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ABSTRACT.  This study presents an interval-fuzzy De Novo programming (IFDNP) method for planning water-resources- 
management systems under uncertainty. IFDNP is derived by incorporating the concepts of interval parameters and fuzzy sets within a 
De Novo programming framework. IFDNP has the advantages in constructing optimal system design through introducing the 
flexibility into the available resources in the model’s constraints. Moreover, IFDNP allows the decision makers to achieve a 
metaoptimal system performance and improve the performance of compromise solutions, and it is effective for dealing with the system 
design problems involving multiple objectives and multiple uncertainties. The IFDNP is then applied to a case study of designing an 
inexact optimal system with budget limit for water resources management and planning. Various scenarios that are associated with 
different levels of economic implication consequences and water allocation patterns under uncertainty are analyzed. Results can help 
decision makers to evaluate alternatives of system designs and to determine which of these designs can most efficiently achieve the 
desired economic objective constrained by limited resources. 
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1. Introduction 

In recent decades, the constantly increasing demand for 
water in terms of both sufficient quantity and satisfied quality 
has forced planners to contemplate and propose ever more 
comprehensive, complex and ambitious plans for water resour- 
ces systems (Li et al., 2008a). However, such planning efforts 
are complicated with a variety of uncertain parameters as well 
as their interactions. Moreover, these uncertainties may be 
amplified by limited budget and limited resources with a 
maximized system benefit objective. It is an active process that 
seeks a portfolio of resource levels and optimizes the object- 
tive function by allocating a budget according to a resource 
price, where resource levels are considered as decision va- 
riables (Zeleny, 1990). Therefore, it is necessary to develop 
effective optimization methods for supporting water resources 
management under such complexities and uncertainties (Zhang 
et al., 2009). 

Previously, a number of methods such as fuzzy, sto- 
chastic and interval mathematical programming were deve- 
loped for dealing with the uncertainties in water resources 
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management problems (Slowinski, 1986, 1987; Kindler, 1992; 
Chang et al., 1996; Russell and Campbell, 1996; Wu et al., 
1997; Ferrero et al., 1998; Teegavarapu and Simonovic, 1999; 
Jairaj and Vedula, 2000; Seifi and Hipel, 2001; Lee and 
Chang, 2005; Maqsood et al., 2005; Li et al., 2008b, 2009, 
2011; Barbalios et al., 2013; Su et al., 2013; Xu and Qin, 
2013). For example, Slowinski (1986) proposed an interactive 
fuzzy multiobjective linear programmming method for plan- 
ning water resources supply systems. Huang (1996) employed 
interval-parameter programming (IPP) method for water qua- 
lity management within an agricultural system, where uncer- 
tainties expressed as discrete intervals were effectively adder- 
ssed. Wu et al. (1997) proposed an interactive inexact-fuzzy 
multi-objective programming model for planning water re- 
sources systems, where IPP and fuzzy programming (FP) 
were incurporated within a multiobjective framework to han- 
dle uncertainties presented in terms of discrete intervals and 
fuzzy sets. Jairaj and Vedula (2000) optimized a multi-reser- 
voir system using fuzzy mathematical programming method, 
where the uncertainties existing in reservoir inflows were 
treated as fuzzy sets. Bender and Simonovic (2000) pro- 
posed a fuzzy compromise approach for water resources 
planning under imprecision uncertainty. Lee and Chang (2005) 
proposed an interactive fuzzy approach for planning a stream 
water resources management system that involved vague and 
imprecise information. Li et al. (2009) advanced a multistage 
fuzzy-stochastic programming model for water-resources allo- 
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cation and management, where uncertainties expressed as pro- 
bability distributions and fuzzy sets could be reflected.  

Generally, FP was effective in dealing with decision pro- 
blems under fuzzy goal and constraints and handling ambi- 
guous coefficients in the objective function and constraints 
(Dubois and Prade, 1978; Zimmermann, 1995); IPP could 
handle uncertain parameters that were expressed as intervals 
with known lower and upper bounds, but unknown mem- 
bership or distribution functions (Huang, 1996). The conven- 
tional planning problems using fuzzy interval, and/or sto- 
chastic program mostly focused on optimizing a given system 
subject to a series of constraint resources which were fixed as 
a number of deterministic values. However, in real-world 
practical problems, the constraint resources possess imprecise 
features, which are difficult to be determined precisely. Com- 
pared with the traditional inexact optimization methods, De 
Novo programming approach can effectively handle the opti- 
mal system design problems with the available resources. 
These resources are considered as decision variables in De 
Novo program subject to the budgetary constraints, which can 
thus affect the objective function values. In De Novo pro- 
gramming problems, uncertainties may exist in the related 
costs, system objectives, and modeling parameters; uncertain 
parameters can be represented as fuzzy, interval or stochastic 
numbers, resulting in inexact De Novo programming (Zhang 
et al., 2009). 

De Novo programming, which was effective for dealing 
with optimal design problems with unknown resource availa- 
bility and seeking a portfolio of resource availability level to 
optimize multiple objective functions by allocating a budget 
according to the resource price, was an attractive technique in 
response to the above challenges (Zeleny, 1981, 1986, 1990). 
Previously, a number of research works based on the De Novo 
programming were applied to various system design cases 
(Bare and Mendoza, 1988, 1990; Li and Lee, 1990, 1993; 
Kim et al., 1993; Sasaki et al., 1995; Shi, 1995; Kotula, 1997; 
Zeleny, 2005; Chen and Hsieh, 2006; Zhang et al., 2009). For 
example, Bare and Mendoza (1988) employed De Novo pro- 
gramming to single and multi-objective forestry land manage- 
ment problems, where a number of constraints such as labor, 
picnic sites, and hiking trails were considered; the study 
system could be designed to perform in an ideal fashion 
within a constant budget level. Zeleny (1990) proposed a 
basic method to construct the optimal system design for 
solving a De Novo problem via an ideal system design; one of 
the important issues in multicriteria De Novo programming 

was to determine an optimum-path ratio for enforcing a parti- 
cular budget level of resources so as to establish the optimal 
system design. Li and Lee (1990) extended Zeleny’s basic 
method to identify fuzzy system designs for De Novo pro- 
blems by considering the fuzziness in coefficients, and further 
treated fuzzy goals and fuzzy coefficients simultaneously, de- 
pending on a numerical approach which could be solved as ei- 
ther linear or nonlinear problems (Li and Lee, 1993). Kim et 
al. (1993) formulated a De Novo 0-1 bicriteria linear pro- 
gramming with interval coefficients under generalized upper 
bounding structure, where interval coefficients were trans- 

formed into a fuzzy state by the fuzzy transformation based 
on the degree of satisfying inequality relationship and order 

