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ABSTRACT. Rainfall data are generally considered the most important input in watershed models and a major source of total uncer- 
tainty. This paper investigated the effects of rainfall measurement errors on hydrologic and nonpoint source pollution (H/NPS) model- 
ing in the Daning River watershed in the Three Gorges Reservoir Region (TGRR) of China. The daily rainfall values were randomly 
permutated by Monte Carlo (MC) sampling, and 150 combinations of rainfall inputs were estimated using the Soil and Water Assess- 
ment Tool (SWAT). Based on the results, the rainfall measurement error is transformed into hydrologic modeling uncertainty and fur- 
ther propagates into even larger NPS modeling uncertainty. It was expected from the SWAT applications that the rainfall measurement 
error would introduce considerable prediction uncertainty especially during high-flow periods. Additionally, the model outputs become 
more accurate at the expense of a wider 90% confidence interval (90CI) when more possible error values were included. In this case, 
this paper combined the stochastic modeling and establishing a multi-event uncertainty analysis. 
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1. Introduction 

Hydrologic and nonpoint-source pollution (H/NPS) mod- 
els have been developed for practical water resource and qua- 
lity investigations, as well as subsequent policy-making (Gu- 
nalay et al., 2012). However, managers often doubt the relia- 
bility of these models because of their associated uncertainties 
(Beven and Alcock, 2012). Watershed modeling is now des- 
cribed as ‘intellectually dishonest’ when not accompanived by 
uncertainty analysis (Hughes, 2010). The errors involved in 
model input, recognized as a major source of the total uncer- 
tainty in model-based Total Maximum Daily Load plan, shou- 
ld be considered, starting from the very beginning. 

Rainfall data are generally considered the most important 
input because rainfall is the major force in runoff production 
and pollutant transportation (Faurès et al., 1995; Tapiador et 
al., 2012). Traditionally, a rain gauge is the fundamental mea- 
surement tool as the source of precipitation observations as it 
provides a direct physical record of the precipitation in a giv- 
en spot (Bárdossy and Das, 2008). In this respect, the accu- 
racy of rainfall data plays a fundamental role in the reliability 
of watershed models and their application to water quality and 
risk management (Bohnenstengel et al., 2011; Sun et al., 2012). 
Many studies have investigated the effect of precipitation in- 
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put on hydrologic modeling, where the error is propagated 
from the input data to flow outputs (Gabellani et al., 2007; Sc- 
huurmans and Bierkens, 2007; McMillan et al., 2011). It has 
been speculated that the consideration of spatial rainfall varia- 
bility is particularly important in both large-scale modeling and 
small-scale watershed simulations (Osborn et al., 1979; Fa- 
ures et al., 1995; Cho et al., 2009; Fu et al., 2011). Thus, a 

well-designed network of rain gauges, in terms of the number 
of stations and their locations, is crucial to capturing the ire- 
gular occurrence, duration and magnitude of rainfall (McMi- 
llan et al., 2011; Shen et al., 2012a). 

Another uncertainty source is the accuracy of the record- 
ed rainfall data, which provide a direct physical record in a gi- 
ven spot (Renard et al., 2011). Generally, the nature of the rai- 
nfall measurement is governed by complicated physical pro- 
cesses, and the recorded values will inevitably deviate from re- 
ality (Tapiador et al., 2012). There are two main sources of 
uncertainty inherent in rainfall measurement: systematic error 
and random error (Schuurmans and Bierkens, 2007). Systema- 
tic error can be defined as distortion due to inadequate positi- 
oning, improper calibration, and incorrect installation of equi- 
pment (Moulin et al., 2009). Random error is considered as 
perturbations from the surrounding environment, such those 
due to the effects of wind and temperature (Seed and Austin, 
1990). These errors exist even with the best equipment and 
correct operation; thus, these errors are reported as inherent 
parts of the rainfall measurement (Tapiador et al., 2012). It is 
increasingly recognized that model parameters and structural 
hypotheses are affected by the quality of the recorded rainfall 
data (Liu et al., 2009). However, although the impact of rain- 
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fall measurement error is already a well-researched area of hy- 
drology, there are few studies investigating its effects on NPS 
simulation. 

The Three Gorges Project, situated in Hubei Province, Chi- 
na, is the largest hydropower project in the world. Although 
the Project has benefits in terms of flood control and power 
generation, it is also vulnerable to NPS pollution due to exce- 
ssive human activities (Zhang and Lou, 2011). A number of 
watershed models have been applied in this region to study 
the impact of the Project (Shi et al., 2012). However, research 
concerning the prediction uncertainty in such an important wat- 
ershed is lacking. The objective of this paper is to contribute 
an in-depth investigation to ongoing work on rainfall error pr- 
opagation through the watershed model. The Soil and Water 
Assessment Tool (SWAT) (Arnold et al., 1998) and Monte Ca- 
rlo (MC) sampling (Kao and Hong, 1996) were combined to 
quantify the prediction uncertainty in the Daning River water- 
shed in the Three Gorges Reservoir Region (TGRR) of China. 

