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ABSTRACT. Algal blooms have caused severe problems in Lake Taihu, China. Early warning of phytoplankton accumulation can 
support decision-making against harmful algal bloom events. To investigate the performance of different models in forecasting high 
phytoplankton biomass, we developed a mechanistic, a regression and three artificial neural network (ANN) models to predict short- 
term (3 days) changes of phytoplankton biomass (expressed as chlorophyll-a concentration) in Gonghu Bay of Lake Taihu. We deter- 
mined the input variables of the ANN models with a sensitivity analysis, and optimized their parameters with a trial-and-error approach. 
The sensitivity analysis revealed the effects of the input variables on phytoplankton biomass. To calibrate and validate the models, we 
collected two data sets of Lake Taihu in 2009: hourly-averaged data collected by an automatic monitoring system and field data with a 
sampling interval of twice a week. Although the sensitivity analysis results vary among the five models, there is a general consensus 
that phytoplankton changes are significantly affected by water temperature in Gonghu Bay. The ANN models obtained good model fit 
indicating their practical values in predicting non-linear phytoplankton dynamics for water management purpose. The mechanistic 
model predicted the phytoplankton distribution dynamically and described the variable interactions explicitly. The regression model is 
characterized by its easy development. This comparison study assists the modelers in selecting an approximate model for their specific 
purposes. 
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1. Introduction  

Severe algal blooms have occurred and caused deterio- 
ration of water quality in Lake Taihu, a large and shallow la- 
ke in China (Guo, 2007; Qin et al., 2007; Yang et al., 2008). A 

previous study based on two-decade satellite images revealed 

that algal blooms in the Lake Taihu were overspreading from 
the northwest to the southeast, from the border area to the 
center area, with a peak distribution area (979.1 km2, 41.9% 
area of the lake) of algal blooms in late June, 2007 (Duan et 
al., 2009). In late May 2007, algal bloom accumulation in 
drinking water intake areas of Gonghu Bay (a bay in north- 
eastern Lake Taihu) led to a major drinking water crisis in 
surrounding cities (Guo, 2007; Qin et al., 2010). Early warn- 
ings of phytoplankton accumulation can help lake managers 
to take timely emergency measures to avoid or minimize the 
negative impact of harmful algal bloom events in sensitive 
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areas (e.g., drinking water intakes) (Huang et al., 2012a). Ma- 
ny models have been developed for predicting phytoplank- 
ton biomass (e.g., Jørgensen, 1976; Hamilton and Schladow, 
1997; Recknagel et al., 1997; Jeong et al., 2006; Mooij et al., 
2010), which is a biological indicator of algal blooms. Re- 
gression, mechanistic and artificial neural network (ANN) 
models are most widely used. 

Mechanistic models are most commonly used to predict 
phytoplankton biomass (Hamilton and Schladow, 1997; Jør- 
gensen, 2001; Arhonditsis and Brett, 2005; Jørgensen, 2010). 
They provide a better understanding of biological and phy- 
sical processes. In order to develop a good mechanistic mo- 
del, all underlying physical and biological processes should be 
understood adequately (Maier et al., 1998). However, in reali- 
ty, many of the complex and highly nonlinear processes affec- 
ting phytoplankton biomass are not adequately understood. 
Therefore, it is still challenging to predict phytoplankton bio- 
mass with mechanistic models. Moreover, mechanistic models 
may contain a large number of parameters, which increase 
model uncertainty (Maier et al., 1998). 

Regression models have been widely used to predict 
phytoplankton biomass due to their simplicity and straight- 
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forward interpretation (Lek et al., 1996; Whitehead et al., 199 
7; Jeong et al., 2006). However, they perform poorly when re- 
lationships between variables are nonlinear (Lek et al., 1996), 
and their applications are constrained by the complex ecolo- 
gical data (Graham, 2003). 

Artificial neural network (ANN) models have been inc- 
reasingly used to forecast phytoplankton biomass of rivers 
(e.g., Whitehead et al., 1997; Maier et al., 1998; Jeong et al., 
2001), lakes (e.g., Recknagel et al., 1997; Recknagel et al., 19 
98; Karul et al., 2000) and coastal systems (e.g., Barciela et al., 
1999; Lee et al., 2003). ANN models commonly achieve a be- 
tter model fit than conventional regression or mechanistic mo- 
dels (Lek et al., 1996; Barciela et al., 1999), mainly due to 
their potential for modelling highly nonlinear and complex 
natural systems (Recknagel, 2001; Lee et al., 2003). However, 
due to the lack of time series data with an appropriate 
resolution, ANN has been rarely used to model phytoplankton 
biomass of Lake Taihu. Automatic monitoring systems in the 
lake can overcome this lack of data by monitoring water 
quality in real time (Lee and Lee, 1995; Hull et al., 2008). 

Given the different performances of the above-mentioned 
approaches, a comparison based on the same case study is 
needed. The main objectives of this paper are to forecast 
short-term (a few days) changes of phytoplankton biomass in 
Gonghu Bay with a mechanistic, a regression and three ANN 
models, and to compare their performance in predictting phy- 

toplankton biomass. We developed three ANN models with 
different network structures and input variables. We compa- 
red the model fits in predicting dynamics of phytoplankton 
biomass in Gonghu Bay, a bay with several drinking water 
intakes located in it. The effects of the input variables on 
phytoplankton were discussed based on a sensitivity analysis. 

