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ABSTRACT. Water pollution is a major global issue that has profound impact on sustainable development of our society. In this paper, 
land cover change trajectories of the study area over the last three decades are developed using Landsat data. Then historic land-cover 
and land-use change (LCLUC) patterns are used to estimate, calibrate and validate key drivers of land use change. Future likelihood of 
land-cover/land-use for 2021 and 2031 are simulated using state-of-art image processing techniques based on the driving factors of 
land use change integrated with Land Change Modeler. Hypothetical scenarios of LCLUC including a) low density of new 
urbanization growth and open land with vegetation cover, b) normal urbanization and, c) highly development of commercial/urban 
land use and impervious surfaces, are constructed during the simulations. The Soil and Water Assessment Tool (SWAT) is employed to 
generate total suspended sediment with the various combinations of three hypothetical scenarios mentioned above and climate change 
scenarios projected for 2021 and 2031. The future climate patterns for the periods of 2011-2021 and 2021-2031 are generated from the 
intergovernmental Panel on Climate Change (IPCC) Spatial Report for scenarios A1B, B1, and A2. A total of 19 SWAT models are 
generated, one for 2011, nine for 2021 and 2031 respectively. The results are then used to compare and identify the impacts of 
combined land use and climate change on surface water quality, to answer and confirm the hypothesis that urban sprawl developing 
patterns in the greater St. Louis region have significant impacts on surface water quality in specific way. 
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1. Introduction 

Based on the sources of pollutants, water pollution is cate- 
gorized as point-source and nonpoint source pollution. Unlike 
point-source pollution, caused by industrial and sewage trea- 
tment plants, nonpoint source pollution is caused by rainfall 
or snowmelt moving overland and through the ground which 
deposits natural and manmade pollutants on the surface and 
into the ground water (Callan and Thomas, 2012). Urban 
development influences the timing and magnitude of runoff as 
the impervious surface area increases (Randhir and Hawes, 
2009). Consequently, the urban development increases the 
nonpoint source pollutants loading into the surface water 
(Dissmeyer, 2000; Phillips and Lewis, 1995). Suspended 
sediment is one of the major pollutants associated with urban 
runoff (Deletic, 1998; Sonzogni et al., 1980). Pimentel (2000) 
reported that more than 60 percent of water-eroded soils in the 
United States load into surface waters. Studies of the move- 
ment of chemical contaminations in soils with the con- 
version of permeable areas to impermeable urban land cover 
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show that urban expansion is associated with high loading of 
nonpoint source contaminants in nearby surface waters (Call- 
ender and Rice, 2000; Dierberg, 1991; Frumkin, 2002; Van 
Metre et al., 2000). Numerous studies have shown that water 

quality is negatively affected by surface runoff increase and 
nonpoint source pollution loading caused by urban devel- 
oping or by land-cover and land-use changes (LCLUC) (Dre- 
her and Price, 1992; Goonetilleke et al., 2005; Ierodiaconou et 
al., 2004; Weng, 2001; Wilson and Weng, 2011; Young et al., 
1996).  

Urban development raises a number of pressures on wa- 
terways because the development affects runoff and hence the 
water balance in catchments (Leopold, 1968; Stephenson, 1994). 
As the vegetation cover and open areas are reduced and imper- 
vious surfaces are increased, rainfall less likely to infiltrate 
through soils and returned to ground-water aquifers, and 
instead more commonly flows as stormwater runoff to 
streams and rivers (Noble, 1999). The impervious surfaces 
created by large expanses of pavement and concrete increase 
the volume and rate of runoff during the storm time. The 

reconfiguration of the landscape during the urban develop- 
ment, such as clearing and moving of soil increases erosion 
and leads to sedimentation and excess turbidity of waterways. 
As a result, wash outs of “cultural pollutants” (e.g., aband- 
oned properties) and impervious surfaces in the urbanized en- 
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vironment may have increased sedimentation and pollutant 
concentration in surface water. The longstanding phenomenon 

of rapid expansion of suburban areas at the cost of shrinking 
metropolitan regions with a complex pattern of LCLUC, trans- 
portation, social and economic developments has been de- 
fined as “urban sprawl” (Frumkin, 2002). Urban sprawl is one 
of the major forces driving LCLUC in the United States (Hasse 
and Lathrop, 2003). There is evidence that urban sprawl contri- 
butes to water pollution in certain specific ways (Frumkin, 
2002), but further evidence is needed to identify the precise 
features of LCLUC that best predict nonpoint source pollution 
in the urban sprawling metropolitan regions.  