relationship between intervals; however, the main limitation 
of this transformation method was to generate a generalized 
De Novo model. Sasaki et al. (1995) proposed an implement- 
tation of the genetic algorithm for solving De Novo program- 
ming problems with fuzzy goal and constraints, which posse- 
ssed the flexibility to obtain better solutions compared to crisp 
constraints. Shi (1995) introduced several optimum-path ra- 
tios for enforcing different budget levels of resources to iden- 
tify alternative optimal system designs for solving multicri- 
teria De Novo programming problems. Kotula (1997) used the 
De Novo programming for control and adjustment of reser- 
voir design and operation characteristics which resulted in op- 
timal or near optimal system performance throughout the life 
of the reservoir. Zeleny (2005) investigated the evolution of 
optimality of single and multiobjective programming, where a 
number of major optimality concepts according to a dual cla- 
ssification were discussed. Chen and Hsieh (2006) presented a 
fuzzy multistage De Novo programming, where random dis- 
tribution of budget was analyzed. More recently, Zhang et al. 
(2009) developed an interval De Novo programming (IDNP) 
method through introducing IPP technique into the De Novo 
programming framework for the planning of water-resources 
systems, where uncertainties presented as discrete intervals 
were addressed; however, the IDNP was incapable of hand- 
ling problems containing vague information. In fact, in many 
real-world problems, results produced by optimization tech- 
niques could be rendered highly questionable if the modeling 
inputs could not be expressed with precision (Li et al., 2009; 
Fan and Huang, 2012; Suo et al., 2013). Quality of the avai- 
lable information was generally poor, and uncertainties might 
be presented as fuzzy sets, interval values, and their combi- 
nations. 

Therefore, one approach to potentially address these un- 
certainties is to integrate both fuzzy programming (FP) and 
interval-parameter programming (IPP) into the De Novo pro- 
grammming framework; this will lead to an interval-fuzzy De 
Novo programming (IFDNP) method. The developed IFDNP 
can effectively deal with uncertainties expressed as fuzzy sets 
and interval values in single and multiobjective problems. The 
IFDNP will then be applied to a case study of water resources 
systems planning, which designs an inexact optimal system 
with budget limit and different weights. A number of scena- 
rios will be examined to identify an optimum system design 
under multiple objectives and multiple uncertainties. The 
results obtained can help decision makers to evaluate alter- 
natives of system designs and to determine which of these 
designs can most efficiently achieve the desired economic 
objective constrained by limited resources. 

2. Methodology 

2.1. Interval Fuzzy Linear Programming 

An interval fuzzy linear programming (IFLP) problem 
can be formulated as follows (Huang et al., 1993): 
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max  f C X     (1a) 

 
Subject to: 
 
A X B  


  (1b) 

 

0X     (1c) 
 
where  m n

A R
  ,   1m

B R
  ,  1 n

C R
  , X ±

 ∈{R±}n×1, 
and  R  denote a set of intervals; symbols   and 


 re- 

present fuzzy equality and inequality. In fact, a decision in a 
fuzzy environment can be defined as the intersection of mem- 
bership functions corresponding to fuzzy objective and cons- 
traints (Chang et al., 1997). Given a fuzzy goal (G ) and a 
fuzzy constraint (E) in a space of decision alternatives ( X  ), 
a fuzzy decision set (D) can then be formed in the intersection 
of G and E. In a symbolic form, we have D = G ∩ E, and 
correspondingly: 

 
 min ,  D G E     (2) 

 
where D , G and E denote membership functions of fuzzy 
decision D, fuzzy goal G, and fuzzy constraint E, respectively 
(Zimmermann, 1995; Li et al., 2008a). Let  

iE X   be me- 
mbership functions of constraints Ei (i = 1, 2, …, m), and 

 
jG X   be those of goals Gj ( j = 1, 2, …, n ). A decision 

can then be defined by the following membership function 
(Huang et al., 2001; Li et al., 2008a): 

 

   ( )
i jD E GX X X        (3a) 

 

    min 1,2, ..., 1D iX X i m       (3b) 

 
where X  represents a set of decision variables; “ ” denotes 
an appropriate and possibly context-dependent “aggregator”; 

 i X  can be interpreted as the degree to which X  satisfies 
fuzzy inequality in the objective and constraints. A desired 
decision is thus the one with the highest  D X  value: 

 

   max max minD iX X      , 0X     (4) 

 
where  i X  should be zero if the objective and constraints 
are violated, and 1 if they are totally satisfied. Consequently, 
the IFLP problem can be converted into an ordinary linear 
programming model by introducing a control variable of 
   D X  , which corresponds to the membership func- 
tion of the fuzzy decision (Zimmermann, 1995; Chang et al., 
1997; Huang et al., 2001; Li et al., 2008a). Specifically, the 
flexibility in the constraints and fuzziness in the objective 
(which are represented by fuzzy sets and denoted as “fuzzy 
constraints” and “fuzzy goal”, respectively), can be expressed 
as membership grades ( λ ) corresponding to the degrees of 
overall satisfaction for the constraints and objective. Thus, 

model (1) can be converted into: 

 

max     (5a) 
 
Subject to: 
 

 C X f f f          (5b) 

 

 A X B B B          (5c) 

 

0X     (5d) 
 

0 1    (5e) 
 

where f  and f  are the lower and upper bounds of the object- 
tive’s aspiration level (i.e. f  is the most desirable system ob- 
jective value; f  is the least desirable system objective 
value), respectively;   is the control variable correspon- 
ding to the degree (membership grade) of satisfaction for the 
fuzzy decision. An interactive solution algorithm is develo- 
ped to solve the above problem through analyzing the de- 
tailed interrelationships between the parameters and the varia- 
bles and between the objective function and the constraints 
(Huang et al., 1993). 

 

2.2. Interval-Fuzzy De Novo Programming 

A De Novo programming model can be formulated as 
follows (Zeleny, 1990): 

 
max  Z Cx   (6a) 
 
Subject to:   
 

0AX b    (6b) 
 
pb B   (6c) 

 
0x    (6d) 
 

where k jC R  and i jA R  are matrices of dimensions k × j 

and i × j, respectively; p (p = p1, p2, …, pi) is the given unit 
prices of i resources; B is total given variable budget; b (b = b1, 
b2, …, bi) is the resulting (optimal) portfolio of resources, 
which can be considered as design decision variables in the 
above problem; x is the production levels, x = x1, x2, …, xj, 
which can be regarded as management decision variables. 