2. Materials and Methods 

2.1. Watershed Description 

This study was conducted in the Daning River Watershed, 
a 2,422 km2 agricultural watershed (108°44’ ~ 110°11’E, 31° 
04’ ~ 31°44’ N) within the central part of the Three Gorges 
Reservoir Area (TGRA) (Figure 1). The Daning Watershed is 
dominated by mountains (95%) and low hills (5%), lying at an 
altitude of 200 to 2588 m and generally decreasing in eleva- 
tion from northeast to southwest. The land-use includes crop- 
land (22.2%), grassland (11.4%) and forest (65.8%) and the 
surface soil textures are yellow-brown soil (26.5%), yellow 
cinnamon soil (16.9%), purplish soil (14.5%) and yellow soil 
(11.0%). The area has a humid subtropical monsoon climate, 
featuring distinct seasons with plentiful sunshine, an annual 
mean temperature of 16.6 °C and abundant precipitation (mean 
annual precipitation 1,124 mm).  

This watershed is one of the branches in the ‘Natural For- 
est Conservation’ and ‘Conversion of Cropland to Forest’ pro- 
grams funded by the State Forestry Administration, P.R. China. 
However, high levels of fertilizer and manure usages for pere- 
nnial crop production in this watershed have increased surface 
and ground water pollution due to inputs of sediment and nut- 
rients (Shen et al., 2012c). The local government began perio- 
dic monitoring of nutrients in the Wu xi station (Figure 1) in 
2000, which developed into a regular monitoring program with 
approximately monthly sampling since 2004. We previously 
conducted studies on model parameter uncertainty (Shen et al., 
2008; Gong et al., 2011; Shen et al., 2012c) and spatial rain- 
fall variability (Shen et al., 2012a) in this region, and we ex- 
tend these studies further in the present paper to evaluate the 
impact of rainfall measurement errors on NPS models. 

 

2.2. Preparation of SWAT 

In this study, the SWAT model, developed by the Agricul- 
ture Research Service of the United States Department of Agr- 
iculture (USDA-ARS), was used to quantify the impact of pr- 
ecipitation input on flow, sediment and agricultural chemical 
yields. The SWAT model is a physically based, semi-distribu- 
ted model that simulates all the key processes of surface run- 
off and sediment and nutrient transport (Gassman, 2007). The 
major components of SWAT include weather, hydrology, ero- 
sion, the fates of nutrients and pesticide, agricultural manage- 
ment, and channel processes (Douglas-Mankin et al., 2010). 
The hydrology component is based on the water balance equa- 
tion, and the processes of surface and subsurface runoff, per- 
colation, evapotranspiration, and channel transmission losses 
are simulated. The runoff volume is estimated by the modified 
SCS curve number method, while the sediment yield is esti- 
mated by the modified soil loss equation (MUSLE). A simpli- 
fication of the EPIC model is used for crop simulation and the 
description of the nitrogen (N) and phosphorus (P) cycles in- 
cludes mineralization, nitrification, volatilization and plant 
uptake. Runoff, sediments, and chemicals are simulated for 
each hydrologic response unit (HRU) and routed to the river 
channel. The nutrient transformation in streams is based on 
the QUAL2E model (Brown and Barnwell, 1987), which in- 
tegrates nutrient interaction, algae production, and benthic ox- 
ygen demand. 

In this study, the major GIS input files (obtained from the 
Chinese Academy of Sciences) for the SWAT model were the 
digital elevation model (DEM) (at a scale of 1:50,000), land 
use and land cover map (at a scale of 1:100,000), and soil map 
(at a scale of 1:1,000,000). The watershed was delineated into 
22 sub-basins based on the DEM and specification of streams 
and inlets/outlets. The sub-basins were portioned into HRUs 
by setting 0% thresholds of land use, soil type and slope to ac- 
curately capture even small areas. An HRU is the lumped area 
with threshold percentages of land use, management and soil 
type in a sub-basin (Arnold et al. 1998). Most of the equa- 
tions in SWAT are solved on the HRU scale. Weather data (dai- 
ly precipitation, minimum and maximum temperature, solar ra- 
diation, and wind speed) were obtained from ten state weather 

stations located approximately within the watershed. Oth-
er weather variables (relative humidity) needed by the model 
were estimated using the weather generator built into the SWAT 
model. The pasture management information was collected fr- 
om Wuxi County, and the timing of manure and fertilizer app- 
lication, grazing intensity, and dates were obtained from de- 
tailed interviews with local farmers. The calculated fertilizer 
and manure, as well as grazing periods, were built into the ma- 
nagement files as SWAT input. 