2. Materials and Methods 

2.1. Study Area 

Lake Taihu is a large (sruface area, 2,338 km2), shallow 
(mean depth, 1.9 m) and eutrophic lake in China (Figure 1). 
The water volume of the lake is 4.4 × 109 m3 and the mean 
hydraulic retention time is 284 days (Hu et al., 2006). The 
lake is located in a plain with a complicated river and channel 

network and is important for water supply, flood control, tou- 
rism and recreation, fisheries, shipping and aquaculture and 
irrigation (Hu et al., 2006; Qin et al., 2007). Harmful algal 
blooms in Lake Taihu have posed a direct threat to public 
health (Guo, 2007). Gonghu Bay is located in northeast of 
Lake Taihu (Figure 1). Since Gonghu Bay is a drinking water 
intake, increasing attention has been paid to its water quality. 

 

2.2. Data Collection and Preprocessing 

Two data sets collected in Lake Taihu between April 22 
and September 30, 2009 were used for model training and 
testing (Table 1). One data set (Data set 1) was obtained every 
five minutes by an automatic monitoring system (Figure 1) 
located in Gonghu Bay. The data set includes eight variables, 
namely chlorophyll-a concentration (μg L-1), wind direction 
(°), solar radiation (W m-2), water temperature (°C), precipita- 
tion (mm), dissolved oxygen (mg L-1), turbidity (NTU) and 
pH. Wind speed was not included in this data set. However, 
previous studies show that it is positively correlated with tur- 

Figure 1. Locations of Gonghu Bay, automatic monitoring 
system and sampling sites. 

Table 1. List of Datasets Used in This Study 

Data Item Time period Temporal resolution Sampling sites 

Data set 1 (1) chlorophyll-a concentration 
(2) wind direction 
(3) solar radiation 
(4) water temperature 
(5) precipitation 
(6) dissolved oxygen 
(7) turbidity 
(8) pH 

Apr. 22, 2009-Sep. 30, 2009 Once every 
five minutes 

1 

Data set 2 (1) chlorophyll-a concentration 
(2) total dissolved phosphorus 
(3) total dissolved nitrogen 

Apr. 22, 2009-Sep. 30, 2009 Twice a week 
Once a week 
Once a week 

17 
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bidity (e.g., Li et al., 2007). Daily-averaged data in 158 days 
were then derived for the ANN, regression and mechanistic 
models. 

The second data set (Data set 2) includes vertically- 
averaged chlorophyll-a concentration (μg L-1), total dissol- 
ved phosphorus and nitrogen (mg L-1) for 17 sites in Lake 
Taihu (sites 1 to 17 in Figure 1), with seven sites in Meiliang 
Bay, four sites in Gonghu Bay, one site in Zhushan Bay, three 
sites in the western area and two sites in the center area of 
Lake Taihu. Chlorophyll-a was measured at approximately 
10:00 h, with a sampling frequency of 3 and 4 days. Total 
dissolved phosphorus and nitrogen were measured once a 
week. The spatial distribution of these three variables in Lake 
Taihu was interpolated using the inverse distance weighted 
(IDW) method. The chlorophyll-a data from 17 sampling sites 
and the automatic monitoring system (Figure 1) were used as 
the initial data of the mechanistic model. Daily nutrient data 
(i.e., dissolved phosphorus and nitrogen) in Gonghu Bay were 
obtained based on linear interpolation. 

 

2.3. Artificial Neural Network Models 

The ANN models simulated a three-day forward chloro- 
phyll-a concentration (chlorophyll-a concentration at time t+3) 
with a time step of one day. In order to ensure that all 
variables receive equal attention during the training, testing 
and validation process, both input and output variables were 
scaled to the range [0.1, 0.9] with the following linear trans- 
formation: 

' '
' ' i min max min
i min

max min

( x x )( x x )
x x

x x

− −= +
−

  (1) 

where xi and x’
i are the measured and normalized values, 

respectively; xmax and xmin are the maximum and minimum 
values of the measured data, respectively; x’

max and x’
min are 

the maximum and minimum values of the normalized range 
(x’

max = 0.9 and x’
min = 0.1), respectively.  

Data set 1 (158 days) was randomized and divided into 
three subsets. The training, testing and validation data sets 
comprised of the data in 121 (76.6%), 13 (8.2%) and 24 
(15.2%) days, respectively. The data partition proportion has 
been commonly used in previous studies (Maier et al., 2000). 
Cross-validation was used in this study with the selection of 
the training, testing and validation data sets showed in Fi- 
gure 2. The data in the first 24 days were firstly used for va- 
lidation. Then, the data in sequence days (25 to 48, 49 to 72, 
73 to 96, 97 to 120, 121 to 144, and 145 to 158) were used in 
turn for validation. This data selection method ensured that 
the data in each day have been used for validation. This 
cross-validation method resulted in seven ANN models (fi in 
Figure 2, i=1, 2, …, 7) for each network structure. The mo- 
del output (Chlt+3) was the mean output of these seven ANN 
models, i.e., 

7

1

/ 7
iANNt+3

i

Chl f
=

=  (2) 

Further details about the cross-validation method could 
be found in previous studies (e.g., Burden et al., 1997; Stone, 
1974). 

