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ABSTRACT. Regional electric power generation systems (REPGS) planning involves multiple sectors, multiple facilities, and 
multiple uncertainties, leading a variety of complexities. In this study, lower-side attainment degrees based inexact fuzzy 
chance-constraint programming (LA-IFCCP) was proposed to support the planning of REPGS under such a complex situation. 
LA-IFCCP was developed by integrating lower-side attainment degrees based fuzzy programming (LA-FLP) into an interval 
chance-constraint programming (ICCP) framework. It was able to tackle uncertainties expressed as intervals, fuzzy sets, probabilistic 
distributions as well as their combinations. At the same time, fuzzy relationships between conversion efficiencies of technologies and 
availabilities of energy resources could be transformed into corresponding deterministic ones via the lower-side attainment degree 
index without introducing any additional constraints, and thus guaranteed enhanced computation efficiency. Moreover, constraint- 
violation levels about renewable energy resource availabilities could be quantified through the adoption of various pi levels, which 
could represent the reliability of the system. The relationships between systems costs and reliability could be reflected via analyzing 
the solutions under different pi levels, which was very important for the management of power generation. A hypothetical but 
representative regional electric power generation system was adopted for demonstrating its applicability. Reasonable solutions were 
generated. They provided desired plans regarding energy supply, electricity generation, capacity expansion and emission mitigation to 
achieve a minimized system cost. 
 
Keywords: electric power generation system, emission mitigation, lower-side attainment degree, constraint-violation, multiple system 
uncertainties

 
 

 

1. Introduction 

Power generation planning is an effective tool for the de- 
velopment of safe, economical and environmentally-friendly 
energy systems at multiple scales (Mavrotas et al., 2008). In 
the past decades, soaring electricity demands, increasing envi- 
ronmental concerns, as well as shrinking energy reserves have 
forced decision makers in many regions to contemplate and pro- 
pose comprehensive electric power generation plans (Cai et al., 
2009a, c). However, in a regional electric power generation 
system (REPGS), many complex processes should be consi- 
dered, including energy allocation, conversion and transmission, 
as well as the associated environmental and social issues (Cai 
et al., 2009d; Li et al., 2010). Moreover, many system parame- 
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ters such as electricity demands, energy availabilities, and te- 
chnology efficiencies may appear uncertain, further complica- 
ting the complexities in relevant decision-making processes. 
Thus, it is desired to develop an effective approach for suppor- 
ting the planning of regional electric power generation sys- 
tems under multiple uncertainties. 

Previously, a number of inexact optimization techniques 
were developed to tackle uncertainties and complexities in en- 
ergy systems planning problems (Sadeghi and Hosseini, 2006; 
Jana and Chattopadhyay, 2004; Carrión et al., 2007; Weber et 
al., 2009; Guo et al., 2012, Shen et al., 2012). Among them, 
inexact chance-constraint programming (ICCP) was an effecti- 
ve approach for addressing uncertainties in the objective func- 
tion and constraints of an optimization system that can be ex- 
pressed as intervals. At the same time, it could deal with uncer- 
tainties in the right-hand side of the system constraints presen- 
ted as probabilistic distributions (Cai et al., 2009c). More re- 
cently, many studies of ICCP were conducted for tackling en- 
ergy systems planning problems (Cai et al., 2009b; Liu et al., 
2009; Huang et al., 2011). In these studies, ICCP could (a) in- 
corporate dual uncertainties within the corresponding optimi- 
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zation processes, (b) identify decision alternatives under diffe- 
rent significance levels, representing at which the constraints 
would be violated (Huang 1998), and (c) reflect tradeoffs be- 
tween economic cost and system reliability (Tan et al., 2010a). 
However, ICCP would encounter difficulties in handling un- 
certainties expressed as fuzzy sets or combinations of fuzzy sets 
and interval numbers that were embedded within an individual 
parameter. Comparatively, a number of fuzzy programming ap- 
proaches were developed for handling uncertainties expressed 
as fuzzy sets (Gjorgiev and Cepin, 2013; Hu et al., 2011; Tan 
et al., 2010b, c; Gjorgiev et al., 2010). For example, Van Hop 
(2007) adopted the lower-side attainment degrees to deal with 
fuzzy sets in optimization problems and thus proposed a fuzzy 
linear programming method (LA-FLP). It could directly 
reflect the relationships among fuzzy coefficients through the 
adoption of the lower-side attainment degrees, instead of dis- 
crete intervals under varying α-cut levels. Compared with 
conventional fuzzy programming approaches, efficient com- 
putation process could be obtained. Also, the satisfaction or 
violation degrees about the constraints with fuzzy coeffi- 
cients could be quantified via the corresponding lower-side 
attainment values. Although this method has strength in 
computational efficiency and uncertainty reflection, it could 
hardly address uncertainties expressed as intervals and proba- 
bilistic distributions. 