Incorporating IFLP within model (6), an interval-fuzzy 
De Novo programming (IFDNP) with single and/or multiple 
objectives for optimal system design can be formulated as 
follows: 

 

max  z C X     (7a) 
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Subject to: 
 

0A X b      (7b) 
 
p b B  


  (7c) 

 

0X     (7d) 
 

where k jC R  and i jA R  are matrices of dimensions k × 
j and i × j, respectively; kjc is the element of matrix C ; ija is 
the element of matrix A ; b is a vector of design decision 
variables,  1 2, ,..., ib b b b    ; X  is a vector of management 
decision variables,  1 2, , ..., jX x x x    ; p is the vector of the 
unit prices of i resources,  1 2, , ..., ip p p p    ; B is the 
given total available budget. 

According to Zimmermann (1995), decision makers may 
establish an aspiration level ( z ), and a tolerable interval 
( z = z+ - z-) for the objective they desire to achieve, and each 
of the constraints can be modeled as a fuzzy set. Thus, to 
better communicate fuzzy objective and constraints, as well as 
the flow uncertainties, model (7) can be converted into the fo- 
llowing formulation: 

 

max     (8a) 
 
Subject to:  
 

 C X z z z          (8b) 

 

 p b B B B          (8c) 

 

0A X b      (8d) 
 

0X     (8e) 
 

0 1    (8f) 
 

where z and z are the lower and upper bounds of the objecti- 
ve’s aspiration level (i.e. z is the most desirable system 
objective value; z is the least desirable system objective 
value), respectively;   is a control variable, which denotes 
the degree of satisfaction for the fuzzy objective and/or con- 
straints. A   level close to 1 would correspond to a high 
possibility of satisfying the constraints/objective under advan- 
tageous conditions; conversely, a   value near 0 would be 
related to a solution that has a low possibility of satisfying the 
constraints/objective under demanding conditions. Model (8) 

can deal with uncertainties described as intervals and fuzzy 
sets. These definitions are essential because there are two 
kinds of decision variables including design decision vari- 
ables b and management decision variables x

in the IFDNP 
model.  

Then, model (8) can be solved through a two-step me- 
thod by transforming into two sets of deterministic submo- 

dels, which correspond to the lower and upper bounds of the 
desired objective function value; this transformation process 
is based on an interactive algorithm, which is different from 
normal interval analysis and best/worst case analysis (Huang 
et al., 1993). In this study, an optimized set of z values can 
be identified by having b and x being decision variables; 
this optimized set may correspond to maximum system ob- 
jective value under the uncertain design decision variables 
and management decision variables. Thus, when z approach 
their upper bounds (i.e. when  = 1), a relatively most desi- 
rable system objective value will be obtained if decision 
variables are satisfied; however, a high penalty may have to be 
paid when decision variables are not satisfied. Conversely, 
when z

 reach their lower bounds (i.e. when  = 0), we may 

have a least desirable system objective value but, at the same 
time, a lower risk of violating the promised targets (and thus 
lower penalty). Therefore, model (8) can be transformed into 
two deterministic submodels based on the interactive algori- 
thm. Because the objective is to maximize the objective func- 
tion value, z is first desired; the other submodel (correspond- 
ding to z ) can then be formulated based on the solution of 
the first submodel. The upper bounds of positive coefficients 
and the lower bounds of negative coefficients correspond 
to z . The solutions provide intervals for the objective func- 
tions and decision variables associated with different con- 
straint-violation levels. Thus, the first submodel for  corres- 
ponding to z is (assume that bi > 0): 

 

max     (9a) 
 
Subject to: 
 

 
1 1

,  
t n

kj j kj j k k k
j j t

c x c x z z z k       

  

        (9b) 

 

     
1 1 1

t t n

i i ij ij j i i
j j j t

p Sign p a Sign a x p Sign p
    

   

 
 

 
     

   
1

,
n

ij ij j
j t

a Sign a x B B B i
      

 

 
    

 
   (9c) 

 

   
1 1

0
t n

ij ij j ij ij j i
j j t

a Sign a x a Sign a x b
     

  

      (9d) 

 
0,  jx j     (9e) 

 

0 1    (9f) 
 

where jx , j = 1, 2, …, t, are interval variables with positive 
coefficients in the objective function; jx , j = t + 1, t + 2, …, 
n, are interval variables with negative coefficients in the 
objective function. Solutions of jx , jx , ib  and   can 
be obtained from submodel (9). Let maxk kz z   , k = 1, …, 
q, be the optimal value for Kth objective of submodel with 
model (9). Let 1 2( , ,..., )qz z z z         be the q-objective value 
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for the ideal system with respect to B . Then, the metaopti- 
mum submodel can be constructed as follows: 

 

max      (10a) 
 
Subject to: 

     
1 1 1

t t n

i i ij ij j i i
j j j t

p Sign p a Sign a x p Sign p
    

   

 
 

 
     

   
1

,  
n

ij ij j
j t

a Sign a x B B B i
          

 

 
    

 
   (10b) 

 

 
1 1

,  
t n

kj j kj j k k k
j j t

c x c x z z z k           

  

        (10c) 

 
0jx    (10d) 

 

0 1     (10e) 
 

Solving model (10) yields jx  , b  ,    and r  , where: 

   
1 1

t n

ij ij j ij ij j
j j t

a Sign a x a Sig xb n a
      

 

 



    (11a) 

s sB
r

B

 
 

     (11b) 

 
The value sB is the budget level of producing jx   with 

respect to the Sth objective, where 1s  and 0 1s   
(Shi, 1995). The optimal system design can be established as 
( optx , optb , optz ), where opt    , opt jx r x       , (j = 1, 
2, …, t ), opt jx r x      , ( j = t + 1, t + 2, …, n ), 

optb r b      , and opt kz r z      . The optimum-path ra- 
tio r  provides an effective and fast tool for optimal rede- 
sign of large-scale systems. Based on the above solutions, the 
second submodel for   (corresponding to z ) can be for- 
mulated as follows (assume that bi > 0): 

 

max     (12a) 
 
Subject to: 

 
1 1

,  
t n

kj j kj j k k k
j j t

c x c x z z z k       

  

        (12b) 

     
1 1 1

t t n

i i ij ij j i i
j j j t

p Sign p a Sign a x p Sign p
    

   

 
 

 
     

   
1

,  
n

ij ij j
j t

a Sign a x B B B i
      

 

 
    

 
   (12c) 

   
1 1

0
t n

ij ij j ij ij j i
j j t

a Sign a x a Sign a x b
     

  

      (12d) 

,  k kz z k      (12e) 

 
0,  jx j     (12f) 

 

0 1    (12g) 
 
where jx , j = 1, 2, …, t, are interval variables with positive 
coefficients in the objective function; jx , j = t + 1, t + 2, …, 
n, are interval variables with negative coefficients in the ob- 
jective function. Solution of jx , jx , ib and   can be ob- 
tained through solving submodel (12). Similarly, the metaop- 
timum submodel can be constructed as follows: 

 

max      (13a) 
 
Subject to: 
 

     
1 1 1

t t n

i i ij ij j i i
j j j t

p Sign p a Sign a x p Sign p
    

   