Undoubtedly, the impacts of suburbanization and depo- 
pulation in the urban core on water quality have been further 
exacerbated by increased frequency and intensity of rainfall 
projected over the Midwest (IPCC, 2007; Pan et al., 2004). 
There have been a large number of publications in the literature 
concerned about the impacts of climate change on the water 
resources (Burn, 1994; Caballero et al., 2007; Frederick and 
Schwarz, 1999; Fu et al., 2007; Jyrkama and Sykes, 2007; 
Mortsch and Quinn, 1996; Nunes et al., 2009; Scibek and Allen, 
2006; Thomas et al., 2007; Xiong et al., 2009). Multiple stu- 
dies have investigated the impacts of future climate scenarios 
generated from Global Climate Model (GCM) on the water re- 
sources by using the Soil and Water Assessment Tool (SWAT). 
For example, Stone et al. (2003) found that the water yields 
were dramatically increased for the doubled CO2 scenarios 
compared to the historical climate; Arnell (2005) found that 
different climate scenarios could cause big fluctuations in run- 
off; Jha et al. (2004a) suggested that the future climate would 
cause a large increase in streamflow; Abbaspour et al. (2009) 
projected more frequent and larger-intensity floods in wet re- 
gions and more prolonged droughts for dry regions. However, 
water quality issues in metropolitan urban areas are complex, 
which requires numerous case studies based on thorough un- 
derstanding of historic and future incentives of urban planning, 
population dynamics and patterns of hydrologic systems. It is 
pivotal to integrate the climate change with LCLUC to assess 
its interactive effects on water quality in urban or metropoli- 
tan region (Clifford, 2009). Efforts on simulating the water qu- 
ality outcomes of combined climate change and LCLUC stu- 
dies may be exemplified by a number of reports (e.g., Chang, 
2003, 2004; Chen et al., 2005; Choi, 2008; Davis Todd et al., 
2007; Ducharne et al., 2007; Franczyk and Chang, 2009; Mi- 
mikou et al., 2000; Samaniego and Bardossy, 2006; Wilby et 
al., 2006; Wang et al., 2005). There are very few studies focu- 
sed on the coupled impacts of simulated future LCLUC and 
climate change scenarios on the runoff and water quality. 
Franczyk and Chang (2009) examined the relative importance 
of future climate and LCLUC in controlling the quantity and 
quality of water resources in the sub-basin scale while Wilson 
and Weng (2011) simulated the impacts of future LCLUC and 
climate changes on surface water in both watershed and sub- 
basin scales. While these studies all indicated that climate cha- 
nge and future LCLUC has a significant influence on basin 
hydrologic response, the authors acknowledged that their find- 
ings were preliminary, and therefore, more knowledge is nee- 

ded in different natural and urbanized human environments to 
reach a more generalized conclusion. The issue of the compli- 
cated scenarios of future LCLUC and climate change is at the 
crux of a central problem in predicting its possible impacts on 
water quality, which is the inability to generalize across studi- 
es over different geographic regions. Different case studies 
and applications are essential to test similar methods so as to 
generalize preliminary results in both space and time with 
comparative examples (Ingram et al., 2005; Woodcock et al., 
2001).  

The growing number of water pollution problems plus bu- 
dgetary constraints particularly at today’s harsh economic times 
requires scientific understanding of the causes and patterns of 
water quality deterioration to ensure innovative solutions and 
developing effective water management practices. The overar- 
ching goal of this research is to determine the impacts of future 
urban developing or LCLUC patterns on total suspended sedi- 
ment (TSS) loading into surface waters under different climate 
change scenarios, and to identify the sustainable development 
strategies targeted at reducing the suspended sediment conta- 
minant to the surface waters. Specifically, this study is aimed 
to compare the effects of future land use changes combined 
with different climate projection scenarios to the TSS loading 
rate to stream flows. This study presents a unique approach, 
unlike other previous studies (e.g. Wang et al., 2005) by app- 
lying a conceptual distributed hydrological model SWAT with 
series of climate change scenarios and future land change 
simulations based on remote sensing data integrated with so- 
cioeconomic variables including crime, distance to work, and 
strategic plan for economic development. 