Therefore, the objective of this study is to incorporate the 
ICCP and LA-FLP methods within a general REPGS model 
framework, leading to lower-side attainment degrees based in- 
exact fuzzy chance-constraint programming (LA-IFCCP) for 
REPGS planning. The method can address uncertainties ex- 
pressed as intervals, fuzzy sets, probabilistic distributions as 

well as their combinations in the process of REPGS planning. 
At the same time, it can reflect the tradeoffs between system 

costs and reliability through analyzing solutions under differ- 
rent constraint-violation levels. A case study will then be 
provided for demonstrating applicability of the developed me- 
thod. The results can help decision makers identify desired 
plans regarding energy allocation, electricity generation, faci- 
lities capacity-expansion and emission mitigation under mini- 
mized economic costs with consideration of system reliabi- 
lity. 

2. Modeling Formulation  

2.1. Development of an Inexact Chance-Constraint 
Programming Model  

Consider a regional electric power generation system whe- 
rein a decision maker is responsible for assigning electricity 
generation plans for conversion facilities with consideration of 
the varied electricity demands and environment requirements 
in the region. Four types of electricity conversion facilities are 
considered, including coal-fired and natural gas-fired plants, 
hydropower station, and wind power farm. For each conversion 
facility, possible expansion options would be allowed when the 
residual capacity could not meet requirements of electricity de- 
mands. However, the availabilities of primary energy resources 
(e.g., coal and natural gas) are limited. The decision maker can 

formulate the problem as minimizing the total system cost with 
optimal primary energy resources (fossil fuels) allocation pa- 
tterns, capacity expansion schemes, electricity generation and 
pollutant mitigation plans.  

In this process, many system parameters such as fossil fuel 
prices and electricity demands are hard to be obtained as deter- 
ministic numbers due to insufficient data accumulation. Instead, 
the decision maker may be confident to present them as inter- 
vals or probabilistic distributions. For example, the price of do- 
mestic coal is greatly affected by economic and technological 
issues and is highly uncertain. In order to acquire the values 
for the parameters related to economic issues, the decision ma- 
ker may describe “the estimated price of domestic coal in this 
region would be [2.67, 2.87] ×103 $/TJ”. This represents that 
the minimum and maximum prices for domestic coal would 
be 2.67×103 $/TJ and 2.87×103 $/TJ in the study region, res- 
pectively, leading to the uncertainty that can be expressed an 
interval number. Such an interval number a can be expressed 
as [ , ]a a  , meaning a number having a minimum value of 
a  and a maximum value of +a . Moreover, the availabilities 
of renewable energy resources (e.g., hydropower and wind po- 
wer) are fluctuated with the natural and meteorological condi- 
tions and can inherently be expressed as probability density 
functions (Khan and Iqbal, 2005). In order to tackle such mul- 
tiple formats of uncertainties in electric power generation sys- 
tems, interval linear programming (ILP) and chance-constraint 
programming (CCP) methods are incorporated within a gene- 
ral REPGS planning model, leading to an inexact chance-con- 
straint programming model (ICCP). Based on Huang (1998) 
and Cai et al. (2009b), an ICCP model for regional electric po- 
wer generation system planning can be formulated as follows: 

 

1 1 1 1 1

Min
I T T J T

it it t t jt jt
i t t j t

f PRC Z PIE ZIE PE W      

    

        

1 1 1 1

J T T T

jt jt t t t t
j t t t

B X CS XS CN XN     

   

        (1a) 

 
Subject to: 
 
Mass balance of fossil fuels 
 

1 1 1 ,t t tW FE Z t      (1b) 

 

2 2 2 ,t t tW FE Z t      (1c) 

 
Availabilities of energy resources constraints 
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Electricity demands constraints 
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Non-negative constraints 
 

, , , , 0,  ;  it t jt jt jtZ ZIE W XS XN j t         (1o) 

 
where f: expected system costs ($106); i: fossil fuels; j: conver- 
sion facilities; t: periods; pi denotes a series of probability le- 
vels, representing the violations of the constraints about renew- 
able energy resources availabilities; itPRC: average cost for 
energy supply i in period t ($103/TJ); jtPIE: average cost for 
imported electricity in period t ($103/GWh); jtPE: operating 
cost for power conversion facility j in period t ($103/GWh); 

jtB : variable cost for capacity expansion of power conversion 
facility j in period t ($106/GW); tCS : operating cost for SO2 
mitigation in period t ($/tonne); tCN : operating cost for NOX 
mitigation in period t ($/tonne); jtFE: units of energy carrier 
per unit of electricity production for power conversion facility 
j in period t (TJ/GWh); tAVC  : available coal supply during 
period t (103TJ); tAVG: available natural gas supply during 
period t (103TJ); pi