An autocorrelation analysis (Figure 3) suggests that the 
coefficient of determination (r2) between Chlt+3 (chlorophyll 
-a concentration at time t+3) and Chlt-i (chlorophyll-a con- 
centration at time t-i (i = 0, 1, 2… 13)) decreases when i is 
increased. Three time-lagged chlorophyll-a concentrations 
(Chlt, Chlt-1 and Chlt-2) with r2-values higher than 0.4 were 
selected to develop ANN models. In order to compare model 
performance with different structures, we developed three 
ANN models with input and output variables shown in Fi- 
gure 4. Twelve variables were used as input variables of the 
most complicated ANN model (ANN 1). In order to compare 
the performance between the ANN and regression models, 
five input variables (Chlt, Chlt-1, Chlt-2, total dissolved phos- 
phorus and water temperature) used in the regression model 
were selected to develop ANN 2. The variable (Chlt) with the 
highest sensitivity in the regression model was selected to 

Training data Testing data Validation data

Cross-validation 

Data randomization 

n=24 n=13 n=121 

Figure 2. Procedure of the cross-validation used in 
ANN models. 
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Figure 3. The coefficient of determination between 
chlorophyll-a concentration at time t+3 (Chlt+3) and 
chlorophyll-a concentration at time t-i (i = 0, 1, 2, … 13) 
(Chlt-i). 
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develop ANN 3. 

All the three ANN models consist of an input layer, a 
hidden layer and an output layer (Figure 4). This structure is 
the most flexible neural network with good performance 
(Hornik et al., 1989; Scardi and HardingJr, 1999; Maier and 
Dandy, 2000). The input layer consists of the input variables 
with a linear transfer function, and the output layer includes a 
single node of chlorophyll-a concentration at time t + 3 with a 
sigmoid transfer function. The hidden layer links the input 
and output variables by its nodes (neurons). The node number 
of the hidden layer was determined by a trial-and-error app- 
roach, and varied from 2 to 20. Eight, six and two hidden 
layers for the three ANN models were found to be the optimal 
selection. 

The ANN models were trained with Levenberg-Mar- 
quardt backpropagation algorithm, in which the weights (wn+1) 
were adjusted during training using the following equation 
(Parisi et al., 1996): 

1n n n nw w dη+ = −   (3) 

where wn is the weight vector of the network, nη  is the step 
size, dn is a vector defining the direction of descent, and n is 
the iteration number. The training process was stopped when 
the errors for the testing set began to rise, or the training error 
(mean squared error) was lower than the goal value (0.0005), 
or a maximum of 1000 iterations was reached. This early stop- 
ping rule prevents the ANN models from overfitting. Seven 
ANN models of ANN 1 and two ANN models of ANN 2 rea- 
ched the goal. None of the ANN models reached the maxi- 
mum iterations.  

 

2.4. Mechanistic Model 

A coupled hydrodynamic-phytoplankton model was use- 
d to predict the three-day-ahead chlorophyll-a concentration at 
the location of the automatic monitoring system (Figure 1). It 
includes a phytoplankton module, a two-dimensional hydro- 
dynamic module and a mass-transport module with their inte- 
ractions given in Figure 5. The model has been calibrated by 
Huang et al. (2012a) with its parameters listed in Table 2. Da- 
ta sets 1 and 2, including spatial information, were used for 
the mechanistic model due to its requirement of spatial input 
data. 

The phytoplankton module includes phytoplankton grow- 
th, mortality, respiration, excretion, grazing and sinking with a 
time step of one day (Figure 5 (a)). This module requires 
spatial distribution of chlorophyll-a concentration as initial 
data. Forcing data of solar radiation, water temperature, total 
dissolved nitrogen and phosphorus were required to drive this 
module. Phosphorus and nitrogen conditions were not simula- 
ted in this module, but taken from measured data. 

The two-dimensional hydrodynamic module simulated 
the vertically-averaged water velocity (referred to as “water 
flows” in Figure 5) with the forcing data of wind conditions. 
Water temperature was not simulated in the hydrodynamic 
module because measured data of water temperature were 
available. The mass-transport module describes phytoplank- 
ton transport between grid cells based on the water flows 
generated by the hydrodynamic module. A time step of 200 
seconds was used in the hydrodynamic module and the phy- 
toplankton transport module. Further details of this hydrody- 
namic-phytoplankton model can be found in Huang et al. 
(2012a). 