Sensitivity analysis was performed to identify which par- 
ameters most influence the outputs of interest. Based on the  



Z. Y. Shen et al. / Journal of Environmental Informatics 26(1) 14-26 (2015) 

 

16 

sensitivity analysis results, 43 parameters were modified for 
calibrating flow, sediment, and N and P using the monthly mea- 
sured data collected at the Wuxi station from 2000 to 2007. In 
this study, parameter calibration and validation were perfo- 
rmed using SWATcup (Abbaspour, 2007) based on the mon- 
thly step. Calibration was performed from January 2004 to De- 
cember 2007, and the period of January 2000 to December 
2003 was used for validation. The Nash-Sutcliffe coefficients 
(ENS) for the calibration and validation periods were 0.94 and 
0.78 for flow, 0.80 and 0.70 for sediment, and 0.76 and 0.51 
for total phosphorous (TP), respectively. To provide a static 
state instead of subjective personal judgment, the performance 
ratings typically applied to the ENS by Arabi et al. (2007) were 
adopted: very good (0.75 ~ 1), good (0.65 ~ 0.75), satisfactory 
(0.50 ~ 0.65), and unsatisfactory (≤ 0.5). Therefore, the SWAT 

model was judged to be ‘very good’ for flow, sediment and TP 
predictions. More details on the parameter calibration and 
validation are available in Shen et al. (2012b). 

 

2.3. MC Sampling 

In this study, rainfall measurement errors were treated as 
input uncertainty by the stochastic perturbation approach. The 
MC method was used because it is a simple concept and very 
useful for resolving uncertainty issues in complex models (Qin 
et al., 2008). MC theory is based on the combination of a 
number of perturbations in the recorded daily rain data, each 
having a distinct statistical distribution (Rauch et al., 1998; Li 
et al., 2010; Shen et al., 2012c). In this study, the MC sampl- 
ing consisted of three steps as described below. 
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Step 1: Definition of the PDF for rain measurement error. 

Here, the rainfall input uncertainty was estimated using 
the probability of sampling from the range of measurement er- 
ror. A survey conducted by the State Meteorological Admin- 
istration (SMA) revealed that the error ranges in rainfall mea- 
surements in China varied from  4.34% to  15.2%, with an 
average deviation of  6.52% (Ren et al., 2003). These data 
were based on a statistical analysis of the recorded rainfall data 
from 30 national stations. First, these error data were used to 
define the sampling range of the rainfall input. Second, the 
samples were chosen from a normal distribution with a pro- 
bability distribution function (PDF) given by X ~ N(μ, σ2), 
where  was defined as the initial recorded data and   as 
the standard deviation (SD). To cover 99.7% of the values 
from the error range, the sampling range was designated as (   
-   × 15.2%,   +   × 15.2%). For comparison, we also 
ran a simulation with a uniform distribution in which all valu- 
es in the error range were equally sampled.  

Step 2: Data sampling. 

In the second step, the error range was divided into non- 
overlapping intervals to cover all measurement values. Be- 
cause there was no correlation between the daily rainfall data, 
it was assumed that the recorded data were mutually indepen- 
dent (Li et al., 2009). The recorded daily rain data (2000 ~ 
2007) were collected at ten rainfall gauges inside the water- 
shed and nine gauges at sites approximately 30 km outside the 
watershed boundary. The Co-kriging method was used to ge- 
nerate the spatial rainfall distribution and the generated data 
were incorporated into the SWAT simulation by creating a vir- 
tual rain gauge within the centroid of each sub-watershed. 
More details could be found in Shen et al. (2012a). Latin hyper- 
cube sampling (LHS), developed by Sandia National Labora- 
tories (McKay et al., 1979), employs a constrained sampling 
scheme instead of random sampling. It is reported that LHS 
can reduce sampling times and provide 10-fold greater com- 
puting efficiency (Vachaud and Chen, 2002). Therefore, the 
LHS technique was used here. The estimated sample size was 
based on a statistical analysis of the convergence of the mean 
value (MV), median value, standard diversion (SD), variance, 
and coefficient of variation (CV). However, as there were as 
many as 2922 recorded daily data points, a VBA program was 
developed to address the batch process of sampling, which 
can be downloaded from http://iwm.bnu.edu.cn/index_en.php. 

Step 3: Model simulation and data analysis.  