tAVH : availability of hydro power during 
period t under pi level (103TJ); pi

tAVW  : availability of wind 
power during period t under pi level (103 TJ); td : total elec- 
tricity demand during period t (103 GWh); jtST : Average ope- 
ration hours for conversion facility j in period t (103 h)); jRC : 

residual capacity for conversion facility j (GW); Mjt: upper 
bounds for capacity expansion of conversion facility j during 
period t (GW); jtINS : units of SO2 emission per unit of elec- 
tricity production for power conversion facility j during pe- 
riod t (tonnes/GWh); jtINN  : units of NOX emission per unit of 
electricity production for power conversion facility j during 

period t (tonnes/GWh); st : average efficiency for SO2 miti- 
gation during period t (%); nt : average efficiency for NOX mi- 
tigation during period t (%); tES : maximum allowable SO2 
emission during period t (tonnes); tEN : maximum allowable 
NOX emission during period t (tonnes). The decision variables 
are: itZ : fossil fuel supply during period t (103TJ); tZIE: im- 
ported electricity during period t (103GWh); jtW : electricity 
generation target for conversion facility j during period t (103 
GWh); jtX  : variables about capacity expansion of conversion 
facility j in period t (GW); tXS  : amount of treated SO2 in period 
t (tonnes); tXN : amount of treated NOX in period t (tones).  

Obviously, the objective of the proposed ICCP model is 
to minimize the total system costs, which consists of five parts: 
costs for fossil fuel supplies, imported electricity, capacity ex- 
pansion, electricity generation and pollutant mitigation. Plans 
regarding fossil fuel supplies, capacity expansion, electricity 
generation and pollutant mitigation can be generated by solving 
ICCP. Also, uncertainties expressed as intervals and probabilis- 
tic distributions can be integrated into the process of modelling 
formulation, and solution calculation, which improves the ro- 
bustness of the results. Furthermore, the violation of constraints 
about renewable energy resources availabilities can be quanti- 
fied by pi levels, which is very important for security analysis of 
power generation plans. However, there are still shortcomings 
in the proposed ICCP model. For example, it is ineffective for 
uncertainties expressed as fuzzy sets and multiple uncertainties 
embedded within an individual parameter. 

 

2.2. Development of a Lower-Side Attainment Degrees 
Based Fuzzy Linear Programming Model 

Let T be a family of triangular fuzzy numbers. According 
to Zimmerman (2001), it can be defined as follows: 

 

 , ( , , ), , 0 ,T t t t l r l r    and 

 
max(0,1 ( ) / ),

1 0, 0,
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max(0,1 ( ) / ),

0
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otherwise



  
       




 

(2) 

 
where the scalars , 0 ( , )l r l r R   are named left and right sp- 
reads, respectively. Based on the definition, a new method is 
proposed to compare two fuzzy numbers through lower-side 
attainment degrees.  

Given two fuzzy numbers ( , , )U u a b , ( , , )V v c d andU V  , 
according to Van Hop (2007), when the intersection between 
the right side of ( , , )U u a b and the left side of ( , , )V v c d exists, 
the lower-side attainment degree of U toV can be defined as 
follows (at an -cut level, attainment degree of fuzzy number 
U toV is displayed in Figure 1): 

      1

0
, max 0,sup : ( ) inf : ( )D U V s R U s r R V r d          

 

(3) 
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Figure 1. Attainment degree of fuzzy number Ũ to Ṽ at 
α-level. 

 
The both-side attainment degree of fuzzy number U to 

V can be defined as follows: 

 

( , ) max{0,min( ( , ), ( , ))}G U V D U V D U V       (4) 

 
The average lower-side attainment degree of U toV can 

be obtained as: 

 

( , ) ( ) / 2D U V u v b c      (5) 

 
When the intersection does not exist, ( , )D U V  equals to 

zero (Chou et al. 2009). The average lower-side attainment de- 
gree index proposed above can effectively transform fuzzy re- 
lationships between fuzzy numbers into corresponding deter- 
ministic ones and reflect the attainment degree of two fuzzy 
numbers without any additional constraints. This can be used 
to solve fuzzy linear programming problems. Consider the fo- 
llowing fuzzy linear programming model: 

 
Min cx  (6a) 
 
Subject to: 

1

( ) ( ); 1, 2, ,
n

ij j i
j

a x b i m


         (6b) 

0jx 
 

(6c) 

 
where c is a 1×n matrix. Applying the lower-side attainment 
degree index to minimize the achievement of the left-hand side 
to the right-hand side, model (6) can be de-fuzzified as follows: 
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i
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j
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2.3. Development of a Lower-Side Attainment Degrees 
Based Inexact Fuzzy Chance-Constraint Programming 
Model 