2. Study Area 

The study area is located at the confluence of three mighty 
rivers: the Illinois, Missouri, and Mississippi Rivers (Figure 
1). Water quality has become an issue of increasing concern in 
the region due to the impact of LCLUC, particularly from the 
increased pressure of suburbanization accompanied by contin- 
uous depopulation of the inner urban center, leaving behind 
crumbling infrastructures. The Mississippi River flows from 
the north and first meets the Illinois River, and then joins the 
Missouri River. The St. Louis metropolitan region located on 
the Mississippi River just below the point where it meets the 
Missouri River, is at the heart of the study area. This intersec- 
tion of the major American waterways established the repute- 
tion of “Gateway to the West” for St. Louis. From the early 
18th

 century, people have started being attracted by this conflu- 
ence and its abundant resources, and settling down on this fer- 
tile land to create their lives and community, or launched their 
new journeys from here, such as Lewis and Clark (Committee 
on Missouri River Ecosystem Science and National Research 
Council, 2002). Like most other older metropolitan areas, St. 
Louis is experiencing an urban sprawl type of development 
pattern, it’s suburbs are spreading out over more and more ru- 
ral land at the periphery of urban area (Frumkin, 2002; Hasse 
and Lathrop, 2003) while the population in the urban core is 
shrinking. People moved from the cities and migrated into the 
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surrounding suburbs to build up their homes on a larger land 
lot, to pursue safe, quiet, and private life style.  

The City of St. Louis is the third largest metropolitan city 
on the Mississippi River floodplain. As a typical post-industrial 
city that once served as an industrial powerhouse in the Mid- 
west but in recent years has entered a period of steep decline 
with greater concentration of poverty, the city population has 
shrunk from its peak in 1950 of 856,796, to 319,294 as recor- 
ded in the 2010 census, having lost 8.3% of its population since 
2000. The city population has been steadily moving further 
out of the city limits as a result of crumbling infrastructure, 
increased crime, failing urban schools (Immergluck, 2010), 
and a self-perpetuating cycle of disinvestment. Recent studies 
show that while greater urban areas have increased by 43% 
over the last two decades in the Greater St. Louis region, both 
the population within the city limits and overall vegetation co- 
ver has declined (Jordan et al., 2012). 

The climate of the study area is continental type with dis- 
tinct alteration of seasons characterized by wide ranges in tem- 
perature, and irregular annual and seasonal precipitation. In the 
summer time, the moist and warm air masses blown from the 
Gulf of Mexico bring abundant rainfall for this region. Accor- 
ding to the climatology and weather records from the National 
Weather Service Weather Forecast Office, from 1874 to pre- 
sent, the highest and lowest annual rainfall in this area was re- 
corded as 1472.2 mm (year 2008) and 522.2 mm (year 1953), 
respectively. Usually the rainy season is distributed from May 
to August. The elevation of surface topography ranges from 
68 m at Chester to 530 m at the hilly area of the south-west St. 
Louis County. The land of Missouri and Illinois in this region 
is lying on a karst geomorphologic setting that can trigger the 
intense relationship between surface and groundwater (Criss 
and Wilson, 2003). The main land use categories in the area 
are forest, followed by agriculture and pasture, then by urban. 
The major crops are soybeans, corn, and wheat, and the major 
forest is dominated by deciduous oak-hickory forest.  

3. Materials 

3.1. Land-cover and Land-use Data 

Historical land-cover and land-use (LCLU) images of 
1992 and 2001 were obtained from National Land Cover 
Database (NLCD, 2012) while the LCLU maps of 2011 were 
generated by remote sensing data. Three clear sky Landsat 
Thematic Mapper (TM) images cover the study area were 
collected in October, 2011. Radiometric calibrations and at- 
mospheric corrections were performed to derive surface re- 
flectance using QUick Atmospheric Correction (QUAC) (Be- 
rnstein et al., 2005) available with ENVI® image processing 
and analysis software from EXELIS Visual Information Solu- 
tions.  

 

3.2. Watershed Data 

10-m digital elevation data was obtained from United Sta- 
tes Geological Survey national elevation dataset (USGS, 2012a) 

for watershed delineation and slope calculation. Stream flow 
data were solicited from USGS archival station discharge data- 
base (USGS, 2012b) and U.S. Army Corps of Engineers (US- 
ACE) database. TSS data corresponding to the monitoring sta- 
tions shown in Figure 1 were acquired from USGS database 
(USGS, 2012b) and Illinois Environmental Protection Agency 
database (EPA). Water use data were obtained from Water Re- 
sources Center of Missouri Department of Natural Resources 
(MDNR, 2012).  

Our focus in the paper is to understand TSS loading rate 
under various future scenarios of land use and climate changes. 
To that end, future stream flows for the inlets were projected 
based on the historical data using autoregressive moving ave- 
rage time series models (Box and Jenkins, 1970; Tiao and Box, 
1981) given by: 

 

1 1

p q

t t i t i i t i
i i

X c X    
 

      (1) 

 
where Xt is the time series data, c is a constant, εt are white noi- 
se error terms, φi are the parameters of the autoregressive part 
of the model, and the θi are the parameters of the moving 
average part.  

