, 10), (10, 15), (15, 5), 
(15, 10) and (15, 15) [Figure 1]. This method was first consi- 
dered by Chang and Jin (2005), where four observation points 
were used to run the KF model for spatially-independent Gau- 
ssian conditions. In this study, both UKF and KF were simula- 
ted based on those 9 observation grid points. In the process of 
generating the true solution data, the observation data is extra- 
cted from the true solution at the 9 observation points, also 
adding Gaussian random errors having a standard deviation of 
5% [Equation (7)].  

 

 
Figure 1. Initial contaminant and observation location in the 
model area. 
 

4.4. Examination of Models Scheme 

The effectiveness of the filters and deterministic model is 
determined by comparing the model predictions with the true 
solution. The Error Standard Deviation (ESD) indicates the 
average error in the predictions with respect to the true solution; 
it is used as the standard error parameter in this study. 

ESD is defined as: 

 

21
( ) [ ( , , ) ( , , )]

-1
-P TESD t C x y t C x y t

N
   (29) 

 
where ESD(t) = error (mg/L) at time step t; CP(x, y, t) = pre- 
dicted value of concentration at node (x, y) at time step t; CT(x, 
y, t) = true value of concentration at node (x, y) at time step t; 
n = total number of nodes. 

5. Results and Discussion 

MATLAB was used in this study to generate the algori- 
thms for solving the FTCS, UKF, and KF models. The deter- 

ministic numerical model is the basis by which the state was 
found by utilizing the data assimilation model for UKF and KF. 
Equation (29) has been used for the comparison of the Error 
Standard Deviation (ESD) with the true solution. The average 
measurement error is calculated for all the time steps and spa- 
ces within the area under study. Figures 2 and 3 show the ESD 
of all the models used in this study. It was found that the filte- 
ring technique seems to have fewer errors than the determinis- 
tic model results. The error profile shows that the numerical 
scheme is the approach with the maximum errors at all-time 
steps. This is due to the approximation and assumptions made 
to the model which introduced a certain amount of error. Ini- 
tially there is a small amount of error because the filtering pro- 
cess and the estimation by numerical process had not yet begun 
to indicate the error in prediction. The average prediction error 
in each time step is approximately 6, 4.9 and 3.1 mg/l in the 
numerical KF and UKF model results, respectively [Figure 2]. 
The average percentage reduction of prediction error for the 
UKF model calculated for all 50 time steps is approximately 
49 and 37% when compared with the numerical and KF mo- 
del, respectively [Figure 2]. In Figure 2, It is seen that after 50 
time steps (10 days), UKF is 2.6 mg/l which is lower than both 
4 mg/l from the KF and 5.5 mg/l from the numerical model. 

 

 
Figure 2. Error Standard Deviation (ESD) (mg/l) of 
numerical, KF and UKF models. 
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Figure 3. Several runs of Error Standard Deviation (ESD) of 
numerical, KF and UKF models. 



S. Y. Chang et al. / Journal of Environmental Informatics 23(1) 14-22 (2014) 

 

19 

Several repeated runs were conducted and the results of 
each model were compared with the true solution [Figure 3]. 
The model results of the 5 repeated runs are shown by the error 
bar in Figure 3. The lower value of each time step in the error 
bar is the difference between the average and the lowest value 
of 5 runs. The upper value of each time step in the error bar is 
the summation of the average and the highest value of 5 runs. 
In the first several time steps, the ESDs are going up due to 
the divergence of the numerical scheme from the true stocha- 
stic field. Contaminant concentrations will decrease with time 
due to the dispersion and therefore the ESD is lower after 40 
time steps [Figure 2].  

The improved performance of the UKF compared to the 
KF is due to two factors: the increased time-update accuracy 
and the improved covariance accuracy. The covariance estima- 
tion can be quite different for the two filters as shown in Equa- 
tions (6), (7), (20), (21), (24) and (25). In the KF process, noise 
covariance Q and measurement noise covariance R are sym- 
metric, diagonal, and positive definite in nature. These Q and 
R are directly generated from the numerical results multiplied 
with their noises and then squared. But in the UKF model, 
these covariances are the weighted outer products of the trans- 
formed numerical values (Rambabu et al. 2008). To avoid the 
semi singular error covariance matrix in Equation (9) for the 
KF operation, a small positive entry is required rather than a 
zero matrix. These small positive entries are placed on the dia- 
gonal of a matrix. A badly scaled singular matrix can be formed 
if a bigger number is put to construct an initial error covariance 
matrix. But the UKF doesn’t have this type of problem. Even 
a high initial error variance can have negligible effects on the 
prediction by the UKF (Rudolph and Eric 2001).  

The predictions after 4 days from the numerical, KF and 
UKF models are shown in Figure 4. It is clearly indicated that 
the pollutant plume in the numerical model moves faster than 
the plume of the true solution due to the inaccurate V used in 
the prediction model when compared with the other models.  

The KF and UKF data assimilation schemes depend on 
the generation of the observation data from the true solution 
model results to serve as a guide in estimating the state of the 
plume concentration. In this research, Gaussian system error 
with a standard deviation of 5% is injected into the simulated 
true solution to generate the measurement or observation data. 
For this reason, the nature of the spreading or dispersion of 
the contaminant plume of the KF and UKF data assimilation 
schemes and the true solution is similar [Figure 4]. The close- 
ness of the contours with the true solution indicates the small 
deviation or prediction error from that model. 