In the third step, the SWAT model performed a series of 
simulations based on sample size. The sub-intervals of each 
daily rainfall value were randomly permutated from a proba- 
bility distribution over the domain to generate inputs, and eve- 
ry combination of sub-intervals was used as rainfall input for 
the SWAT model. However, because the SWAT model and the 
sampling process were in different interfaces, all the model 
simulations were calculated manually. Thus, the initial daily 
rain data from multiple rain gauges were considered as the mo- 
del input, and only the recorded data at the XN gauge were 
perturbed and sampled. The XN rain gauge was selected be- 

cause it was closest to the assessment point at which the mod- 
el parameters were evaluated and would have an obvious im- 
pact on the model performance in terms of ENS value. The co- 
mplete task took almost 30 days on a Centrino Duo processor 
running at 2.8 GHz. Second, the effect of rainfall uncertainty 
on the H/NPS model was assessed by quantifying and ana- 
lyzing the SWAT outputs. The outputs considered were simu- 
lated flow, sediment transport, total P (TP), organic N, and di- 
ssolved N at the watershed outlet. The corresponding evalu- 
ation criteria were the 90% confidence interval (90CI), SD, 
and CV.  
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where Xi is the model output, i is the simulation time step, and 
n is the total number of simulations. 

3. Results 

3.1. Effect on Rainfall Input Variability 

In this section, the selection of sample size was based on 
a statistical analysis of model outputs. Three sample sizes, 50, 
100, and 150, were tested. As shown in Table 1, the MV, SD, 
variance and CV gradually stabilized as the sample size incr- 
eased from 50 to 150. In other words, the outputs of flow, sed- 
iment load, TP, org N, and dissolved N showed no obvious 
change when the sample size continued to increase beyond 
150. Thus, the following analysis and comparisons are based 
on a sample size of 150.  

The characteristics of the rainfall inputs are then summa- 
rized and analyzed in Table 2. A remarkable temporal varia- 
bility in MV can be observed from 2000 to 2007, varying from 
812 mm (2001) to 1537 mm (2003) (a difference of 725.0 
mm). The values of SD and CV varied from 6.71 mm (2001) 
to 13.16 mm (2005) and from 0.007 (2002) to 0.010 (2006), 
respectively. Further analysis indicated that the CV with mon- 
thly input ranged from 0.014 to 0.051, indicating that rainfall 
measurement errors introduce greater uncertainty when using 
monthly data input. The averaged values of CV were 0.035 in 
January, 0.024 in April and 0.022 in July. The CV value was 
therefore greatest in the low-flow period and the medium- 
flow period, followed by the high-flow period. This might be 
explained by the fact that light rainfall may evaporate in the 
collector as well as that rain gauge response to snow is 
problematic, as those have to melt to trigger the signal. The  
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details of the sampled monthly data are provided in Tables 3 to 
5. 

 

3.2 Effects on H/NPS Modeling at the Annual Time Steps 

This section focuses on error propagation from rainfall 
uncertainty to H/NPS predictions. The model outputs of annu- 
al flow, sediment, TP, org N and dissolved N are illustrated in 
Figure 2, where the cross line and bars show the MV and CV, 
respectively. The 90CI, illustrated by the vertical columns in 
Figure 2, was derived by ordering the 150 sets of outputs and 
then identifying the 5 and 95% threshold values. The highest 
levels of flow, sediment load, TP, org N, and dissolved N occ- 
urred in 2003: 66.34 m3/s, 2915.7×103 ton, 441.2 ton, 1745.2 
ton and 4408.7 ton, respectively. The lowest amounts occur- 
ed in 2001: 26.2 m3/s, 483.1×103 ton, 73.2 ton, 186.8 ton and 
1492.8 ton. These results can be explained by the rainfall tota- 
ls, which were highest in 2003 and lowest in 2001 (Table 2), 
showing a clear relationship between the rainfall totals and the 
average values of the outputs. This result indicated that rain- 
fall was one of the most important inputs that drive runoff pr- 
oduction and mass transport for the H/NPS models. As shown 
in Figure 2, the CV ranges were 0.012 to 0.016 for flow, 0.034 
to 0.058 for sediment load, 0.086 to 0.143 for TP, 0.083 to 

0.096 for org N, and 0.037 to 0.087 for dissolved N, with 
average values of 0.014, 0.043, 0.103, 0.053 and 0.086, res- 
pectively. The P and N outputs were more sensitive to rainfall 
measurement error than predicted flow and sediment. This re- 
sult indicated that rainfall measurement error would have a 
varying effect on the modeled variables due to the mechanism 
of the H/NPS models. It could therefore be concluded that 
rainfall measurement error is transformed into hydrologic mo- 
deling uncertainty and further propagates into even greater NPS 
modeling uncertainty.  