 

3.3. Climate Data 

Climate data from 1900 to present were collected from 
National Environmental Satellite Data and Information Service 
(NESDIS) (NOAA, 2012), which include data collected over 
43 precipitation and 23 minimum and maximum temperature 
stations. Inverse Distance Weighted (IDW) method was applied 
to spatially interpolate missing precipitation and temperature 
data using SPELLmap (USDA, 2012). Future climate data 
were obtained from World Climate Research Program’s (WC- 
RP’S) Coupled Model Inter-comparison Project Phase 3 
(CMIP3) multi-model dataset (Liang et al., 2012; Maurer et 
al., 2007). 

4. Methods 

4.1. LCLUC Prediction 

Appropriate land use change datasets and analytical tools 
are needed to understand and monitor the patterns and proce- 
sses involved in the phenomenon of urbanization. Future 
LCLU cover scenarios were simulated using Land Change 
Modeler (LCM) (Wilson and Wang, 2011). LCM is a land ch- 
ange model that operates on change analysis and prediction, 
such as generating change maps, uncover underlying trends of 
complex change, and model transition potentials.  

 

4.1.1. Land-cover Classification 

An Iterative Self-Organizing Data Analysis Technique 
(ISODATA), unsupervised clustering classification method for 
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Landsat TM data, was used as the core land cover mapping 
approach (Jensen, 1996). The ISODATA clustering algorithm 
compares the radiometric value of each pixel with predefined 
number of cluster attractors, aggregates pixels in clusters and 
shifts the cluster mean values in a way that the majority of the 
former aggregated pixels belongs to a cluster (ERDAS, 1999; 
Manakos et al., 2000). We set the number of clusters to 100 
with 500 iterations. Using our expert knowledge, database of 
historic land cover dataset, aerial photographs and Google- 
Earth, we assigned class names to the clusters. Clusters repre- 
senting the same land-cover types were merged and genera- 
lized. The classification accuracy was estimated at 75% by 
using over 200 sample sites and systematic comparison with 
Google Earth, which is comparable to National Land Cover  

 

Dataset generated by USGS.  

Based on the level I categories of the modified Anderson 
Land Cover classification system (Anderson et al., 1976), the 
whole study area were categorized into ten classes: Open 
water (WATR), Low density urban (URLD), Medium density 
urban (URMD), High density urban (URHD), Barren land 
(SWRN), Forest (FRSD), Range land (RNGE), Pasture land 
(HAY), Agriculture land (AGRR) and Wetland (WETF).  

 

4.1.2. LCM Calibration and Validation 

LCM was applied to the whole study area to create future 
LCLU maps for 2021 and 2031. The land cover classification 

 
Figure 1. A map showing the location of the study area in St. Louis Metropolitan region, distribution of weather stations, 

and water gauging stations. 
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Figure 2. The flow chart of prediction in Land Change 
Modeler. 
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Figure 3. The logic of land cover change prediction in Land 
Change Modeler is using two land cover maps from time 1 
and time 2 to predict what the land cover will be in the future 
or in time 3. 

 

maps of 1992 and 2001 were used as observed data to calibra- 
te the model, and the classification map of 2011 was used to 
verify the simulated map for 2011 (Figure 2). The logic of 
land cover change prediction in Land Change Modeler is 
shown in Figure 3. 

The prediction function of LCM is generated using regre- 
ssion analysis and a Multi-Layer Perceptron (MLP) neural 
networks which is built on Markov-chain technique. Regre- 
ssion analysis is used to estimate the correlation between 
LCLUC and population change or other socio-economic var- 
iables in the model (Hepinstall et al., 2008; Lopez et al., 2001). 
Stochastic Markov-chain technique is applied for transition 
potential model (Figure 3) (Lopez et al., 2001; Wu et al., 
2006). Markov chain represents the dynamic transition proba- 
bilities of a single class or a group of classes which are suppo- 
sed to have the same underlying driver variables, described as 
symmetric matrices (Luenberger, 1979; Wilson and Weng, 
2011). For urbanized land cover change, the subsequent cover 
type is determined by the previous cover type and land use 
strategy but not the same status as previous, and this change is 
possible to develop into various different statuses during the 
developing period (Weng, 2001).  
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 (2) 

 
In the equation, P = [Pij] represents the probability of 

transitioning from the previous state i to the subsequent 
different state j or to multiple states (i1, i2, …, ij) as depicted 
by the matrix. 