 
 

 
     

   
1

,  
n

ij ij j
j t

a Sign a x B B B i
          

 

 
    

 
   (13b) 

 

 
1 1

,  
t n

kj j kj j k k k
j j t

c x c x z z z k           

  

        (13c) 

 
0jx    (13d) 

 

j jx x   , j = 1, 2, …, t  (13e) 

 

j jx x   , j = t +1, t +2, …, n  (13f) 

 

0 1     (13g) 
 

Solving model (13) yields jx  , b  ,   and r  , where: 

 

   
1 1

t n

ij ij j ij ij j
j j t

a Sign a x a Sig xb n a
      

 

 



    (14a) 

 

s sB
r

B

 
 

     (14b) 

 
where sB is the budget level of producing jx   with respect 
to the Sth objective, with 1s  and 0 1s   (Shi, 1995). 
The optimal system design can be established as ( optx , optb , 

optz ), where opt    , opt jx r x      , (j = 1, 2, …, t), optx 
 

jr x    , (j = t + 1, t + 2, …, n), optb r b      , and optz   

kr z    . 

Therefore, optb , optz , ( 1, 2, ..., )optx j t   and optx
 (j = t + 

1, t + 2, …, n) can be obtained by solving the submodel 
defined by models (9) to (11), whereas optb , optz , optx  
( 1, 2, ..., )j t  and ( 1, 2, ..., )optx j t t n    can be obtained 
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from models (12) to (14). Figure 1 summarizes the scheme of 
the IFDNP model. Final solutions for model (8) are: 

 

,opt opt optx x x        (15) 

 

,opt opt opt          (16) 

 

,opt opt optz z z        (17) 

 

,opt opt optb b b        (18) 

 

Uncertain information and target 

Right hand side 

variability 

Discrete 

intervals 

Imprecise 

information

De Novo 

programming 

Interval-parameter 

programming 

Fuzzy 

programming

IDNP model 

IFDNP 

model 

Lower-bound 

submodel of IFDNP 

Upper-bound 

submodel of IFDNP

Solutions under different scenarios for IFDNP model 

Generation of decision 

alternatives 
 

Figure 1. Schematic of the IFDNP method. 
 

2.3. A Numerical Example 

To illustrate the developed IFDNP method, a numerical 
example is introduced. Consider a case where the decision 
makers want to maximize the economic benefit and environ- 
mental protection benefit of two districts in a big agricultural 
farm by allocating necessary electric and water resources. 
However, the total budget is limited within [40, 48] million 
dollars. Let 1x , 2x represent the farming area of two districts 
and 1b , 2b represent the total electric and water cost consumed 

by 1 2,x x , respectively with the price of 1/unit and 0.8/unit 
under the total resource-consuming budget. The detailed de- 
scription of this example is as follows: 

 

1 1 2max  [1.5,  2] [2,  3]z x x      (19a) 

2 1 2max  [2,  3] [0.6,  1]z x x      (19b) 

Subject to: 
 

1 2 1[2,  2.5] [1.5,  2]x x b      (19c) 

 

1 2 2[1.5,  2] [2,  2.5]x x b      (19d) 

 

1 20.8 [40,  48]b b     (19e) 

 

1 7.2x    (19f) 

 

2 9x    (19g) 

 
Table 1. Values of Symbols in Upper-Bound Model (9) 

zk
+  xj

+ (j = 1)  xj
+ (j = 2)  

z1
+ (k = 1) ckj

+ c11
+ 2 c12

+ 3 
z2

+ (k = 2) ckj
+ c21

+ 3 c22
+ 1 

bi
+ (i = 1) |aij|

- |a11|
- 2 |a12|

- 1.5 
 Sign(aij

-) Sign(a11
-) + Sign(a12

-) + 
bi

+ (i = 2) |aij|
- |a21|

- 1.5 |a22|
- 2 

 Sign(aij
-) Sign(a21

-) + Sign(a22
-) + 

 
Table 2. Values of Symbols in Lower-Bound Model (12) 

zk
-  xj

- (j = 1)  xj
- (j = 2)  

z1
- (k = 1) ckj

- c11
- 1.5 c12

- 2 
z2

- (k = 2) ckj
- c21

- 2 c22
- 0.6

bi
- (i = 1) |aij|

+ |a11|
+ 2.5 |a12|

+ 2 
 Sign(aij

+) Sign(a11
+) + Sign(a12

+) + 
bi

- (i = 2) |aij|
+ |a21|

+ 2 |a22|
+ 2.5

 Sign(aij
+) Sign(a21

+) + Sign(a22
+) + 

 
Assume that the objective functions of 1z

 and 2z are 
equally important. From model (9), the submodel correspond- 
ding to z can be first formulated. The corresponding values 
for symbols of model (9) are listed in Table 1. 

 

1max     (20a) 

 

2max     (20b) 

 
Subject to: 
 

1 2 12 3 14.63 (38.85 14.63)x x         (20c) 

 

1 2 23 13.85 (29.11 13.85)x x         (20d) 

1 2 1,20.8 48 (48 40)b b         (20e) 

1 2 12 1.5x x b      (20f) 

1 2 21.5 2x x b      (20g) 

1 7.2x    (20h) 
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2 9x    (20i) 

 

1,20 1    (20j) 

 
By solving submodel (20), we can obtain 1

 , 2
 = (0.85, 

0.89) and 1x , 2x = (4.15, 5.77). Then, based on model (12), the 
submodel corresponding to z can be formulated as follows: 

 

1max   (21a) 

 

2max   (21b) 

 
Subject to: 
 

1 2 11.5 2 14.63 (38.85 14.63)x x         (21c) 

 

1 2 22 0.6 13.85 (29.11 13.85)x x         (21d) 

 

1 2 1,20.8 48 (48 40)b b         (21e) 

 

1 2 12.5 2x x b      (21f) 

 

1 2 22 2.5x x b      (21g) 

 

1 1x x    (21h) 

 

2 2x x    (21i) 

 

1,20 1    (21j) 

 
The values of symbols are shown in Table 2. By solving 

submodel (21), we can obtain 1
 , 2

 = (0.29, 0.20) and 

1x , 2x = (2.37, 4.22). From the results of submodel (20), a 
metaopti mum submodel can be constructed as follows: 

 

max      (22a) 
 
Subject to: 
 

1 2 1 21 (2 1.5 ) 0.8 (1.5 2 ) 48.87 (48.87x x x x                

46.12)   (22b) 

 

1 22 3 11.99 (25.59 11.99)x x          (22c) 

 

1 23 7.27 (18.21 7.27)x x          (22d) 

 

0 1     (22e) 
 
Solving the metaoptimum submodel, we can obtain 

  = 0.98 and 1x  , 2x  = (5.20, 9.0). Because the optimal-path 

ratio /s sr B B  , with 1s  and 0 1s  , and we let 
ω1 = 1/2, ω2 = 1/2, respectively. The optimal-path ratio r  = 
(1/2 × 23.9 + 1/2 × 20.64)/48.87 = 45.6%, the resulting 

opt    , 1optx , 2optx  = (2.16, 4.10), 1optz , 2optz = (17.04, 
11.21) and 1optb , 2optb = (10.89, 11.76), respectively.  