Figure 2 also illustrates the temporal variability of 90CI. 
The annual 90CI of flow from 2000 to 2007 was 40.11 ~ 44.16, 
20.50 ~ 27.35, 30.05 ~ 40.14, 64.80 ~ 68.73, 42.06 ~ 46. 33, 
59.71 ~ 64.47, 38.25 ~ 41.50, and 62.49 ~ 67.47 m3/s, res- 
pectively. The width of 90CI in 2003 was 3 times greater than 
that in 2006, which can be explained by the data in Table 2, 
showing a close relationship between the amount of the rain- 
fall and the width of 90CI. It was also obvious from Table 2 
and the error bars in Figure 2 that the greatest uncertainties in 
the sediment load, TP, org N, and dissolved N were observed 
in 2003. The widest 90CI values were 6, 12, 15, and 3 times 
than the narrowest 90CI for sediment load, TP, org N, and dis- 
solved N, respectively, indicating greater uncertainty in wet 
years. 

Table 1. The Sample Size and Convergence Rate 

Variable Value Samples MV SD Variance CV 

Flow (m3/s) 45.26 50 45.25 0.26 0.07 0.005 
100 45.28 0.25 0.06 0.006 
150 45.29 0.24 0.06 0.006 

Sediment (103 t) 1903.04 50 1909.14 35.90 1288.81 0.019 
100 1914.13 34.37 1181.64 0.018 
150 1917.00 34.52 1191.63 0.018 

TP (t) 156.25 50 156.06 7.20 51.78 0.046 
100 156.36 6.47 41.88 0.041 
150 156.93 6.50 42.20 0.041 

Org N (t) 769.88 50 771.68 21.01 441.53 0.027 
100 773.27 19.50 380.16 0.025 
150 775.14 19.32 373.15 0.025 

Dissolved N (t) 2648.49 50 2646.29 35.59 1266.74 0.013 
100 2650.40 32.67 1067.55 0.012 
150 2654.67 32.62 1063.91 0.012 

 
Table 2. The Cumulative Precipitation Associated with Measurement Error 

Time Measured data (mm) MV (mm) SD (mm) Variation CV 

2000 1107.4 1107.8 10.81 116.77 0.010 
2001 813.0 812.1 6.71 44.98 0.008 
2002 1032.1 1033.2 7.55 57.03 0.007 
2003 1536.0 1537.7 11.95 142.88 0.008 
2004 1124.5 1125.1 10.87 118.15 0.010 
2005 1456.5 1454.3 13.16 173.20 0.009 
2006 998.5 998.3 9.63 92.73 0.010 
2007 1475.0 1475.3 12.93 167.30 0.009 

 



Z. Y. Shen et al. / Journal of Environmental Informatics 26(1) 14-26 (2015) 

 

19 

3.3 Effects on H/NPS Modeling at the Monthly Time Ste- 
ps 

A further concern is the effect of rainfall measurement 
errors on H/NPS modeling at the monthly time steps. The mo- 
nthly outputs of a typical hydrological year (2004) are shown 
in Figure 3. The CV values of monthly flow, sediment load, 
TP, Org N, and dissolved N were 0.022 ~ 0.051, 0.049 ~ 
0.130, 0.018 ~ 0.111, 0.067 ~ 0.179, and 0.029 ~ 0.064, with 
average values of 0.037, 0.086, 0.062, 0.129, and 0.048, res- 
pectively. Based on the results of this study, the SWAT simu- 
lation at the monthly time steps generally provided greater un- 
certainties than those obtained with the annual time step. The 
widest 90CI was observed in July, with values of 127 ~ 143 
m3/s for flow, 741×103 ~ 1180×103 ton for sediment, 22 ~ 32 

ton for TP, 48 ~ 166 ton for org N and 410 ~ 799 ton for diss- 
olved N. 

This paper further illustrated the seasonal variations in 
model outputs by choosing January, April and July as low-, 
medium- and high-flow periods, respectively. As shown in 
Tables 3 to 5, the average CV values in the low-flow period 
were 0.034, 0.074, 0.075, 0.114, and 0.033 for flow, sedi- 
ment load, TP, org N and dissolved N, respectively. The co- 
rresponding CV values were 0.036, 0.085, 0.121, 0.125, and 
0.065 in the median-flow period and 0.032, 0.076, 0.066, 
0.086, and 0.049 in the high-flow period. Tables 3 to 5 further 
showed that the average SD values of the flow outputs were 
0.13, 1.28 and 3.11 m3/s in the low-, medium- and high-flow 
periods, respectively. The average SD values were 0.13×103,  

Table 3. Statistic Results of Simulated Uncertainty in the Low River Flow Period (January) 