The driver variables, constraints/incentives, applied in 
the model include the evidence likelihood of change in 
previous time, land value, crime level, the distance from the 
City of St. Louis, the distance to stream, and elevation. Evid- 
ence likelihood is an empirical probability of change between 
the land use images in the previous time and the later time 
(Wilson and Weng, 2011).  

A total of 41 transitions occurred within the study area 
during 2001 to 2011 while the areas of changes were smaller 
than 1 km2 was ignored because of the process limitation of 
LCM on transition number. Each of transitions was modeled 
separately in LCM to achieve their change potentials, and pre- 
diction image was created by MLP procedure based on the po- 
tentials. In the final process, three sets of land use maps, were 
generated for 2021 and 2031 based on three future land use 
scenarios: (1) low density urban incentive scenario (LI) en- 
couraged a low density of new urbanization growth and open 
land with vegetation cover; (2) historical trend incentive sce- 
nario (MI) encouraged the normal urbanization patterns res- 
pond to the LCLUC drivers in the historical trend of land co- 
ver changes; (3) high density urban incentive scenario (HI) was 
highly encouraged to the development of high density comer- 
cial/urban land use and impervious surfaces. During the mode- 
ling process, incentives were given to the encouraged classes, 
and all other land use classes were set as normal parameters. 
The incentives given to the future LCLUC scenario was equal 
to twice the 10-year trend of the historic change rate. For exa- 
mple, if the growth rate of low density urban area is 1% from 
2001 to 2011, the 2% incentive was given to the growing rate 
from 2011 to 2021.  

 

4.1.3. Indicators of Urban Sprawl to Land Resource 

Urban sprawling patterns impact on many social and 
environmental aspects that need to be quantified and related to 
the water quality. We use the Land Resource Impact (LRI) 
indicators developed by (Hasse and Lathrop, 2003) to quanti- 
fy the urban sprawling patterns. This series of five indicators 
can be used to examine and analyze significant specific land 
resource impacts to water resources problems attributable to 
sprawling urban growth. These indicators include: (1) low 
density of new urbanization; (2) loss of prime farmland; (3) 
loss of natural wetlands; (4) loss of forest; and (5) increase of 
impervious surface. 

 

4.2. Future Climate Scenarios 

The future climate data for the periods of 2011 ~ 2021 
and 2021 ~ 2031 were obtained from the intergovernmental 
Panel on Climate Change (IPCC, 2000) Spatial Report for 
scenarios A1B, B1, and A2. A1B is a state of possible rapid 
economic growth, because of the spread of new and efficient 
technologies, all energy sources are used in a balance. B1 is 
possible state that the rapid economic growth as in A1B, but 
more clean and resource efficient technologies will be 
introduced to the world. A2 is characterized by independently 
operating and self-reliant nations in the world with higher 
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CO2 emissions (IPCC, 2000). 

 

4.3. SWAT Model Description and Performance Evalua- 
tion  

The hydrologic response of the watershed under future 
land use and climate scenarios was simulated using SWAT. The 
intercombinations of three climate scenarios and three LCLUC 
scenarios in 2021 and 2031 generated 18 SWAT model simu- 
lations. Results showed that TSS has different responses to the 
conditions with different combinations of climate and LCLUC 
scenarios. 

 

4.3.1. Theoretical Description of SWAT 

SWAT model was applied to generate stream flow and 
TSS at 10-year interval. This model is a watershed-scale 
water quality model that operates on a daily time step and is 
capable of simulating the impacts on water, sediments and 
chemical yields of detailed land used and land management 
operations (Arnold et al., 1998). In SWAT, the basic calcula- 
tion unit is hydrologic response unit (HRU) that consist of 
homogeneous land use, management, and soil characteristics. 
The watershed is usually divided into multiple sub-basins, and 
further subdivided into HRUs (Jha et al., 2004b). Flow, 
sediment, and non-point source loadings from each HRU are 
summed, and the resulting loads are routed through channels 
to the watershed outlet (Arnold et al., 2010; Jha et al., 2004b; 
Jha, 2011). The components of running SWAT in this research 
include HRUs information (Singh and Xu, 2006), such as land 
cover, elevation, soil, precipitation, temperature, stream flow, 
sediment and nutrient delivery. From the output provided by 
SWAT, we can derive time series of stream flow and TSS. 