Based on the results of submodel (21), a metaoptimum 
sub-model can be constructed as follows: 

 

max      (23a) 
 
Subject to: 
 

1 2 1 21 (2.5 2 ) 0.8 (2 2.5 ) 48.87 (48.87x x x x               

46.12)   (23b) 

 

1 21.5 2 11.99 (25.59 11.99)x x          (23c) 

 

1 22 0.6 7.27 (18.21 7.27)x x          (23d) 

 

1 1x x    (23e) 

 

2 2x x    (23f) 

 

0 1     (23g) 
 
Solving the metaoptimum submodel, we can obtain 

  = 0.64 and 1x  , 2x  = (3.07, 6.45). Similarly, the optimal- 
path ratio r  = 19.19/46.12 = 41.6%, and the resulting 

opt    , 1optx , 2optx = (1.40, 2.68), 1optz , 2optz = (7.28, 4.16) 
and 1optb , 2optb = (8.56, 9.26), respectively. Then the final so- 
lutions are: opt  = [0.64, 0.98], 1optx  = [1.40, 2.16], 2optx

 = [2.68, 4.10], 1optz = [7.28, 17.04], 2optz = [4.16, 11.21], 

1optb = [8.56, 10.89], 2optb = [9.26, 11.76]. The results show 
that the planned farming areas of two districts are [1.40, 2.16] 
and [2.68, 4.10] km2. Under the budget of [40, 48] million 
dollars, the allocated funds to electric and water consumption 
are [8.56, 10.89] and [9.26, 11.76] million dollars, respect- 
tively. The economic and environmental benefits are [7.28, 
17.04] and [4.16, 11.21] million dollars, respectively. 

3. Case Study 

For many decades, water resources planning problems, 
such as the efficient allocation of water and reasonable water 
treatment plant design, have challenged water resource mana- 
gers in generating optimal or compromise decisions (Maqsood 
et al., 2005). It is essential for the decision makers to gain a 
better understanding of system components and their interre- 
lationships within water resources systems so as to meet their 
objectives. In many practical cases, the complexity of the sys- 
tem and the limited knowledge are the main obstacles to 
obtainning appropriate decision alternatives in a conflicting 
objective environment (Huang et al., 2010). Most of the 
previous planning problems focused on optimal water alloca- 
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tion and did not consider the initial planning problems such as 
design of water resources systems including determining the 
maximum treatment ability of water plants, capability of re- 
servoirs (Zhang et al., 2009). The following water resources 
management problem will be used to demonstrate applica- 
bility of the developed IFDNP approach. 

Consider a case in which a manager is responsible for 
allocating water from a reservoir for two cities to three users: 
a municipality, an industrial unit, and an agricultural sector 
(Figure 2). The shrinking water availability has been exacer- 
bating such competitions, particularly under varying natural 
conditions and deteriorating quantity and quality of water 
resources. Therefore, all users want to know how much water 
they can expect. If insufficient water is available, they will try 
to obtain water from other sources or curtail their develop- 
ment plans. The system budget is [550, 700] × 106 dollars 
including expenses for water supply and water treatment. The 
unit benefit and price of each water user are listed in Table 3. 
The minimum total water needs and minimum proportions of 
total allocated water to three users in two cities are deliberated 
(Table 3). In urban water system design, it is necessary to 
guarantee that the water allocation must meet the least de- 
mand of each city and each user (Su et al., 2011). To gua- 
rantee quantity and quality of water, different treatment faci- 
lities for different users are investigated. Therefore, the pro- 
blems under consideration are how to effectively allocate 
water to the three users to achieve a maximum benefit under 
uncertainty while incorporating water policies with the least 
risk of system disruption. Based on the IFDNP, the study 
problem can be formulated as follows: 

 

max     (24a) 
 
Subject to: 

 

(1) Maximize benefits for each water user: 

 

 
1

,  
m

ij ij j j j
i

c x z z z j     



      (24b) 

 
(2) Treated water demand of city: 

 

1

0,  
n

ij ij i
j

a x b i  



     (24c) 

 
(3) Total water needs of end user: 

 

1

,  
m

ij j
i

x b j 



    (24d) 

 
(4) Budget limit for water system design: 

 
1 1

m n

i i j j
i j

p b p b B B B       

 

       (24e) 

(5) Minimum water allocation to city: 

 

1

,  
m

ij i
i

x l i 



    (24f) 

 
(6) Minimum proportion of total allocated water to end users 
in city i: 

 

1

,  ,
m

ij ij ij
i

x e x i j  



    (24g) 

 
(7) Minimum water allocation to end users in city i: 

 
,  ,ij ijx q i j     (24h) 

 
where ijc  is the unit benefit of water user j in city i, i = 1, 2; 
j = 1, 2, 3; jz is maximize benefit for each water user j; ija is 
water treatment efficiency for water usage j in city i; il

 is the 
least total water allocation to city i; ijq and ije  are the mini- 
mum water needs and minimum proportions of total allocated 
water to city for user j; ijx is decision variable of water allo- 
cation plan to user j in city i; ib is the design variable for 
total water allocation to city i which is corresponding to unit 
cost ip  within the total water usage budget; jb is the design 
variable of water treatment capacity for water user j, which 
correspond to unit cost jp  within the total water usage bu- 
dget. 

 

WS1
WS2 

Industry 

Agriculture Municipality 

WS3 
WS4 

Industry 
Agriculture 

Municipality 

Reservoir 

City1 

City2 

 
Figure 2. Schematic of water allocation to multiple users. 

 
In regional water resources planning problems, optimal 

supplies of high-quality water will be emphasized due to con- 
flicting revenue target of municipal-industrial-agricultural ba- 
lance under a given construction budget of water treatment 
facilities. It is desired that water treatment facilities for muni- 
cipality, industry and agriculture be effectively designed for 
supporting sustainable management of available water resour- 
ces. In order to balance the earnings of the competitive water 
users under the limited water budget, it is recognized that the 
different objectives of users should be considered in relation 
to each other. Moreover, in various real world cases, uncer- 
tainties are associated with a number of impact factors such as 
cost and water treatment efficiency (Huang et al., 2010). As a 
result, how to optimally design water resources systems under 
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uncertainty is one main challenge for decision makers. Deci- 
sion makers often pay more attention to the optimal system 
design at the initial planning stage instead of just selecting the 
optimal allocation alternatives from predeter mined data sets. 