Time 
Precipitation Flow Sediment TP Org N Dissolved N 

µ (mm) CV µ (m3/s) CV µ (103 t) CV µ (t) CV µ (t) CV µ (t) CV 

2000 0.60 0.051 2.17 0.003 0.24 0.004 2.07 0.146 0.21 0.145 40.04 0.033 
2001 20.40 0.031 9.26 0.036 6.44 0.114 4.82 0.007 3.31 0.197 70.59 0.025 
2002 5.80 0.031 1.48 0.033 0.14 0.062 2.67 0.063 0.25 0.063 16.48 0.024 
2003 3.50 0.039 1.26 0.040 0.09 0.061 3.11 0.101 0.31 0.107 10.54 0.043 
2004 5.50 0.030 5.79 0.052 1.04 0.083 1.58 0.059 0.17 0.067 32.19 0.049 
2005 7.50 0.038 3.78 0.029 1.03 0.132 4.57 0.089 1.06 0.200 32.91 0.026 
2006 5.50 0.028 0.73 0.042 0.10 0.072 0.91 0.116 0.08 0.120 10.45 0.035 
2007 9.50 0.031 5.20 0.036 1.14 0.062 6.99 0.016 0.73 0.014 44.38 0.032 
Average 7.29 0.035 3.71 0.034 1.28 0.074 3.34 0.075 0.76 0.114 32.20 0.033 

 
Table 4. Statistic Results of Simulated Uncertainty in the Normal River Flow Period (April) 

Time Precipitation Flow Sediment TP Org N Dissolved N 

µ (mm) CV µ (m3/s) CV µ (103 t) CV µ (t) CV µ (t) CV µ (t) CV 

2000 19.00 0.024 3.08 0.034 0.45 0.057 2.22 0.078 0.15 0.076 58.26 0.013 
2001 63.40 0.026 17.86 0.047 34.61 0.143 6.63 0.145 24.49 0.209 126.24 0.053 
2002 141.60 0.019 29.41 0.037 86.45 0.070 20.83 0.105 126.60 0.099 214.32 0.061 
2003 122.00 0.023 81.71 0.022 172.70 0.051 32.15 0.076 138.80 0.078 450.69 0.035 
2004 36.00 0.025 8.43 0.027 2.98 0.072 3.32 0.039 0.48 0.119 102.46 0.084 
2005 132.50 0.028 27.93 0.053 99.11 0.126 20.96 0.273 76.82 0.199 224.56 0.117 
2006 188.00 0.024 86.48 0.036 268.00 0.081 69.59 0.154 281.50 0.127 584.92 0.090 
2007 119.00 0.021 46.87 0.033 134.50 0.077 20.97 0.099 86.24 0.089 194.65 0.067 
Average 102.69 0.024 37.72 0.036 99.85 0.085 22.08 0.121 91.89 0.125 244.51 0.065 

 
Table 5. Statistic Results of Simulated Uncertainty in the High River Flow Period (July) 

Time 
Precipitation Flow Sediment TP Org N Dissolved N 

µ (mm) CV µ (m3/s) CV µ (103 t) CV µ (mm) CV µ (m3/s) CV µ (103 t) CV 
2000 339.80 0.023 210.20 0.027 1434.00 0.071 45.55 0.059 744.50 0.055 1846.10 0.056 
2001 198.40 0.021 59.33 0.035 133.50 0.074 4.92 0.080 40.93 0.094 379.91 0.040 
2002 28.60 0.026 19.88 0.036 8.07 0.061 3.86 0.073 0.39 0.043 156.03 0.077 
2003 243.50 0.022 154.30 0.026 722.00 0.077 24.11 0.071 160.90 0.084 811.68 0.038 
2004 324.50 0.022 135.60 0.037 916.70 0.088 26.37 0.068 195.70 0.087 723.40 0.044 
2005 382.50 0.023 182.80 0.053 1093.00 0.126 25.07 0.077 187.80 0.199 792.90 0.051 
2006 108.50 0.023 88.31 0.015 128.60 0.054 4.61 0.045 14.18 0.065 508.55 0.038 
2007 378.50 0.017 194.40 0.023 973.60 0.057 26.65 0.053 131.10 0.060 694.27 0.049 
Average 250.54 0.022 130.60 0.032 676.18 0.076 20.14 0.066 184.44 0.086 739.11 0.049 
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8.09×103, and 40.60×103 ton for sediment load; 0.19 ton, 3.05 
ton, and 1.31 ton for TP; 0.114 ton, 11.01 ton, and 12.25 ton 
for org N; and 1.02, 17.15, and 35.86 ton for dissolved N. Th- 
ere was a clear relationship between the amount of rainfall and 
the width of 90CI, indicating greater uncertainty during high- 
flow conditions. 