The prediction results after 6 days from the numerical, 
KF and UKF models are shown in Figure 5. The plume size 
increased with time in all the model contours. The contours 
predicted by the UKF and KF models coincide with the true 
solution more closely than those predicted by the numerical 
solution. As described earlier, ESD is used as the average mea- 
surement of the standard error between the true data and the 
model prediction in the entire space domain (400 nodes). It is 
mentionable here that to take care of the spatial sparseness of 

data, a sparse observation data pattern matrix is created. Here 
measurement sensitivity matrix, H is a 9 × 400, 0–1 matrix. It 
has “1” in nine different observation sites and “0” in the re- 
maining grid points. 

 

 

 

 
Figure 4. Comparison of numerical, KF and UKF results with 
the true solutions of the contaminant contour after 20 time 
steps (4 days). 

 
The predictions after 10 days from the numerical, KF and 

UKF models are shown in Figure 6. In these contours, indica- 
tions show that the UKF model is able to predict the irregular 
shapes of the natural stochastic system more closely than the 
KF and deterministic models do. The contours of the UKF re- 
sults in Figures 4, 5 and 6 are relatively closer to the true value 
than the KF results and the numerical results. The performance 
of the UKF model is dependent on the proper weights it is 
assigned to the samples and choices of the tuning parameters. 
The sigma points chosen in Equations (12), (13) and (14) also 
play an important role in the accuracy of the prediction pro- 
cess. Performance of the UKF can also be dependent on the 
covariance’s generation in Equations (20), (21) and (24). 
Figure 5 which represents time step 30, KF model provides 
the best contaminant concentration contour with the true solu- 
tion when compared with the time step 20 and time step 50 in 
Figures 4 and 6, respectively. 
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Figure 5. Comparison of numerical, KF and UKF results with 
the true solutions of the contaminant contour after 30 time 
steps (6 days). 
 

The perfect bell shape pollutant contour line in all the 
numerical results in Figures 4, 5 and 6 represents the theoreti- 
cal advection-dispersion transport process. The deviation be- 
tween the numerical and true solution in Figure 6 was visibly 
clear. Deterministic numerical model approximation provides 
a relatively, smooth shape of the contaminant plume due to 
the random stochastic field was not introduced. The filtering 
adjusts the system model by the observation data and tries to 
project the optimal state. But the deterministic model relies 
only on the initial and boundary conditions, the assumed flow 
parameters, and its systems of equations to predict the state.  

At time step 20 in the true solution contour, the contami- 
nant concentrations are 55.2, 41.4, 27.6 and 13.8 mg/l. At time 
step 50 in the true solution, the contaminant concentrations are 
35.2, 26.4, 17.6 and 8.8 mg/l. These contours clearly represent 
that contaminant concentrations are decreasing with the propa- 
gation of time. After comparing the model contours in three 
figures, it is obvious that the stochastic model with the UKF 
data assimilation is more accurate than the KF data assimila- 
tion and the traditional numerical approach. 

 

 

 

 
Figure 6. Comparison of numerical, KF and UKF results with 
the true solutions of the contaminant contour after 50 time 
steps (10 days). 
 

In Figures 7 and 8 shows the contaminant concentration 
at four different grid points in the model area, in four different 
model schemes within the simulated period. In Figure 7, the 
grid points are (6, 10); (7, 10); (8, 10); (9, 10) and in Figure 8 
the grid points are (10, 10); (11, 10); (12, 10); (13, 10). The 
initial pulse input position was (5, 10) [Fgiure 1]. Therefore, 
the highest pollutant concentration exists on these grid points 
in the model area. Four plots in each figure are done in the 
same scale. The contaminant concentration decreases in all 
the four model schemes within the simulated period in Figures 
7 and 8 when the grid position is changing. 

Smooth concentration distribution curves in Figures 7 
and 8 show that stochastic random errors were not introduced 
in the deterministic numerical model. Numerical model results 
also show the deviated concentration at all time steps at all 
grid points in Figures 7 and 8. It is due to the approximation 
and assumptions made to the model which introduced a certain 
amount of error. It is visibly clear in Figures 7 and 8 that the 
UKF coincides with the true solution and gives the best result 
compared with the numerical and the KF model. 
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6. Conclusions 

The complex dynamic behavior of contaminant transport 
within groundwater environment systems has been studied 

using numerical methods. However, errors from the determi- 
nistic numerical method can bring unavoidable prediction de- 
viations from the real world. Errors associated with the trade- 
tional numerical method may include numerical errors from 
model mechanisms, time and space limits of numerical sche- 
mes, and boundary conditions. Using filtering techniques with 
the combination of the observation information into model 
dynamics should give a more accurate estimation result com- 
pared to that from the deterministic numerical method. This 
study introduced the use of the Unscented Kalman Filter (UKF) 
in a typical groundwater modeling application and compared 

the results with the Kalman Filter (KF) and the deterministic 
numerical method. The effectiveness of the proposed method 
was then evaluated by Error Standard Deviation (ESD).   
The KF and UKF schemes are both constructed using MAT- 
LAB routines and operated with the FTCS dynamics. The KF   
and UKF model simulation time was around seven minutes 
while the numerical results take an average of two minutes of 
running time on a 2.0GHz PC with 3.0GB RAM. The distinct 
difference in error for all the approaches is best seen when the 
ESD is determined. It was found that the UKF data assimi- 
lation method is able to provide good results in comparison 
with the deterministic numerical method and the KF method. 
With only nine observations out of a total 400 grid points in 
the model area, the UKF can reduce 6 ~ 75% and 2 ~ 52% of 
prediction errors when compared with the deterministic and 

 
 

Figure 7. Concentration profiles at four different grid points in the different models. 
 
 

 
Figure 8. Concentration profiles at four different grid points in the different models. 
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KF results, respectively. With sparse observation data points 
as in the case of a pulse input subsurface contaminant trans- 
port, the UKF scheme can provide better prediction than the 
KF scheme and deterministic numerical model. 
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