 
Table 3. Inputs of Model (24) 

Benefit ($/m3) Industry Municipality Agriculture

City 1               [80, 90] [76, 80] [45, 50] 
City 2               [92, 100] [70, 75] [40, 43] 
Least water demand (106 m3) 
City 1               [13, 15] [13, 15] [13, 15] 
City 2               [15, 17] [15, 17] [15, 17] 
Least allocation proportion 
City 1               [0.30, 0.32] [0.25, 0.27] [0.35, 0.36]
City 2               [0.35, 0.37] [0.20, 0.23] [0.30, 0.32]
Water treatment efficiency 
City 1               [0.79, 0.81] [0.65, 0.70] [0.88, 0.90]
City 2               [0.85, 0.88] [0.70, 0.75] [0.93, 0.95]
Price/unit water ($/m3)  [1.5, 1.8] [2.0, 2.1] [1.0, 1.3] 
 City 1 City 2 
Least total water  
demand (106 m3)       

[55, 60] [65, 70] 

Price/unit water ($/m3)  [2.5, 2.7] [2.0, 2.3] 

4. Results and Discussion 

4.1 Result Analysis 

In this study, a number of scenarios associated with 

different optimum-path ratios are examined. According to 
different ω which values from 0.1 to 0.9, we can obtain 
different optimum-path ratios corresponding to different sce- 
narios. For example, the solutions from model (24) under sce- 
nario 5 (i.e. when ω1 = 0.5 and ω2 = 0.5 obtained optimum- 
path ratios r  = 0.21 and r  = 0.20; where ω1 is budget of 
two cities’ weight coefficient and ω2 is budget of three water 
users’ weight coefficient, respectively.) are shown in Table 5. 
For instance, for city 1, water flows allocated to industry, 
municipality and agriculture would be [43.22, 51.05] × 106 

 
Table 4. Solutions from the IFDNP Model under Scenario 1 

Water user Industry Municipality Agriculture 

Water allocation  
to city 1 (106 m3) 

[57.91, 
66.13] 

[37.67,  
40.25] 

[46.81, 
52.95] 

Water allocation  
to city 2 (106 m3) 

[52.12, 
57.50] 

[40.18,  
43.69] 

[54.43, 
59.39] 

Water treatment 
limit bj (106 m3) 

[92.78, 
101.11] 

[56.51,  
56.75] 

[93.84, 
101.83] 

Net benefits  
(106 $) 

[4560.12, 
5289.96] 

[2668.77, 
3058.59] 

[2061.89, 
2375.59] 

 City 1 City 2 

Water supply 
design bi (106 m3) 

[115.41, 125.0] [127.72, 134.69] 

λopt
± [0.73, 0.99] 

λmeta
±(*r·λopt

±) [0.20, 0.27] 

 

Table 5. Solutions from the IFDNP Model under Scenario 5 

Water user Industry Municipality Agriculture 

Water allocation  
to city 1 (106 m3) 

[43.22, 
51.05]       

[28.11,  
31.07] 

[34.94, 
40.88] 

Water allocation  
to city 2 (106 m3) 

[38.90, 
44.39]       

[30.00,  
33.73] 

[40.62, 
45.85] 

Water treatment 
limit bj (106 m3) 

[69.24, 
78.07]       

[41.72,  
44.28] 

[70.03, 
78.62] 

Net benefits (106 
$) 

[3403.07, 
4084.16]     

[1991.62, 
2361.41] 

[1538.73, 
1834.10] 

 City 1 City 2 

Water supply 
design bi (106 m3) 

[86.13, 96.51]        [95.31, 103.99] 

λopt
± [0.73, 0.99] 

λmeta
±(*r·λopt

±) [0.15, 0.21] 

 
Table 6. Solutions from the IFDNP Model under Scenario 9 

Water user Industry Municipality Agriculture 

Water allocation  
to city 1 (106 m3) 

[29.82, 
33.79]      

[19.04,  
20.57] 

[24.11, 
27.06] 

Water allocation  
to city 2 (106 m3) 

[26.84, 
29.38]      

[20.69,  
22.33] 

[28.03, 
30.35] 

Water treatment 
limit bj (106 m3) 

[47.77, 
51.67]      

[29.00,  
29.10] 

[48.32, 
52.04] 

Net benefits  
(106 $) 

[2348.12, 
2703.33]    

[1374.22, 
1563.03] 

[1061.72, 
1214.00] 

 City 1 City 2 

Water supply 
design bi (106 m3) 

[59.43, 63.88] [65.76, 68.83] 

λopt
± [0.73, 0.99] 

λmeta
±(*r·λopt

±) [0.10, 0.14] 

 

m3, [28.11, 31.07] × 106 m3 and [34.94, 40.88] × 106 m3, re- 
spectively; in comparison, water supply design budget vari- 
able would be [86.13, 96.51] × 106 m3. For city 2, water flows 
allocated to industry, municipality and agriculture would be 
[38.90, 44.39] × 106 m3, [30.00, 33.73] × 106 m3 and [40.62, 
45.85] × 106 m3, respectively; in comparison, water supply de- 
sign budget would be [95.31, 103.99] × 106

 m3. Waste-water 
treatment limit budgets would be [69.24, 78.07] × 106 m3 (for 
industry), $[41.72, 44.28] × 106 m3 (for municipal), and [70. 
03, 78.62] × 106 m3 (for agriculture), respectively. Net bene- 
fits generated from scenario 5 would be $[3403.07, 4084.16] 
× 106 (for industry), $[1991.62, 2361.41] × 106 (for municipal) 
and $[1538.73, 1834.10] × 106 (for agriculture), respectively. 
The results indicate that water supply for city 1 is mainly used 
to guarantee water demand from industry, then supply to agri- 
culture and municipality; water allocated to city 2 is mainly 
for agriculture, then to industry and municipality. Industry 
users in city 1 bring the highest benefit when water demand is 
satisfied; whereas municipal and industry users in city 2 co- 
rrebspond to lower benefits. The decision maker would pay 
attention to the basic demand of the water users in each city 
when the budget is low; when the budget is abundant, the 
decision maker can obtain more earnings from each water 
user. Besides, the water supply to city 2 ([95.31, 103.99] × 
106 m3) is higher than that to city 1 ([86.13, 96.51] × 106 m3). 