  

4.3.2. SWAT Calibration and Validation 

Model calibration and validation were carried out in 
SWAT by adjusting the stream flow and TSS parameters. The 
model was calibrated from 2000 to 2005 and validated from 
2006 to 2011 using monthly river discharges and sediment 
loading rate at four gauging stations (see Figure 1): St. Charles, 
Below Grafton, St. Louis, and Chester. It is worth noting that 
land cover data of 2001 was used as input for 2000 land use 
assuming that land use changes within a couple of years are 
negligible over a landscape. Land cover change rate between 
2000 and 2011 was generated using the difference between 
2001 and 2011 land cover maps. First, an automatic sensitive- 
ty analysis was performed to identify the sensitivity calibrati- 
on parameters. Then the sequential Uncertainty Fitting pro- 
gram (SUFI-2) (Abbaspour et al., 2004, 2007) was used to 
automatically calibrate and find out the most optimum value 
of the sensitivity parameters. Model calibration was perform- 
ed using monthly time steps from 2000 ~ 2005. The model 
was then validated from 2006 to 2011. Model performance 
was evaluated using Nash-Sutcliffe efficiency coefficient 
(Nash and Sutcliffe, 1970). 

Different combinations of three LCLUC patterns and 

three future climate scenarios generate 18 new future scena- 
rios, nine for 2021 and 2031, respectively (Table 1). The new 
scenarios were named after the projected emission scenarios 
and the corresponding future land use simulations. For 
example, A1BLI scenario uses combination of A1B emission 
scenario with LI land use change scenario.  

In order to identify the emission scenario inducing the hi- 
ghest TSS loading rate, we divided the 18 models into three 
land use scenario groups, such as: LI group, MI group, and HI 
group. The effects of each future climate scenario were com- 
pared by taking the difference between each two scenarios 
using the same land cover projection (see Table 1) in the 2021 
and 2031, respectively. After that, the subbasin level TSS loa- 
ding rates of each two models were inter-compared by sub- 
tracting one from the other. For example, TSS of A1BLI sub- 
tracted by A2LI provides which emission scenario introduced 
the highest TSS loading. Similar method was applied for iden- 
tifying the LCLUC scenario relating to the highest TSS loading, 
but the 18 models were divided into three climate emission 
scenario groups, and the TSS loading between each two LCL- 
UC scenarios for each group were inter-compared. For exam- 
ple, in order to quantify the degree of difference in TSS betw- 
een A1B and A2 under the LI land cover group, the TSS simu- 
lated using A2 rainfall pattern was subtracted from the TSS 
simulated using A1B pattern. The results were then summari- 
zed in a map called A1BLI-A2LI (Fig. 4a). Similarly, in order 
to quantify the degree of difference in TSS due to land cover 
changes, the difference between two land cover scenarios un- 
der the same climate projection was computed.  

5. Results and Discussions 

5.1. Land-use Change Analysis from 2011 and 2031 

The LCM models indicated that the study area will expe- 
rience dynamic changes from 2011 to 2031. The predicted ch- 
ange trajectory between 2011 and 2031 is amplified trend of 
2011 to 2021 except slightly different gains and losses rate 
among LCLU categories in different scenarios (Table 2). These 
differences exist because of the application of constrain and 
incentive policy applied in LCM model. 

The quantification of LCLU changes for the analyzed ca- 
tegories from 2001 to 2021 and from 2021 to 2031 is in Table 
2. Forest, the most extensive land cover type occupies the ma- 
jority of the study area shows significant loss throughout the 
study period. The lost in forest area is mainly devoted to LI 
urban, agricultural land and range land with grasses. Agricul- 
tural land is the second decreasing category after forest. LI ur- 
ban is also the dominant contributor to agriculture land lost. 
The LI urban experienced the greatest growth from 2021 to 
2031. One of the major reasons for this may be sprawl urban 
development due to population growth and the migration of 
city population over suburban areas. Besides the LI urban ca- 
tegory, MI and HI urban area also show increasing trend from 
2021 to 2031. Agricultural land and LI urban are the main con- 
tributors to MI urban and HI urban areas gain (Table 3). 
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5.2. Analysis of Urban Sprawl to Land Resources 

From Tables 1, 2 and 3, we can see that the newly deve- 
loped urban areas are dominated by the low density urban cate- 
gory and the gaining areas mainly come from agricultural land. 
Forest is the second contributor to low density urban. The im- 
pervious surface areas in the study region are increasing co- 
rresponding to the development of medium density and high 
density urban categories. Forest in the study area is decreasing 
dramatically surrounding the urban areas. The total area of 
agricultural land is decreased even if it gained area from the 
forest lost. 

According to the LRI indicators we mentioned above, the 
trajectories of LCLUC in the study area fulfill four conditions 
of the indicators even the wetland increased slightly every 
decade. This phenomenon implies that the St. Louis metropo- 
litan area is undergoing urban sprawling patterns.  