 

2.5. Regression Models 

The environmental variables of ANN 1 (Figure 4a) were 

used as independent variables to predict the dependent vari- 
able (chlorophyll-a concentration at time t + 3). Input and 
output variables were linearly scaled to the range [0.1, 0.9] by 
Equation 1. We used the forward stepwise selection method to  

Figure 4. Neural network structures for ANNs 1-3. (a) 
ANN 1, twelve input variables; (b) ANN 2, six input 
variables; (c) ANN 3, one input variable. 
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select the variables for the regression models. To compare the 
performance with ANN models, the regression model used the 
same validation data set (Figure 2) as ANN models. Other da- 
ta (training and testing data set in Figure 2) was used for cali- 
bration. The cross-validation method described in Figure 2 
were used in developing regression models, and resulted in 
the following seven linear equations: 

1 10.941 0.112 0.425

0.129 0.107

t+3 RM t t t

t

Chl f Chl TDP Chl

T

−= = + −

− +
  (4) 

2 20.735 0.106 0.248

0.12 0.104

t+3 RM t t t

t

Chl f Chl TDP Chl

T

−= = + −

− +
 (5) 

3 20.726 0.114 0.232

0.154 0.124

t+3 RM t t t

t

Chl f Chl TDP Chl

T

−= = + −

− +
  (6) 

4 20.812 0.095 0.305

0.147 0.125

t+3 RM t t t

t

Chl f Chl TDP Chl

T

−= = + −

− +
  (7) 

5 10.893 0.118 0.37

0.119 0.095

t+3 RM t t t

t

Chl f Chl TDP Chl

T

−= = + −

− +
 (8) 

6
0.738 0.034t+3 RM tChl f Chl= = +   (9) 

7 10.969 0.093 0.433

0.104 0.094

t+3 RM t t t

t

Chl f Chl TDP Chl

T

−= = + −

− +
 (10) 

where Chlt+3, Chlt, Chlt-1 and Chlt-2 are the chlorophyll-a con- 

centration at time t + 3, t , t - 1 and t - 2, respectively, TDPt 
and Tt are the total dissolved phosphorus and water tempera- 
ture at time t, respectively. The coefficients in these equations 

were determined by minimizing the sum of squared differen- 
ces between simulated and measured chlorophyll-a in the 
calibration period. The validation data set used in ANNs was 
used to validate the regression model. We compared the pre- 

Figure 5. Conceptual diagram (a) (redrawn from Huang et 
al. (2012a)) and module interactions (b) of the 
hydrodynamic-phytoplankton model. 

Table 2. Parameters Used in the Hydrodynamic-phytoplankton Model 

Symbols Parameters Values 

Umax Maximum growth rate of the phytoplankton  1.145 d-1 
Topt Optimum water temperature  27.5 °C 
α Average spectral extinction coefficient for the absorption of short-wave radiation by water and its 

non-phytoplankton component 
0.45 m-1 

β Average spectral extinction coefficient for the absorption of  short wave radiation by the 
phytoplankton 

0.016 m2 (mg Chl)-1

Iopt Saturation light intensity 12 MJ m-2 d-1 
KP Michaelis constant for phosphorus uptake 0.01 mg L-1 
KN Michaelis constant for nitrogen uptake 0.022 mg L-1 
K Sinking velocity of the phytoplankton 0.0864 m d-1 
GRmax Maximum grazing rate of the zooplankton 0.09 d-1 
Fmin Minimum concentration of phytoplankton available for grazing 100 μg L-1 
Fs Michaelis-Menten constant of phytoplankton available for grazing 500 μg L-1 
km Rate coefficient for the chlorophyll α loss caused by mortality 0.027 d-1 
kr Rate coefficient for the chlorophyll α loss caused by respiration 0.17 d-1 
ke Rate coefficient for the chlorophyll α loss caused by excretion 0.01 d-1 

ϑ  Temperature multipliers 1.08 
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dictive power of the regression model with other models ba- 
sed on the mean simulation results of Equations 4 to 10, i.e., 

7

1

1 2

/ 7

0.831 0.175 0.131

0.091 0.110 0.098

it+3 RM
i

t t t

t t

Chl f

Chl Chl Chl

TDP T

=

− −

=

= − −
+ − +


  (11) 

In order to investigate the correlation between depen- 
dent variable and independent variables, we used a partial 
correlation analysis to calculate the correlation coefficient of 
an individual variable with dependent variable, the other va- 
riables being constant. 

 

2.6. Model Simulation and Sensitivity Analysis 

The ANN, regression and mechanistic models were im- 
plemented in Matlab, SPSS and a phytoplankton prediction 
system for Lake Taihu (Taihu PPS), respectively (Huang et al., 
2012b). All these models simulated three-day-ahead chloro- 
phyll-a concentration between April 22 and September 30, 20 
09 at the location of the automatic monitoring system in Go- 
nghu Bay (Figure 1). This three-day-ahead prediction aims to 
provide early warning of algal blooms for water resource 

managers, and allows them to take precautionary measures in 

time to reduce loss. To compare their model fits, root mean 
square error (RMSE), relative absolute error (RE) and the co- 
efficient of determination (r2) were calculated using: 

2

1

( ) /
n

S O
i i

i

RMSE Chl Chl n
=

= −   (12) 

1

100 /
S On
i i

O
i i

C hl C hl
RE n

C hl=

−
=    (13) 

2 21

2 2

1 1

( )( )
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( ) ( )

Mean Mean

Mean Mean

n
O O S S
i i

i

n n
O O S S
i i

i i

Chl Chl Chl Chl
r

Chl Chl Chl Chl

=

= =

− −
=

− −



 
  (14) 

where S
iChl  and O

iChl  are the simulated and observed chlo- 
rophyll-a concentrations on day i, respectively, S

MeanChl  and 
O
MeanChl  are the mean values of simulated and observed chlo- 

rophyll-a concentrations, respectively, and n is the number of 
observations. We aim to obtain a good-fit model with low 
RMSE and RE, and r2 approaching 1. 