4. Discussion 

4.1. Effects on Different Variables and Flow Events 

As mentioned above, the measurement error in rainfall 
input propagates through the H/NPS model to the hydrolo- 
gical modeling and, to larger extent, to the NPS simulation. 
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Figure 2. The statistics of annual outputs due to normal distribution. 
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Figure 2 highlights the importance of considering measureme- 
nt errors when calculating P and N at the annual time steps. 
Figure 3 further demonstrates that the sediment and NPS out- 
puts at the monthly time steps have greater uncertainties. This 
different behavior of output variables can be explained via the 
processes of runoff production and mass transport of the H/N- 
PS models (Cho et al., 2009; Beven et al., 2012). The NPS po- 
llution is not only driven by runoff and soil erosion processes 

(Karr and Schlosser, 1978) but also affected by other human fa- 
ctors, such as agricultural activities and land use changes (Loa- 
gue et al., 1998). To better present our study results, the au- 
thors define this phenomenon as the ‘carry-magnify’ effect.  

Tables 3 to 5 address the application of uncertainty analy- 
sis related to rainfall measurement errors during the high-flow 
period. In some aspects, the results in these tables are consis- 
tent with those of Gong et al. (2011) and Shen et al. (2012b),   
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Figure 3. The statistics of monthly outputs due to normal distribution. 
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who indicated that there would be greater uncertainty during 
the high-flow conditions. The TGRA is characterized by a tro- 
pical monsoon climate with a mean precipitation of 1124 mm 
and highly variable daily rainfall in the wet season (from June 
to September) (Shen et al., 2012b; Shen et al., 2012c). Rain- 
fall events occur with irregular duration and magnitude in the 
wet season (Ouyang et al., 2007; Wu et al., 2012). Therefore, 
the rain gauge is known to underestimate heavy precipitation, 
not only because the collection area is relatively small but also 
because water can accumulate into the collector faster that the 
buckets are capable of draining it. Therefore, it could be 
expected that the rainfall measurement error would introduce 
considerable prediction uncertainty in conjunction with the ef- 
fects of model parameter, especially during high-flow periods. 

 

4.2. Influence of Error Distribution Type 

The above analysis was based on the assumption that the 
rainfall measurement errors are normally distributed. In pre- 
vious papers (Bárdossy and Das, 2008; Bohnenstengel et al., 
2011; Sun et al., 2012), the suitable distributions of rainfall 
measurement errors can be expressed by one of the followings: 
1) a CI, which is derived by ordering the potential values and 
later identifying a range of values that act as good estimates of 
the unknown data sets; 2) databased frequency analysis, de- 
signed for each data set using statistical estimation of the PDFs 
that capture the true data sets. However, the process of speci- 

fication of the range and associated real distributions for the 
rainfall measurement errors is a difficult and subjective task 
due to our imprecise knowledge or insufficient data (Beven 
and Alcock, 2012). Therefore, it is often assumed that the 
measurement errors were identically chosen from uniform or 
normal distribution spanning the feasible range due to their sim- 
plicity. In this section, these two commonly used distribu- 
tions were selected to quantify the impact of error distribu- 
tion type on the model outputs.  

The frequency distributions of outputs were first analy- 
zed using a histogram (Figure 4). The output distributions were 
investigated by the Shapiro-Wilk method. As the P values were 
less than 0.05, it could be concluded that the outputs were all 
normally distributed. For a normal PDF, the ranges of outputs 
were 44.65 ~ 45.78 m3/s for flow, 1833.40×103 ~ 1998.71×103 
ton for sediment, 142.14 ~ 171.28 ton for TP, 732.67 ~ 817.21 
ton for org N, and 2581.83 ~ 2728.29 ton for dissolved N; 
meanwhile, for the uniform PDF, the corresponding values 
were 44.83 ~ 45.61 m3/s, 1859.45×103 ~ 1977.36×103 ton, 
147.87 ~ 169.84 ton, 745.84 ~ 816.37 ton, and 2604.15 ~ 
2706.64 ton, respectively. Additionally, the averaged CV 
values and the width of 90CI obtained with the normal PDF 
were 175, 157, 152, 152, and 163% and 170, 153, 164, 170, 
and 170% of those obtained with the uniform PDF for flow, 
sediment load, TP, org N and dissolved N, respectively. This 
behavior might be explained by the shape of the normal sam- 
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Figure 4. The PDF of outputs due to rainfall measurement error. (a) Uniform pdf; (b) Normal pdf. 
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ple distribution, which contains more samples near the initial 
recorded rainfall data and fewer towards the upper and lower 
limits (Li et al., 2010; Shen et al., 2012c); therefore, sampling 
from these data regions would create a better likelihood of ac- 
hieving good results. Therefore, in the case of this study, a 
normal PDF improved H/NPS prediction accuracy at the ex- 
pense of a wider 90CI. Based on this study, the selection of 
PDF might involve a trade-off between modeling precision 
and prediction uncertainty. 