According to Van Hop (2007), LA-FLP can effectively ta- 
ckle uncertainties expressed as fuzzy sets. Comparatively, ICCP 
model is an effective method for dealing with uncertainties 
existed as interval numbers, probabilistic distributions as well 
their combination during REPGS planning. However, both of 
them would be inefficient when multiple uncertainties embe- 
dded within an individual parameter. For example, availabilities 
of renewable energy resources (e.g., hydropower and wind po- 
wer) may be expressed as fuzzy boundary intervals with known 
probabilistic distributions. An interval with triangle fuzzy bou- 
ndaries can be expressed as [( ,  ,  ), ( ,  ,  )]a b c d  , which means 
the lower and upper bounds of the interval are triangle fuzzy 
numbers with the most value being and , respectively. They 
also have the variations to the left and right being a and b, c 
and d for lower and upper bounds, respectively. When the va- 
riation to the left and right equals to each other, the above in- 
terval can be given as [( ,  ), ( ,  )]a c  . All the intervals with 
fuzzy boundaries in this study are given in the same way. In or- 
der to handle such multiple uncertainties, a lower-side attain- 
ment degrees based inexact fuzzy chance-constraint program- 
ming model (LA-IFCCP) is developed through introducing 
LA-FLP into an inexact chance-constraint programming model 
for REPGS. Thus, the model can be formulated as follows: 
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where jtFE represent that units of energy carrier per unit of 
electricity production for power conversion facility j in period 
t are fuzzy boundary intervals. tAVC and tAVG represent that 
the availabilities of domestic coal and natural-gas during 
period t are presented as fuzzy boundary intervals. pi

tAVH   
and pi

tAVW  mean that under pi level, the availabilities of 
hydropower and wind power are expressed as fuzzy boundary 
intervals. 

In order to show the solution method of model (8), model 
(8) is generalized as follows: 

 

Min f C X    (9a) 

 
Subject to: 
 

, ,r r rA X b r M r s      (9b)

  
 

( )( ) , ,ps
s s sA X b t s M r s      (9c) 
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where 1{ } nC R   , { }r n
rA R   , 1{ }r

rb R   , { }s n
sA R    , 

( ) 1( ) { }ps s
sb t R    , (1, 2, ..., )M m , ( )( ) ps

sb t represents corres- 
ponding values given the cumulative distribution of sb and the 
probability of violating constraints s, R denotes a set of inter- 
val numbers with fuzzy boundaries. R denotes a set of inter- 
val numbers with deterministic boundaries. 

According to Huang (1998) and Van Hop (2007), model 
(9) can be solved through the following two submodels. Since 
the objective is to get the minimum value, the submodel cor- 
respondding to f 

 is firstly formulated, and then the submo- 
del corresponding to f  can be obtained based on the solutions 
of the first submodel. Consequently, submodel corresponding 

to f  can be firstly formulated as follows: 

1
1 1 1
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where rja


and rja


represent the lower and upper bounds of 

the absolute value of rja , respectively; sign( rja ) is the sigh of 

rja (i.e., sign( ) 1rja  when 0rja  ; sign( ) 1rja   when 
0rja  ); jx  (j = 1,2,.., k) are interval variables with positive 

coefficients in the objective function, and jx  (j = k + 1, k + 
2, …, n)are interval variables with negative coefficients in the 
objective function. Solutions of joptx  (j = 1, 2, .., k) and 

joptx  (j = k + 1, k + 2, …, n) can be obtained through solving 
model (10). Then, the submodel corresponding to f  can be 
formulated as follows: 
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, 1, 2, ...,j joptx x j k    (11e)

 
 

, 1, ...,j joptx x j k n     (11f) 

 
Hence, solutions of joptx (j = 1, 2, .., k) and joptx (j = k + 

1, k + 2, …, n) can be obtained from submodel (11). The final 
solutions for model (8) can be obtained by combining the solu- 
tions from the two submodels (10) and (11), i.e., optf    
[ , ]opt optf f  and [ , ]jopt jopt joptx x x   .  
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Figure 2. Framework for the case study. 
 
Table 1. Energy Availabilities and Electricity Demands 

Period  

t = 1 t = 2 t = 3 
Energy resources availability (103 TJ): 
Coal (400, 20)* (380, 20) (360, 20)
Natural gas (235, 15) (270, 15) (290, 15)

pi = 0.01 (180, 15) (210, 15) (220, 15)
pi = 0.05 (185, 15) (215, 15) (225, 15)

Hydro power 

pi= 0.1 (190, 15) (220, 15) (230, 15)
pi = 0.01 (120, 10) (125, 10) (130, 10)
pi = 0.05 (125, 10) (130, 10) (135, 10)

Wind power 

pi = 0.1 (130, 10) (135, 10) (140, 10)
Electricity demand(103 GWh) [66, 80] [106, 125] [153,173]
* Represents a triangle fuzzy number, meaning the most possibilistic coal 
availability in the region being 400 × 103 TJ and the variation to the left 
and right being 20 × 103 TJ.  