Furthermore, we carried out a sensitivity analysis to qu- 
antify the effects of input variables on the short-term phy- 
toplankton dynamics. Each input variable was increased or 
decreased by 10%. All other variables were kept fixed. A total 
of 2m (m is the number of the testing variables) scenarios  

were simulated and compared with the base scenario. All the 
input variables in ANNs 1 and 2 and regression model were 
tested. In the mechanistic model, five input variables (i.e., 
water temperature, wind speed, wind direction, dissolved pho- 
sphorus and nitrogen) were tested. The sensitivity of each 
testing variable was given by: 

change in output (%)
Sensitivity 100%

change in input (%)
= ×   (15) 

 

3. Results 

3.1. Chlorophyll-a Prediction 

The agreement between the measured and simulation 
chlorophyll-a varied considerably among the ANN, mecha- 
nistic and regression models. Figure 6 shows the chlorophyll- 

a changes at the automatic monitoring system (Figure 1). In 
order to compare the model performance at the low chloro- 
phyll-a concentration period (between June 1 and September 
30), figures with a Y-axis scale from 0 to 9 were given in 
Figure 6. The absolute errors of these five models were given 

in Figure 7. 

ANN 1 has the best model fit with the mean root mean 
square error (RMSE) of 3.14 μg L-1

 in validation periods. The 

ANN model captured the chlorophyll-a peaks on April 28 and 
May 23, and simulated the chlorophyll-a changes in low 
chlorophyll-a period (between June 1 and September 30) be- 
tter than other models. ANN 2 simulated the chlorophyll-a 
peak on April 28 adequately. However, the ANN model fail- 
ed to capture the chlorophyll-a peak on May 23 and June 30. 
Both ANN 3 and the regression model failed to reproduce 
chlorophyll-a peaks well in the modeling periods. The per- 
formance of the mechanistic model is not as good as ANN 1 
and ANN 2, considering its large RMSE (5.44 μg L-1) and low 
r2 value (r2 = 0.65). 

The model fits of these models were further evaluated 
with three measures of goodness-of-fit, RMSE, RE and r2. 
Table 3 shows that ANN 1 has a higher degree of conformity 
than other models. 

ANN 1 reproduced the chlorophyll-a changes well in the 
modeling periods, with lower RE and RMSE values, and 
higher r2 values than other models. The RE, r2 and RMSE 
values show that ANN 2 did not perform as well as ANN 1, 
but better than the regression model. ANN 3 was not well 
trained (RMSE = 6.08 μg L-1). This resulted in a large devi- 
ation in the validation period (RMSE = 5.84 μg L-1). The 
RMSE values in the training and validation periods (5.79 and 
6.24 μg L-1, respectively) show that the regression model did 
not simulate chlorophyll-a adequately. The large deviation of 
the regression model was mainly due to the failure to capture 
the chlorophyll-a peaks in the modeling period (Figure 6). 
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Figure 6. Measurement and simulation of chlorophyll-a concentration between April 26 and September 30, 2009 in (a) 
the artificial neural network model with 12 input variables (ANN 1), (b) the artificial neural network model with five 
input variables (ANN 2), (c) the artificial neural network model with one input variables (ANN 3), (d) the mechanistic 
model and (e) the regression model. 
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3.2. Sensitivity Analysis 

Sensitivities of the input variables in ANNs 1 and 2, the 
regression and mechanistic models are given in Figure 8. The 
coefficients and significance levels of the five variables in the 
regression models (Equations 4 to 10) are given in Table 4. 
Partial correlation coefficient of an individual variable is cal- 
culated to represent the contribution of the variable to chlo- 
rophyll-a concentration at time t + 3 (Table 4). 

Five input variables (water temperature, dissolved oxy- 
gen, turbidity, total dissolved nitrogen and phosphorus) in 
ANN 1 had a sensitivity value higher than 60%. In ANN 2, 
water temperature is the most sensitive variables with a sen- 
sitivity value of 69.4% (Figure 8). In the mechanistic model, 
we tested sensitivities of the six variables: water temperature, 
solar radiation, wind speed, wind direction, total dissolved ni- 
trogen and phosphorus. Chlorophyll-a concentration at ti- me 
t (Chlt), t-1 (Chlt-1) and t-2 (Chlt-2), total dissolved phos- 

phorus (TDPt) and water temperature (Tt) were included in the 
regression model (Equation 11). The sensitivity value of Chlt 
(142.5%) in the regression model and its partial correlation 
coefficient (0.452) show high sensitivity of Chlt on phyto- 
plankton. 

Phytoplankton responds differently to different meteo- 
rological conditions. Phytoplankton growth is highly sensi- 
tive to water temperature in these four models shown in Fi- 
gure 8. Wind direction and solar radiation have relative low 
sensitivities in ANN 1 and the mechanistic model. Sensitivity 

of precipitation is also low in ANN 1.  