D. Y. Miao et al. / Journal of Environmental Informatics 24(1) 11-23 (2014) 

 

20 

This is because city 2 possesses the higher earnings, higher 
wastewater treatment efficiency, and lower water supply cost. 
The amount of wastewater treated for industrial use would be 
[69.24, 78.07] × 106 m3; for municipal use would be [41.72, 
44.28] × 106 m3; for agriculture use would be [70.03, 78.62] × 
106 m3. The results obtained can help decision maker design 
proper wastewater treatment facilities in water purifying indu- 
stry, municipality and agriculture. Similarly, the solutions of 
model (24) under scenario 1 (i.e. when ω1 = 0.1 and ω2 = 0.9 
obtained optimum-path ratios r  = 0.272 and r  = 0.268) and 
scenario 9 (i.e. when ω1 = 0.9 and ω2 = 0.1 obtained opti- 
mum-path ratios r  = 0.139 and r  = 0.138) could be inter- 
preted based on the results presented as in Tables 4 and 6. The 
results indicate that different scenarios would lead to varied 
system benefits and budgets and, at the same time, higher be- 
nefits would lead to higher budgets for wastewater treatment 
and supply.  

 

 
Figure 3. Maximum benefits at lower- and upper-bound under 
different scenarios. 
 

The results indicate that different design budgets lead to 
varied water supply schemes as presented in Tables 4 to 6. For 
example, for city 1, water supplies would be [115.41, 125.0] × 
106 m3 under scenario 1 and [59.43, 63.88] × 106 m3 under 
scenario 9; for city 2, water supplies would be [127.72, 
134.69] × 106 m3 under scenario 1 and [65.76, 68.83] × 106 m3 
under scenario 9. For industrial use, the amounts of waste- 
water treated would be [92.78, 101.11] × 106 m3 under sce- 
nario 1 and [47.77, 51.67] × 106 m3 under scenario 9; for 
municipal use, the amounts of wastewater would be [56.51, 
56.75] × 106 m3 under scenario 1 and [29.00, 29.10] × 106 m3 
under scenario 9, respectively; for agriculture use, the amoun- 
ts of wastewater would be [93.84, 101.83] × 106 m3 under 
scenario 1 and [48.32, 52.04] × 106 m3 under scenario 9, re- 
spectively. It is indicated that different optimum-path ratios 
(i.e. different ω) would lead to different budgets; at the same 
time, different budgets would lead to different water supply 
quantities and treating wastewater amounts. For example, if 
scenario 1 is adopted, it means that budget corresponding to 
water supply and treating wastewater amount would be largest 
under an advantageous circumstance; but, it also has a highest 
risk of system-failure penalty when water shortage occurring. 
If scenario 9 is adopted, it means that budget corresponding to 
water supply and treating wastewater amount would be lowest 

under a disadvantageous circumstance; it may lead to a waste 
of resources. Generally, a higher budget would lead to higher 
water supply and treating wastewater amount, at the same 
time, a higher risk of system design failure when the water 
flow is low; in comparison, a lower budget would result in 
lower water supply and treating wastewater amount with a 
lower risk of penalty. 

Figure 3 provides the net system benefits from industry, 
municipality and agriculture under different scenarios. Dif- 
ferent optimum-path ratios correspond to different scenarios, 
and thus would lead to varied net system benefits. For exam- 
ple, system benefits for the industry would be $[4,560.12, 
5289.96] × 106 and $[2,348.12, 2703.33] × 106 under scena- 
rios 1 and 9, respectively; system benefits for the munici- 
pality would be $[2,668.77, 3,058.59] × 106 and $[1,374.22, 
1,563.03] × 106 under scenarios 1 and 9, respectively; system 
benefits for the agriculture would be $[2,061.89, 2,375.59] × 
106 and $[1,061.72, 1,214.00] × 106 under scenarios 1 and 9, 
respectively. The solutions under the other scenarios could be 
similarly interpreted based on the results presented in Figure 3. 
The results indicate that higher water allocation and waste- 
water treatment capacity correspond to higher system benefit, 
and lower water allocation and wastewater treatment capacity 

correspond to lower system benefit. Moreover, the benefit from 
the industry is higher than those from municipal and agricul- 
tural sectors. For instance, under the best-case scenario (i.e. 
scenario 1), the wastewater treatment capacity would be 92.78 
× 106 to 101.11 × 106 m3 for industry, 56.51 × 106 to 56.75 × 
106 m3 for municipality and 93.84 × 106 to 101.83 × 106 m3 
for agriculture (as shown in Table 4); it means that higher 
water allocation and higher water treatment efficiency and 
lower water supply cost could achieve higher benefits, but at 
the same time, a higher risk of penalty would generate when 
the promised water is not delivered under demanding condi- 
tions. Under the worst-case scenario (i.e. scenario 9), the was- 
tewater treatment capacity would be 47.77 × 106 m3 to 51.67 
× 106 m3 for industry, 29.00 × 106 m3 to 29.10 × 106 m3 for 
municipality and 48.32 × 106 m3 to 52.04 × 106 m3 for 
agriculture (as shown in Table 6). The results indicate that 
lower water allocation and lower wastewater treatment effi- 
ciency and high water supply cost could bring about lower 
system benefit, less shortage, and lower penalty but, at the 
same time, more extra cost for wastewater treatment would be 
needed when future water flow level is high.  

Through solving model (24), different meta levels can be 
obtained. Here, meta  can be defined as meta-satisfaction de- 
gree corresponding to  , and meta optr     . The solutions of 
meta-satisfaction degree are presented in Figure 4. For exam- 
ple, the solution of meta would be [0.20, 0.27] under scenario 
1, which is the highest meta-satisfaction degree. This is be- 
cause the raised strictness and the admissible violation of the 
uncertain flows under advantageous conditions. It is indicated 
that a plan with higher allocated flows is generated, resulting 
a higher system benefit and but, at the same time, a potentially 
higher penalty when the promised water is not delivered under 
demanding conditions (e.g., when the water flow level is low 
or low-medium). In comparison, under scenario 9, the result  
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Figure 4. Meta-satisfaction degree under different scenarios 
(Symbol “S” denotes “scenario”). 
 

Figure 5. Maximum benefits from IFDNP and IDNP models. 
 
of meta would be [0.10, 0.14]; the meta-satisfaction degree 

would be lower than those under the other scenarios. This is 
because the admissible violations of the uncertain flows under 
demanding conditions. It is indicated that there would be 
lower benefit and thus lower system penalty but, at the same 
time, potentially more waste of resources when the water flow 
level is medium-high or high. Under scenario 5, the result of 

meta would be [0.15, 0.21]; the solution would correspond to a 
situation when water availability stands between conservative 
and optimistic scenarios. The relaxations of system constrain- 
ts would imply raised constraint-violation risks. Tightened 
resources availability limitations would then be associated 
with lower constraint-violation risks. Decisions with lower 
constraint-violation risks would be associated with a lower 
system benefit but increasing system reliability; a desire for 
higher benefit could result in raised risks of violating the sys- 
tem constraints. Therefore, different scenarios corresponding 
to different water supplies are associated with different op- 
tions in handling the tradeoffs among system benefit, meta- 
satisfaction degree, and constraint-violation risk. 