3. Case Study 

3.1. Overview of the Study System  

A regional-scale electric power generation system (Figure 
2) will be analyzed based on information as shown in Li et al. 
(2009; 2010), Liu et al. (2009) and Cai et al. (2009b,c,d) to de- 
monstrate the applicability of the developed LA-IFCCP model. 
In the study system, four main sectors are considered, including 
energy supply, conversion, and demand sectors, as well as the 
associated environmental issues. The supply sector is to pro- 
vide raw energies including coal, natural gas, hydropower and 
wind power to conversion facilities to generate electricity. The 
conversion sector contains various electricity conversion facili- 
ties including coal-fired and natural gas-fired plants, hydropo- 
wer station and wind power farm with various economic, envi- 
ronmental and technological implications. The demand sector 
involves multiple end-users that drive energy consumptions 
and is characterized by varying socio-economic, geographical, 
demographic, technological and environmental conditions. The 
environmental protection sector is to regulate energy-related 
environmental protection policies (Li et al., 2010). These four 

sectors are interactive with each other. Any changes in one se- 
ctor would lead to a series of consequences to and responses 
from the others, resulting in variations in system costs (Cai et 
al., 2009d). Thus it is necessary to take all the sectors into con- 
sideration to reflect overall system characteristics in planning 
such a system.  

The planning horizon covers three periods, with each ha- 
ving a time interval of five years. Residual capacities for each 
conversion facility at the beginning of the planning horizon are 
1.0, 0.35, and 0.30 GW for coal-fired and natural gas-fired plan- 
ts, and hydropower station, respectively. When the electricity 
supply cannot sufficiently meet end-users’ demands, decision 
makers will face a dilemma of either investing more funds in 
capacity expansions of the existing facilities or turning to other 
electricity production options or investing extra funds into ele- 
ctricity imports at raised prices. At the same time, SO2 and NOX 
are considered as the typical air pollutants to reflect environ- 
mental impacts during electricity generation.  

Availabilities of renewable energy resources including hy- 
dro and wind powers are directly affected by their natural fluc- 
tuations, which can be presented as probability distributions. 
Thus their availabilities can be expressed as PDFs with fuzzy 
boundary intervals. Availabilities of coal and natural gas are 
presented as fuzzy boundary intervals due to the subjective esti- 
mation by decision makers. Technological conversion efficien- 
cies vary with the facilities and quality of energy resources, and 
can also be presented as fuzzy boundary intervals. The rest of 
the parameters related to energy activities and environmental 
issues are expressed as intervals without distribution informa- 
tion. Electricity demands of the end users and the availabilities 
of energy resources are presented in Table 1. Relevant techni- 
cal data and pollution emission factors are displayed in Table 
2. A decision maker in this system is responsible for (1) alloca- 
ting the limited energy resources effectively, (2) assigning scien- 
tific electricity generation schemes, and (3) identifying optimi- 
zed capacity expansion plans for each conversion facility un- 
der minimized economic costs with consideration of the envi- 
ronmental impacts. 

 

3.2. Result Analysis and Discussions 

The [0,1]pi levels represent probabilities at which the 
constraints are allowed to fail (Huang, 1998). A series of so- 
lutions can be obtained by fixing different levels. In this study, 
solutions under the three probabilistic levels of pi = 0.01, 0.05, 
and 0.1 are examined with consideration of the realistic mea- 
nings. The detailed solutions under the three pi levels are pre- 
sented in Figures 3 to 6 and Tables 4 to 5. The results indicate 
that along with the increase of electricity demands, less coal- 
fired, more hydro and wind powers based electricity would be 
generated. This is because of the strict environmental require- 
ments and limited availabilities of fossil fuels.  

Coal and natural gas supplies over the three periods under 
the three probabilistic levels (i.e., pi = 0.01, 0.05, and 0.1, res- 
pectively) are presented in Figures 3 and 4. Coal would be the 
primary fossil fuel in the region compared to natural gas due 
to the relatively low price and operation cost. As the increase  
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of electricity demand, the supplies of coal would rise to its 
maximum availability. Then the supplies of natural gas would 
correspondingly increase. There would be a sharp increase in 
natural gas supplies in period 3 due to the limited availability 
of coal and increased electricity demand. For instance, coal 
suplies would be [51.02, 199.01], [300.55, 380], and 360 × 
103 TJ over periods 1 to 3, respectively; natural gas supplies 
would 0, [0, 59.92] and [277.33, 290] ×103 TJ over periods 1 
to 3 under pi = 0.01, respectively. 
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Figure 3. Coal supplies under three pi levels. 
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Figure 4. Natural gas supplies under three pi levels. 