Sensitivities of the nutrient variables, i.e., total dissolved 

phosphorus and nitrogen, are significantly different between 
the ANN, regression and mechanistic models. In ANN 1, ch- 
lorophyll-a change is highly sensitive to total dissolved 
phosphorus and nitrogen. In the mechanistic and regression 
model, phytoplankton growth is slightly limited by total di- 
ssolved phosphorus. Phytoplankton growth is almost not li- 
mited by total dissolved nitrogen (sensitivity approximately 
equal to 0) in the mechanistic model. 

Figure 7. The absolute errors of ANNs 1-3, the regression 
and mechanistic models during the modeling period. RM and 
MM represent the regression and mechanistic models, 
respectively. 

Table 3. Simulation Errors of the Five Models Measured by 
Root Mean Square Error (RMSE), Relative Absolute Error 
(RE) and coefficient of Determination (r2) 

  Training Testing Validation 
ANN 1 RMSE (μg L-1) 1.89 1.94 3.14 

RE (%) 25.4 40.8 38.6 
r2 0.97 0.66 0.85 

ANN 2 RMSE (μg L-1) 3.23 2.59 4.23 
RE (%) 41.1 42.8 46.3 
r2 0.92 0.57 0.78 

ANN 3 RMSE (μg L-1) 6.08  1.89  5.91 
RE (%) 36.1  42.8  41.2 
r2 0.71  0.56  0.76 

Regression 
model 

RMSE (μg L-1) 5.79 --- 6.24 
RE (%) 45.1 --- 47.3 
r2 0.72 --- 0.74 

Mechanistic 
model 

RMSE (μg L-1) --- --- 5.44 
RE (%) --- --- 65.1 
r2 --- --- 0.65 
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Figure 8. Sensitivity analysis of (a) ANN 1, (b) ANN 2, (c) 
the mechanistic and (d) regression models. Chlt, Chlt-1, and 
Chlt-2 represent chlorophyll-a concentration at time t, t-1, 
t-2; WD, wind direction; WS, wind speed; SR, solar 
radiation; T, water temperature; Pr, precipitation; DO, 
dissolved oxygen; Tur, turbidity; TDN, total dissolved 
nitrogen; TDP, total dissolved phosphorus. 
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4. Discussion 
4.1. Performance of the ANN Models 

The performance of the ANN models are significantly 
different mainly due to the difference in selection of the in- 
put parameters. ANN 1 reached a better fit than the mecha- 
nistic and regression models. This finding is in accordance 
with other studies using ANN approaches (e.g., Lek et al., 
1996; Barciela et al., 1999). The r2 values of the “best” ANN 
model (i.e., ANN 1) for training and validation periods are 
higher than 0.85, higher than the ones of the mechanistic 
models used in previous studies to predict phytoplankton 
biomass (e.g., Hu et al., 2006; Trolle et al., 2011). The good 
model fit of ANN model is probably due to its capability to 
describe complex nonlinear relationships. Other advantages of 
ANN models are the easy set up and that little priori kno- 
wledge is required to develop ANN models. 

In this study, an exhaustive search approach was not used 
to obtain an optimal ANN model. This is because there are 
large subsets of different variable combinations (2n-1, n is the 
number of input variable). Instead, we selected the input va- 
riables used in the regression model to develop ANN 2 for 
performance comparison between ANN and regression mo- 
dels. The better performance of ANN 2 than the regression 
model demonstrates the usefulness of artificial neural network 
techniques in nonlinear prediction. ANN 2 was well trained 
with an r2 value of 0.92 in the training period. However, ANN 
2 did not perform as well as ANN 1. The different performan- 
ces indicate that the seven excluded variables in ANN 2 (i.e., 
total dissolved nitrogen, wind direction, solar radiation, pre- 
cipitation, dissolved oxygen, turbidity and pH) contribute to 
achieve a good model fit of chlorophyll-a pre- diction. 

The model fit of ANN 3 is not as good as other two ANN 
models. This is probably due to the strong impact of environ- 
mental factors (e.g., meteorological conditions) on chloro- 
phyll-a dynamics in Lake Taihu. Therefore, chlorophyll-a 
changes cannot be explained only by its time-lagged state. 

This conclusion is different from Lee et al. (2003), that pre- 
dicted chlorophyll-a changes in the coastal area with 
time-lagged chlorophyll-a as inputs, and achieved accepta- 
ble results. 

The model fits did not vary considerably among the 
seven ANN models (Figure 2) for each of ANNs 1 to 3, su- 
ggesting the reliability of ANNs 1 to 3. Although some me- 
thodological issues (e.g., choice of performance criteria, data 
pre-processing, selection of input variables and determina- 
tion of network architecture) have not yet been fully addre- 
ssed (Bowden et al., 2002; Bowden et al., 2005; Srinivasulu 
and Jain, 2006; Maier et al., 2010), they are gradually over- 
come by the ANN modelers with different backgrounds (Ku- 
mar et al., 2011; Marini, 2009; Mohanraj et al., 2012). ANN 
approach is now increasingly applied in various areas, and is 
particularly promising for non-linear problems. 

 

4.2. Performance of the Mechanistic Model 

The mechanistic model has been calibrated by Huang et 
al. (2012a) with an additional data set of Lake Taihu collec- 
ted in 2008. The model fit of the mechanistic model is not as 
high as that of ANNs 1 and 2 (Table 3). The different 
deviations may partly result from the different data sets used 
in the ANN and mechanistic models. ANN 1 included more 
environmental variables than the mechanistic model. These 
variables (e.g., precipitation), excluded in the mechanistic 
model, may be useful in predict phytoplankton dynamics. 