 

4.2. Comparison with IDNP  

The problem can also be solved through the inexact De 
Novo programming (IDNP) method by expressing uncertain- 
ties in the model’s left and right hand sides as intervals 
(Zhang et al., 2009). Compared with IDNP (Zhang et al., 2009), 
IFDNP provides more information regarding tradeoffs among 
system benefits, certainty and reliability. Prior to further dis- 
cussion, the uncertainty degree (UD) of an interval number 

( x ) can be defined as follows (Huang and Moore, 1993): 

 

( ) 100%
( ) / 2

x x
UD x

x x

 


 


 


  (25) 

 
where x is the upper bound of x ; x is the lower bound of x . 
This definition of an interval number can be understood as the 
ratio of its width to its difference. It demonstrates that when 
system is highly uncertain, UD becomes close to 100%; when 
system turns out to be more deterministic, UD goes toward 
0%. Therefore, the concept of UD is useful for quantitatively 
evaluating the levels of uncertainties or the input/output data 
qualities for mathematical models (Qin et al., 2007). 

Figure 5 presents a comparison of the system benefits ob- 
tained through IDNP and IFDNP models (take scenario 5 for 
example). The solutions of the system benefits from INDP 
model are intervals (i.e. $[4,121.4, 7,682.1] million for indu- 
stry, $[2,558.2, 4,441.7] million for municipality, $[1,927.2, 
3,449.8] million for agriculture), with corresponding UD of 
60.34, 53.82 and 56.64%, respectively. In comparison, the 
results from the IFDNP model would be $[3403. 07, 4048.16] 
million for industry, $[1,991.62, 2,361.41] million for muni- 
cipality, $[1,538.73, 1,834.10] million for agriculture, with a 

much lower UD (18.20, 17 and 17.52%) than that from IDNP 
model. Because of the system benefits under other scenarios 
have similar tendency to Figure 5, the solutions under the 
other scenarios could be similarly interpreted. The UD of 
other scenarios through IFDNP are 14.82 (industry), 13.62 
(municipality), and 14.14% (agriculture) under scenario 1, 
and 14.06 (industry), 12.86 (municipality), and 13.38% (agri- 
culture) under scenario 9, respectively. The resulting intervals 
from the IDNP model are much larger than those from the 
IFDNP model, and have larger width than those of the IFDNP 
model. It implies that solutions from the IDNP model are 
much more uncertain than those from IFDNP model. 

Generally, the above results demonstrate that incorpora- 
ting fuzzy items into IDNP can effectively reduce the uncer- 
tain degree of solutions. The main limitation of the IDNP is 
its over-simplification of fuzzy information into intervals. It is 
difficult to select the final or ‘‘best” decision alternatives from 
a number of solution options, especially for the problems of 
designing a new optimal system where the budget is unknown. 
This leads to the lack of system reliability information as 
defined by opt in the obtained solutions. The IFDNP approach 
has advantages over IDNP approach. The increased system 
certainty (i.e. the shrunk interval width) is based on a redu- 
ced certainty on the possibility of satisfying the constraints 
and aspiration. The IFDNP approach provides more informa- 
tion regarding trade offs among system benefits, certainty and 
reliability. As the actual value of each variable or parameter 
varies within its two bounds, the system benefit may change 
correspondingly between optz

 
and optz

 
with a variety of re- 

liability levels. 

The quality of information available for system modeling 
is often not good enough to be presented as either determine-  
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stic numbers or probability distributions. Instead, some uncer- 
tainties can only be quantified as intervals or vague values. 
The IFDNP can handle uncertainties described as fuzzy sets 
and discrete intervals and offer flexibility in result interpreta- 
tion and decision-alternative generation. Outputs of the IFDNP 
model can reflect fluctuations in system benefit (or budget) 
due to implementing different water-management policies; 
moreover, the IFDNP solutions contain information of system 
failure risk under varying water-management conditions. Thus, 
in practical implementations, fuzzy programming approaches 
are more applicable when the right-hand sides of the model 
constraints have large intervals. 

5. Conclusions 

An interval-fuzzy De Novo programming (IFDNP) me- 
thod has been developed for planning water resources systems 
under uncertainty. The IFDNP improves upon the existing De 
Novo programming methods by allowing uncertainties pre- 
sented as discrete intervals and fuzzy sets to be effectively 
incorporated within its optimization framework. In its solution 
process, the IFDNP can be transformed into two deterministic 
submodels that correspond to the lower and upper bounds of 
the objective function value. This transformation process is 
based on an interactive algorithm. For each submodel, the de- 
sign variables in the IFDNP model are constrained by the total 
budget. By function transformation, the maximum value of 
each objective function can be obtained, corresponding to the 
performance of the ideal design under a given B. A meta- 
optimum model can be constructed and solved to get optimal 
design solutions for all scenarios. 

The developed IFDNP approach is useful for designing 
an optimal system rather than optimizing a given system. It 
can effectively deal with the system design problems involving 
multiple objectives and multiple uncertainties. In the con- 
ventional multiobjective programming problems, trade-offs 
exist among multiple objectives, particularly for conflicting 
ones. Scenarios are often analyzed and a set of decision results 
are generated for reflecting the tradeoffs. In the water re- 
sources allocation problem, decision makers are confronted 
with control and adjustment of water disposal facility design 
and operation characterristics. IFDNP is such an integrated 
approach for planning, provision, and management of urban 
water resources systems. It can eliminate the tradeoffs through 
designing a better and preferably optimal system. Based on 
the IFDNP, the minimum water allocation to each city can be 
determined, which means a tight system in terms of resources 
identification; at the same time, a higher objective function 
value can be obtained. Moreover, the IFDNP can generate 
results under all possible scenarios preferred by the decision 
makers, including design decision variables and management 
decision variables, and the obtained results can provide effect- 
tive decision support for the decision makers to design an 
optimal system. Within multiobjective decision making fra- 
mework, IFDNP may allow the decision makers to achieve a 
metaoptimal system performance and improve the perfor- 
mance of compromise solutions.  

Generally, the IFDNP has advantages in constructing 
optimal system design via an ideal system by introducing the 
flexibility toward the available resources in the system con- 
straints. However, there are some improvements for the IFDNP. 
In IFDNP, decision makers need to analyze many scenarios 
and determine the aspiration and/or preference levels, tole- 
rances of the objective functions and/or the constraints, and 
weight for multiple objectives. These are based on the deci- 
sion makers’ subjectivity or for the simplicity. Although this 
study is the first attempt for planning water resources systems 
through the developed IFDNP approach, the obtained results 
suggest that it can be extended to other practical problems 
involving optimal environmental systems design under uncer- 
tainty. 
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