 
Optimal electricity generation plans for each conversion 

technology over the planning horizon are presented in Table 4. 
Productions associated with all of these technologies would 
go up as the increase of electricity demands, especially hydro- 
power based electricity. Electricity generation from coal would 
rise with the increase of electricity demands to its maximize 
availability due to the limited coal supply, and then the electri- 
city generation from natural gas would accordingly increase. 

Hydro as a renewable energy would take an indispensable pla- 
ce for electricity generation in this region. This is because of its 
relatively low operating costs and zero emissions of air pollu- 
tion. For example, under pi = 0.01, electricity generated from 
hydro would be [60.02, 65.12] × 103 GWh in period 3, while 
the amounts corresponding to coal-fired, gas-fired and wind 
powers would be [31.75, 37.89], [25.24, 37.38], and [12, 
13.53] × 103 GWh respectively. Wind power would be mainly 
utilized in period 1 and would slightly increase with the rise 
of electricity demands over the three periods, being [10.37, 
11.2], [10.5, 12.45], [12, 13.53] × 103 GWh under pi = 0.01, 
respectively. The imported electricity as a potential recourse 
action takes an important role to maintain the security of the 
system. Due to its limited environmental impacts on local en- 
vironment, the imported electricity would be up to its maximum 
value of 15 × 103 GWh over the planning horizon with no re- 
gards of electricity demands and pi levels. 

 
Table 3. Pollutant Emission Factors for Each Power 
Conversion Technology 

Period 
Facility 

t = 1 t = 2 t = 3 
SO2 emission per unit of electricity production (tonnes/GWh): 
Coal-fired [4.79, 5.17] [4.42, 4.82] [3.92, 5.12] 
Gas-fired [0.0342,0.0383] [0.0317, 0.0357] [0.0262, 0.037]
NOX emission per unit of electricity production (tonnes/GWh): 
Coal-fired [2.89, 3.19] [2.68, 2.98] [2.37, 2.67] 
Gas-fired [0.539, 0.579] [0.50, 0.54] [0.443, 0.483]

 
Due to the low residual capacity for each conversion faci- 

lity, expansions would take place as shown in Table 5. It is in- 
dicated that the expansions would mainly occur in period 1. 
Taking pi = 0.01 for example, the expansions for coal, natural 
gas, hydro and wind based facilities would be [0.05, 0.395], 
0.8, 1.2, [0.648, 0.7] GW in period 1, respectively. Comparati- 
vely, in period 2, there would be no expansion for coal-fired 
conversion facilities. Expansions for natural gas, hydro and 

wind based facilities would be [0.105, 0.383], 0.7 and [0, 0.122] 
GW respectively. There would be a slight expansion of [0, 
0.479] GW for hydro power based facilities in period 3. Also,  

Table 2. Technical Data for Each Conversion Technology

Period 
Conversion facility 

t = 1 t = 2 t = 3 
Units of electricity production per unit of facility capacity (103 GWh/GW): 
Coal-fired power [23.65, 26.72] [25.84, 28.91] [27.16, 30.22] 
Gas-fired power [22.02, 24.09] [24.47, 24.97] [26.28, 27.28] 
Hydro power [24.35, 24.35] [25.09, 25.09] [24.31, 27.28] 
Wind power  [16, 16] [15.14, 16.21] [16.45, 18.52] 
Units of energy carrier per unit of electricity production (TJ/GWh): 
Coal-fired power [(11.52, 0.2), (12.42, 0.2)]* [(10.98, 0.2), (11.88, 0.2)] [(9.5, 0.2), (11.34, 0.2)] 
Gas-fired power [(8.64, 0.2), (9.54, 0.2)] [(7.74, 0.2), (9.0, 0.2)] [(7.2, 0.2), (8.1, 0.2)] 
Hydro power [(4.4, 0.2), (5.04, 0.2)] [(4.22, 0.2), (4.86, 0.2)] [(3.86, 0.2), (4.5, 0.2)] 
Wind power [(10.3, 0.5), (11.99, 0.5)] [(9, 0.5), (10.5, 0.5)] [(8.0, 0.5), (9.5, 0.5)] 
* Represents a fuzzy boundary interval. The lower bound of the interval is a triangle number with the most possibilistic value of 11.52, and the 
variation to the left and right being 0.2; the upper bound of the interval is a triangle number with the most possibilistic value of 12.42, and the 
variation to the left and right being 0.2. 
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Table 4. Electricity Generation Plans for Each Power 
Conversion Technology under Different pi Levels (103 GWh) 