The deviation of the mechanistic model is mainly due to 
the uncertainties of model input, structure and parameters 
(Huang et al., 2012a). For example, spatial and temporal re- 
solution of input variables was inadequate for an appropriate 
representation of spatial heterogeneity. Moreover, modelers 
select the processes and algorithms based on their experien- 
ce, which is not necessarily objective and optimal. Finally, 
parameter values were taken from the scientific literature and 

Table 4. Correlation Analysis between Chlorophyll-a Concentration at Time t+3 and Other Environmental Variables 

 Regression analysis Partial correlation analysis 

Coefficient Significance level Partial correlation coefficient Significance level 
Chlt [0.726, 0.969] (0, 0.001) 0.452 < 0.001 
Chlt-1 [-037, -0.425] (0, 0.006) -0.070 0.400 
Chlt-2 [-0.305, -0.232] (0, 0.012) -0.083 0.320 
PARt   -0.102 0.219 
WDt   0.158 0.057 
Tt [-0.154, -0.119] (0, 0.015) -0.162 0.050 
pHt   -0.027 0.743 
DOt   0.151 0.069 
ZDt   0.094 0.256 
Prt   -0.009 0.912 
TDNt   -0.089 0.287 
TDPt [0.093, 0.118] (0.001, 0.003) 0.223 0.007 

*Chlt, Chlt-1, and Chlt-2 represent chlorophyll-a concentration at time t, t-1, t-2; WD, wind direction; WS, wind speed; SR, solar radiation; T, 
water temperature; Pr, precipitation; DO, dissolved oxygen; Tur, turbidity; TDN, total dissolved nitrogen; TDP, total dissolved phosphorus. 
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calibrated with limited field data. Given the large variability 
of the water quality in Lake Taihu, the use of different model 
structures and parameters in different modeling periods may 
improve the model, a strategy similar to the one used in struc- 
tural dynamic models (e.g., Jørgensen, 1986) and machine 
learning (e.g., Volf et al., 2011). 

Although the model fit of the mechanistic model is not as 
good as that of the ANN models in this study, mechanistic 
models are more widely used for phytoplankton prediction 
than ANN models. They describe phytoplankton processes 
(e.g., physical and biological processes) explicitly, and are 
thus commonly used to investigate the phytoplankton dyna- 
mics in lakes. One of the shortcomings of mechanistic mo- 
dels is the need to estimate large amount of model parame- 
ters. Moreover, the difficulty to collect the model input data 
limits the application of the mechanistic model. The two-di- 
mensional mechanistic model describe phytoplankton trans- 
port based on hydrodynamic conditions. Therefore, although 
we targeted here only the water quality of Gonghu Bay in 
Lake Taihu, spatial data of chlorophyll-a distribution in the 
whole lake are required as initial conditions of the model. 
These data are difficult to collect, especially for a large lake 
like Lake Taihu with a high heterogeneity of water quality. 

 

4.3. Performance of the Regression Model 

The predictive ability of the regression model is mainly 
because the three-day-ahead chlorophyll-a concentration is 
linearly related to chlorophyll-a concentration at time t (the 
coefficient of determination = 0.67). This simple model is 
widely used for identifying the relationship between predict- 
ive variables and input variables. However, it fails to capture 
the chlorophyll-a peaks and shows a lower model fit than the 
ANN 1 and 2, because some input variables are not linearly 
related to the dependent variable. For instance, it is well 
known that the growth rate of phytoplankton decreases either 
above or below an optimal water temperature (Jørgensen, 20 
01). However, the regression coefficient of water tempera- 
ture in Equations 4 to 10 (ranging from -0.104 to -0.154) indi- 
cates a negative correlation between water temperature and 
three-day-ahead chlorophyll-a concentration in the regression 
model. The negative coefficient is probably because that the 
water temperature is above the optimal temperature for phyto- 
plankton growth. 

The RMSE value of the regression model in the valida- 
tion period (6.24 μg L-1) shows that the regression model did 
not perform as good as other models. The relatively low 
model fit indicates that the regression model is not suitable for 
predicting chlorophyll-a changes in Gonghu Bay. Moreover, 
several shortcomings should be mentioned. First, it is difficult 
to select suitable input variables, the same challenge as the 
ANN model. We used the forward stepwise method to select 
the optimal subset of variables. However, the method may 
eliminate variables that are significantly correlated with the 
dependent variable. The selected input variables may be diffe- 
rent if other methods (e.g., Partial least squares regression) 
were used. It is thus difficult to identify the optimal variable 

set for regression model. Besides the challenge to select input 
variables, other problems, such as multicollinearity (Graham, 
2003) and the problem of limited information that can be ex- 
tracted from the model results (Gevrey et al., 2003), are still 
waiting to be solved. Finally, other non-linear modelling tech- 
niques, such as generalized additive models and decision trees, 
are worth to be used in describing complex phytoplankton dy- 
namics. 

 

4.4. Effects of the Input Variables on Phytoplankton Bio- 
mass 

The sensitivity analysis demonstrates that the influences 
of the input variables on phytoplankton dynamics are signi- 
ficantly different between the ANN, mechanistic and regre- 
ssion models (Figure 8). 