 

5.3. SWAT Model Calibration and Validation 

After the sensitivity analysis, 13 parameters are ascertained 
to be the most sensitive for flow calibration, 6 parameters are 
sensitive for TSS calibration. These parameters and their best- 
fitted values from SUFI-2 are shown in Table 4. The best-fitted 
parameters are used to edit SWAT initial input, running the 
simulation from 2006 to 2011.  

The details of model calibration and validation of flow 
and TSS are described in Table 5. At the end of monthly simu- 
lations, the Nash-Sutcliffe coefficients of flow in four stations 
were approximately equal to 0.99 while the average Nash-Sut- 
cliffe coefficient of TSS simulation was 0.73.  

 

5.4. Watershed Response of TSS to Climate Scenarios 

In order to identify the impacts of three future climate 

scenarios on the TSS loading rate, we divide the results of 18 
model simulations into three groups basing on the future land 
use scenarios, and then compute the difference of mean annual 
daily TSS loading at the subbasin level in three groups res- 
pectively (see Figure 4). Since the ranges of the differences be- 
tween the three emission scenarios do not vary much accor- 
ding to the different land cover scenarios, only the LI scenario 
is presented in the following results. The results show that A2 
characterized by high CO2 emission with slow technological 
change yields higher TSS loading than scenarios A1B and B1 
in most of subbasins under all land use scenarios in 2021 and 
2031. The differences between A2 and A1B (Figures 4a and 
4b) and between A2 and B1 (Figures 4c and 4d) present the 
same sub-basin distribution under the three land use scenarios 
of the same year, but the distribution patterns are slightly 
different between 2021 and 2031. The mean annual daily TSS 
of A1B scenarios minus scenarios B1 in 2021 and 2031 in the 
group LI land use scenarios are shown in Figures 4e and 4f. 

From the Figures 4a and 4c we can see that in A2 minus A1B 
and A2 minus B1 in 2021, 53 subbasins yield positive values 
except subbasin 4 which has a minor negative value. In 2031, 
in A2 minus A1B, four subbasins in the urban area yield 
negative value (Figure 4b), and all subbasins yield positive 
value when A2 subtracted by B1 (Figure 4d). Therefore, the 
results indicate that the TSS loading rate accompanying with 
future climate scenario A2 is much higher than the loading 
rate with scenarios A1B and B1. 

The difference between A1B and B1 also has the same 
subbasin distribution under all land use scenarios in the same 
year, and slightly different between the patterns of 2021 and 
2031. For the mean annual daily TSS of scenario A1B minus 
scenario B1, 37% of the results are negative and the rest of 
them are positive in 2021 (Figure 4e). In other words, 63% of 

Table 1. Names of 18 New Future Scenarios Generated by SWAT 

Year Name of Model 

2021 A1BLI A1BMI A1BHI B1LI B1MI B1HI A2LI A2MI A2HI 
2031 A1BLI A1BMI A1BHI B1LI B1MI B1HI A2LI A2MI A2HI 

 

Table 2. Land Cover Changes from 2011 to 2021 

Land 
Cover* 

2001 
(km2) 

2011 
(km2) 

2001-2011 
(%) 

2011-2021 
LI (%) 

2011-2021 
MI (%) 

2011-2021 
HI (%) 

2021-2031 
LI (%) 

2021-2031 
MI (%) 

2021-2031 
HI (%) 

WATR 474 478.6 1.0 0.8 0.9 0.8 0.5 0.8 0.8 
URLD 2566.1 2692 4.9 9.4 4.9 4.6 17.1 4.9 4.4 
URMD 405.3 437.5 7.9 8.3 7.9 7.5 9.3 8.0 7.0 
URHD 173.9 182.6 5.0 5.8 5.0 9.5 7.5 5.0 8.7 
SWRN 58.2 61.4 5.5 -1.0 5.6 4.1 -13.5 5.6 3.9 
FRSD 9164.1 9047.8 -1.3 -1.7 -1.3 -1.3 -2.6 -1.4 -1.3 
RNGE 296.4 309.1 4.3 2.7 1.7 -0.2 -0.3 4.4 3.9 
HAY 3473.9 3450.4 -0.7 -1.4 -0.7 -0.7 -2.8 -0.8 -0.7 
AGRR 4277.1 4210.2 -1.6 -2.8 -1.7 -1.7 -5.5 -1.9 -1.7 
WETF 481.9 501.5 4.1 2.4 4.0 3.9 -0.6 4.0 3.7 
* Land Cover: WATR is Open water; URLD is Low density urban; URMD is Medium density urban; URHD is High density urban; SWRN is Barren 
land; FRSD is Forest; RNGE is Range land; HAY is Pasture land; AGRR is Agriculture land; WETF is Wetland. 
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the subbasins under the climate condition of A1B scenario 
yield higher TSS loading rate than the yield under the condi- 
tion of B1 scenario in 2021. But, in 2031, only one subbasin 
under the A1B scenario has lower TSS loading rate compared 
with the output of B1 scenario (Figure 4f). Scenario B1 
characterized by low emission yields lower TSS loading rate 
to the river system than scenario A1B.  