Period 
facility pi 

t = 1 t = 2 t = 3 
0.01 [4.11, 17.28] [25.3, 34.61] [31.75, 37.89]

0.05 [3.68, 17.28] [24.86, 34.61] [31.75, 37.89]

Coal-fired  

0.1 [3.28, 17.28] [24.42, 34.61] [31.75, 37.89]
0.01 0 [0, 7.74] [34.24, 40.28]
0.05 0 [0, 0.72] [33.74, 40.28]

Gas-fired  

0.1 0 [0, 6.66] [33.24, 40.28]
0.01 36.53 55.2 [60.02, 65.12]
0.05 36.53 55.2 [60.02, 65.71]

Hydro  

0.1 36.53 55.2 [60.02, 66.3] 
0.01 [10.34, 11.2] [10.5, 12.45] [12, 13.53] 
0.05 [10.79, 11.2] [10.94, 12.99] [12.5, 14.12] 

Wind  

0.1 11.2 [11.38, 13.53] [13, 14.71] 

 

Table 5. Capacity Expansion Plans for Each Power 
Conversion Technology under Different pi Levels (GW) 

Period 
facility pi level 

t = 1 t = 2 t = 3 
0.01 [0.05, 0.395] 0 0 
0.05 [0.05, 0.395] 0 0 

Coal-fired  

0.1 [0.05, 0.395] 0 0 
0.01 0.8 [0.105, 0.383] 0 
0.05 0.8 [0.087, 0.383] 0 

Gas-fired  

0.1 0.8 [0.068, 0.383] 0 
0.01 1.2 0.7 [0, 0.479]
0.05 1.2 0.7 [0, 0.503]

Hydro  

0.1 1.2 0.7 [0, 0.527]
0.01 [0.648, 0.7] [0, 0.122] 0 
0.05 [0.675, 0.7] [0, 0.158] 0 

Wind  

0.1 0.7 [0.002, 0.194] 0 

 
it can be concluded that the expansions for natural gas-fired 
and hydro powers based facilities would be greater than that 
for coal-fired and wind powers based ones due to the increa- 
sed environmental requirements. In period 1, expansions for 
natural gas-fired and hydro powers based facilities would be 
0.8 and 1.2 GW under pi = 0.01, respectively. At the same 
probability level, the values corresponding to coal-fired and 
wind powers facilities would be [0.05, 0.395] and [0.648, 0.7] 
GW, respectively under pi = 0.01. 

In order to satisfy the ambient environmental require- 
ments, air pollution controlling measures would be adopted. 
Optimal plans for SO2 and NOX mitigation are presented in 
Figures 5 and 6. Since SO2 and NOX are mainly from coal- 
and gas-fired facilities, the trend of the mitigation targets for 
each pollutant would be consistent with the one of electricity 
generation targets for technologies based on fossil fuels. The 
amounts of treated SO2 and NOX would both increase when 
the amounts of electricity generated from fossil fuels increase. 
For example, under pi = 0.01, when electricity generated by 
fossil fuels increases from [25.3, 42.35] × 103 GWh in period 
2 to [65.99, 78.17] × 103 GWh in period 3, the amount of trea- 
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Figure 5. SO2 mitigation plans under different pi levels. 
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Figure 6. NOX mitigation plans under different pi levels. 
 
ted SO2, NOX would increase from [111.82, 167.09], [67.8, 
107.31] × 103 tonnes in period 2 to [125.13, 195.45], [86.86, 
119.8] ×103 tonnes in period 3, respectively. 

Solutions of the developed model also indicate that any 
changes in pi levels would lead to different schemes regarding 
fossil fuel supply, electricity generation, capacity expansion 
and emission mitigation, since different pi levels correspond 
to different availabilities of renewable energy resources. As the 
increase of pi levels, the fossil fuel supplies would decrease, 
as well as the amounts of electricity generated from fossil fuels 
and the capacities of fossil fuel conversion technologies, For 
instance, in period 2 under pi = 0.05, the electricity generated 
from coal-power and natural gas-power would be [24.86, 34.61], 
[0, 7.2] × 103