The cumulative distribution functions (CDFs) are plo- 
tted in Figure 5. Specific values were identified as levels (th- 
resholds) beyond which rapid acceleration or deceleration of 
the cumulative distribution of outputs occurred. Such thresho- 
ld values for flow, sediment load, TP, org N and dissolved N 
were 45.23 m3/s, 1906×103, 157, 777, and 2648 ton in the 
TGRA, respectively. This result suggests that once the mea- 
surement error exceeded a critical value, the H/NPS outputs 
responded differently depending on whether a normal or uni-
 

(a) (b)

(c) (d)

(e)

Flow (cm3/s) 

Figure 5. The CDF of outputs due to normal and uniform PDF. 
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form PDF was applied. It was found that the CDFs of the mo- 
del outputs did not behave linearly due to the nonlinear model 
structure among the parameters. It has been common to adopt 
different types of distributions, such as uniform, gamma and 
log-normal distributions, to describe the differences between 
the original and perturbed errors (Li et al., 2010; Shen et al., 
2012c). The results highlighted the importance of considering 
PDF for model inputs during the hydrological and NPS mo- 
deling process; hence, a user should determine the PDF of the 
rainfall input corresponded to the equipment characteristics or 
based on the data-based frequency analysis. 

 

4.3. Exportation of This Study 

These results obtained from this study can only be extra- 
polated to other models or sites with caution. In the TGRR, 
rain gauges are still the majority of the instrumentation avai- 
lable for watershed models because they are relatively cheap 
and easy to install and calibrate (Tapiador et al., 2012). The 
most common rain gauges in this region are the mechanical 
instrument, typically consisting of a collecting area and a sig- 
nal system (Ren et al., 2003; Tapiador et al., 2012). More ad- 
vanced techniques, such as radar data, may also be used to pr- 
ovide better spatial rainfall distributions than rain gauge me- 
asurements. However, radar data are also subject to various 
errors such as errors in reflectivity-rainfall (Z-R) relationships, 
variation in the vertical profile of reflectivity, and spatial and 
temporal sampling among others (AghaKouchak et al., 2010). 
Thus, the rainfall measurement error should be considered as 
an inherent part of modeling watershed systems (Schuurmans 
and Bierkens, 2007), resulting in what Beven (2006) called non- 
ideal cases. In this case, this paper proposed stochastic mo- 
deling within the framework of Generalized Likelihood Unce- 
rtainty Estimation (GLUE) to find an acceptable fit of beha- 
vior models (Guo et al., 2003; Franz and Hogue, 2011; Li et 
al., 2011; Fan and Huang, 2012). 

In the TGRR, those mechanical types of rain gauges are 
reported to underestimate heavy precipitation because the co- 
llection area is relatively small and heavy precipitation is diff- 
icult to capture using buckets (Tapiador et al., 2012). They are 
also problematic for the dry season, as light rainfall may eva- 
porate or otherwise leave from the collector. Many studies have 
revealed that watershed models underestimate the flow dur- 
ing the wet period and overestimate this variable during the 
dry season (Renard et al., 2011; Shen et al., 2012c). Consider- 
ing the inherent source and nature of errors, it was recognized 
that compensating this error by considering real measurement 
errors during the wet season and dry season. In addition, the 
rainfall input errors are usually interpolated and assigned to 
the center of the model grid box as the model input. For this 
reason, future progress should depend on establishing dense 
observational networks in the estimate of rainfall input over 
the catchment area. More details about this issue can be found 
in our previous study (Shen et al., 2012a). 

 

 

5. Conclusions 

This paper investigated the effects of rainfall measure- 
ment errors on H/NPS models. The SWAT model and the MC 
technique were combined to quantify the prediction uncertain- 
ty in the Daning River watershed in the TGRA of China. Bas- 
ed on the results obtained from this paper, the measurement 
error in rainfall input propagates through the H/NPS model to 
the hydrologic modeling and, to larger extent, the NPS simu- 
lation. The rainfall measurement error should be considered as 
a notably important source of uncertainty in H/NPS modeling 
and uncertainty analysis for SWAT applications should consi- 
der the model variables of interest. During high-flow periods, 
it was expected that rainfall measurement error would intro- 
duce considerable prediction uncertainty in conjunction with 
the effects of the model parameters.  

However，the current set-up of the study (single XN rain 
gauge) is relatively fairly simple approach. The conclusion of 
this study is site specific and may be different if the rainfall 
spatial distributions are significantly different from those in 
the Daning watershed discussed here. Therefore, to provide a 
scientific basis for the watershed simulation of the TGRA, 
more tests may be needed to determine whether the ungauged 
catchment and multi-rain-gauge watersheds could be estima- 
ted in this way. 
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