The relatively high sensitivity of Chlt in the regression 
model indicates that all the past information may be embo- 
died in the chlorophyll-a concentration itself, a conclusion 
that is supported by previous studies (e.g., Lee et al., 2003). 
Sensitivity of Chlt, Chlt-1 and Chlt-2 are relatively low in ANN 
1 and ANN 2. This may be because that environmental vari- 
ables (e.g., Tt and TDPt) in these ANN models could explain 
the changes of Chlt+3. The low partial correlation coefficient 
of Chlt-1 is because Chlt-1 is highly related to Chlt (see auto- 
correlation analysis in Figure 3), and is thus a redundant 
variable for the prediction of Chlt+3. This explains the 
contradiction that although Chlt-1 is a significant variable in 
the regression model, its partial correlation coefficient is as 
low as -0.070. 

The sensitivity analysis results show that phytoplankton 
in Lake Taihu depends strongly on water temperature, which 
is in accordance with previous studies in Lake Taihu (e.g., 
Chen et al., 2003). Chlorophyll-a concentration can be signi- 
ficantly affected by heavy rainfall, which dilutes chlorophy- 
ll-a considerably. However, sensitivity of precipitation is not 
high in ANN 1. This may be because the ratio of the rainy 
days to the modeling period is as low as 24.7%. 

River inflows may change the water turbidity in Gong- 
hu Bay, especially when large amount of water was trans- 
ferred from Yangtze River to improved the water quality of 
Lake Taihu (Yangtze River-TaiHu Lake Water Transfer Pro- 
ject). This Water Transfer Project resulted in a large flow of 
Wangyu River (Figure 1), and might change chlorophyll-a 
concentration significantly. Thus, the chlorophyll-a change is 
sensitive to water turbidity in ANN 1. 

Phytoplankton responded differently to nutrient condi- 
tions in the ANN, regression and mechanistic models. The 
mean total dissolved phosphorus and nitrogen concentration 
in Gonghu Bay during the modeling period were 0.030 and 
1.73 mg/L, respectively. These nutrient levels are much higher 
than the Michaelis constants for the phosphorus and nitrogen 
uptake (0.01 and 0.022 mg/L as shown in Table 2). Thus, 
phytoplankton growth rate would not change significantly in 
case of increasing or decreasing nutrient concentration by 
10%. This resulted in low sensitivity values of nutrient con- 
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ditions in the mechanistic model. However, the ANN models 
show higher sensitivities of total dissolved phosphorus and 
nitrogen. The contradiction between the ANN and mechani- 
stic models indicates that ANN models may fail to identify the 
sensitive variables, especially when redundant and highly cor- 
related variables are included in the ANN models. 

 

4.5. Possible Applications to Lake Management 

These short-term models presented here attempts to pre- 
dict phytoplankton accumulation in the ensuing few days for 
early warning of algal blooms. This prediction can help lake 
managers to take precautionary measures to minimize the har- 
mful effects of severe algal blooms (Reynolds, 1999; Lee et 
al., 2003). For early warning of algal blooms, lake managers 
are more interested in the predictive power of the model than 
an explicit representation of the biological processes. Multi- 
dimensional models have been widely used for modeling 
water quality in a large lake (e.g., Hu et al., 2006; Huang et al., 
2012a). In this study, the zero-dimensional ANN model 
achieved a good model fit, and thus appeared to be a good 
alternative in short-term prediction of phytoplankton biomass 
for management purpose. 

There is a trend of phytoplankton accumulation in the 
north bays due to the dominate wind conditions. The me- 
chanistic model presented in this study has the capacity to 
describe the horizontal transport of phytoplankton in the en- 
suing few days by coupling with hydrodynamic model, and 
thus to identify locations with severe algal blooms in Lake 
Taihu. Moreover, this mechanistic model represents physical 
and biological processes explicitly, and thus could be used for 
investigating the responses of phytoplankton to environ- 
mental changes (e.g., Mooij et al., 2007). Therefore, it can be 
used to evaluate different lake restoration scenarios and find a 
cost-effective strategy. However, the challenge to obtain ade- 
quate data for model calibration and validation, and the 
relatively large deviations limit the use of the mechanistic 
model in early warning of severe algal blooms. 

 

5. Conclusions 

We compared the performance of ANN, mechanistic and 

regression models to predict phytoplankton biomass (expre- 
ssed as chlorophyll-a concentration) in Gonghu Bay. Two data 
sets collected in 2009 were used to drive a total of five models, 
namely three ANN models, one mechanistic model and one 
regression model. Although some issues (e.g., data pre-pro- 
cessing and selection of input variables) have not yet been 
adequately addressed, one of these ANN models obtained the 
“best” results, implying its potential in short-term prediction 
of phytoplankton biomass. Therefore, the black-box model 
(ANN) could be considered as an option for water resource 
management purpose without an adequate understanding of 
the mechanisms involved. Similar model fits were obtained 
when using regression and mechanistic models. Mechanistic 
model could be used for spatial prediction and investigating 
variable interactions. It is so far the most widely used model 

in predicting phytoplankton dynamics. The regression model 
is characterized by its easy development. 
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