 GWh, respectively. Capacity expansions for coal- 
fired, gas-fired would be 0, [0.087, 0.383] GW respectively. 
At the same time, the values would be [24.42, 34.61], [0, 6.66] 
× 103 GWh and 0, [0.068, 0.383] GW under pi = 0.1, respecti- 
vely. Comparatively, the electricity generated from renewable 
energies and the capacity expansions for renewable power con- 
version technologies would increase with the increase of pi le- 
vels. For example, in period 2 under pi = 0.05, the electricity 
generated from hydro power and wind power would be 55.2, 
[10.94, 12.99] × 103 GWh, respectively; Capacity expansions 
for hydro power and wind power facilities would be 0.7, [0, 
0.158] GW respectively. At the same time under pi = 0.1, the 
values would be 55.2, [11.38, 13.53] × 103 GWh and 0.7, 
[0.002, 0.194] GW, respectively. Accordingly, the amounts of 
treated SO2 and NOX would decrease as the increase of pi le- 
vels because the amounts of electricity generated from fossil 
fuels would be reduced. When pi = 0.05, the amounts of treated 
SO2 would be [17.61, 89.31], [109.89, 167.07], and [125.33, 
195.43] × 103 tonnes over periods 1 to 3, respectively. The am- 
ounts of treated NOX would be [10.62, 55.11], [66.63, 107.02], 
and [86.64, 119.52] × 103 tonnes over periods 1 to 3, respecti-  
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vely. While under pi = 0.1, the values corresponding to treated 
SO2 would be [15.69, 89.31], [107.95, 167.05], and [125.32, 
195.4] × 103 tonnes, respectively. The values corresponding to 
treated NOX would be [9.46, 55.11], [65.45, 106.73], and 
[86.42, 119.24] × 103 tonnes, respectively. 

Different pi levels would correspond to different optimal 
schemes related to electricity generation and capacity expan- 
sion options. The system costs would differ from each other 
under different pi levels. Generally, when pi level ascends, bo- 
th the lower and upper bounds of system costs would decrease, 
and vice versa. When pi = 0.01, the system costs would be 
$[12,097.79, 16,938.46] × 106. Comparatively, the values wou- 
ld be $[12,091.37, 16932.83], and $[12,080.8, 16,927.2] × 106 
under pi = 0.05 and 0.1, respectively. A higher pi level would 
correspond to a more favourable availability of renewable en- 
ergy resources and a lower system cost due to the relaxed con- 
straints (Tan et al. 2010). However, the risk of system failure 
would increase with the raised pi levels, and the reliability of 
system would descend. In comparison, a lower pi level would 
lead to higher strictness for the constraints of renewable energy 
availabilities, and would result in a higher system cost but a lo- 
wer risk of system failure. Therefore, the pi levels represent the 
probabilities at which the system would fail, and the tradeoffs 
between system costs and reliability would be reflected via the 
relationship between pi and system costs.  

The proposed LA-IFCCP is based on an integration of the 
existing inexact chance-constraint programming (ICCP), and 
lower-side attainment degrees based fuzzy linear programming 
techniques. It is capable of reflecting multiple formats of uncer- 
tainties during regional electric power generation systems pla- 
nning, which can be expressed as discrete intervals, fuzzy sets, 
probabilistic distributions, and their combinations. And it allo- 
ws those uncertainties to be incorporated within a general re- 
gional electric power system optimization framework. More- 
over, it has advantages in computation efficiency compared wi- 
th conventional fuzzy programming methods. The interrelation- 
ships between fuzzy coefficients can be reflected via lower side 
attainment degrees instead of using intervals at multiple α-cut 
levels, leading to lower computational requirements and hi- 
gher practical applicability (Cai et al., 2009d). Furthermore, it 
is effective in reflecting tradeoffs between system reliability 
and energy resources availabilities. Probabilistic distributions 
of hydro and wind power availabilities can be integrated into 
the planning process and violation levels of hydro and wind 
power availability constraints can be quantified, which could 
help examine the relationship between system costs and relia- 
bility of satisfying constraints under multiple uncertainties. In 
general, LA-IFCCP improves upon the existing approaches for 
regional electric power generation systems planning, and en- 
hances the robustness of optimization results. 

4. Conclusions 

In this research, a lower-side attainment degrees based in- 
exact fuzzy chance-constraint programming (LA-IFCCP) was 
developed for supporting regional electric power generation 
systems planning under multiple uncertainties. Based on this 

method, uncertainties expressed as intervals, fuzzy sets, proba- 
bilistic distributions as well as their combinations could be ef- 
fectively communicated into the optimization system, greatly 
avoiding over-simplification of real-world problems. The fuzzy 
coefficients in the model could be de-fuzzied into the corres- 
ponding ones without introducing any additional constraints, 
enhancing the computation efficiency. Moreover, LA-IFCCP 
had an advantage in system reliability reflection since it could 
quantify the constraint-violation levels, which was important 
for maintaining the security of electricity generation.  

The developed method was then applied to support the 
planning of a representative electric power generation system 
to demonstrate its applicability. Interval solutions under diffe- 
rent pi levels could be obtained through a two-step interactive 
algorithm, which could help decision makers foster a compre- 
hensive overview of energy supply, electricity generation, ca- 
pacity expansion and pollutant mitigation with a minimized 
net system cost. The relationships between system costs and 
reliability could be reflected through the analysis of the solu- 
tions under different pi levels, which could quantify the viola- 
tion of constraints about renewable energy resources availabi- 
lities. 
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