 

5.5. Watershed Response of TSS to LCLUC Scenarios 

Results revealed that the TSS loading from different land 
cover scenarios yield different loadings in the subbasins with 
urban land cover. There is no obvious loading rate differen- 
ces in the areas without urban cover no matter which land co- 

ver scenarios are used (Figure 5). The results are corresponding 
to the different land cover scenarios that have specific incenti- 
ve strategy applied to.  

From the comparison of results (Figure 5), we can see that 
96% of subbasins in which the values of TSS loading rate of 
LI-MI are positive, and only two subbasins, 9 and 43, in the 
A2 emission scenario in the year 2021 yield negative values. 
The results indicate that if the low intensive urban develop- 
ment is encouraged in future land use planning, the loading 
rate of sediment would possibly be higher than the land use 
developing pattern from historical change trend. The results of 
LI-MI scenarios are all higher than the results of HI-MI scena- 
rios in 2021 and 2031. Therefore, LI with low density urban 

 

Table 3. Area Gained and Lost among Land Cover Categories from 2011 to 2031 (km2) 

Land Covera 
LIb Scenario 

WATR URLD URMD URHD SWRN FRSD RNGE HAY AGRR WETF 

WATR -- -4.0 -1.9 -1.2 -6.9 29.2 -1.3 -5.0 2.5 -4.8 
URLD 4.0 -- -23.8 -11.6 22.8 234.5 27.2 142.6 314.3 45.6 
URMD 1.9 23.8 -- 1.2 4.0 7.4 2.0 8.3 28.8 2.8 
URHD 1.2 11.6 -1.2 -- 1.4 0.6 0.1 1.2 9.8 0.4 
SWRN 6.9 -22.8 -4.0 -1.4 -- 12.9 0.4 2.8 -1.7 -1.9 
FRSD -29.2 -234.5 -7.4 -0.6 -12.9 -- -37.9 27.0 -62.9 -30.6 
RNGE 1.3 -27.2 -2.0 -0.1 -0.4 37.9 -- 5.2 -7.6 0.1 
HAY 5.0 -142.6 -8.3 -1.2 -2.8 -27.0 -5.2 -- 36.8 3.2 
AGRR -2.5 -314.3 -28.8 -9.8 1.7 62.9 7.6 -36.8 -- -23.5 
WETF 4.8 -45.6 -2.8 -0.4 1.9 30.6 -0.1 -3.2 23.5 -- 

Land Covera 
MIb Scenario 

WATR URLD URMD URHD SWRN FRSD RNGE HAY AGRR WETF 

WATR -- -1.4 -2.2 -1.3 -7.5 29.6 -1.4 -5.0 2.6 -5.1 
URLD 1.4 -- -8.9 -4.2 8.2 84.0 9.8 51.1 112.6 16.3 
URMD 2.2 8.9 -- 1.4 4.5 8.3 2.2 9.3 32.3 3.2 
URHD 1.3 4.2 -1.4 -- 1.5 0.7 0.1 1.3 10.6 0.5 
SWRN 7.5 -8.2 -4.5 -1.5 -- 14.0 0.4 3.0 -1.6 -2.0 
FRSD -29.6 -84.0 -8.3 -0.7 -14.0 -- -40.4 26.5 -61.4 -32.5 
RNGE 1.4 -9.8 -2.2 -0.1 -0.4 40.3 -- 5.8 -7.4 0.1 
HAY 5.0 -51.1 -9.3 -1.3 -3.0 -26.5 -5.8 -- 36.4 3.2 
AGRR -2.6 -113.0 -32.3 -10.6 1.6 61.4 7.4 -36.4 -- -24.9 
WETF 5.1 -16.3 -3.2 -0.5 2.0 32.5 -0.1 -3.2 24.9 -- 

Land Covera 
HIb Scenario 

WATR URLD URMD URHD SWRN FRSD RNGE HAY AGRR WETF 

WATR -- -1.3 -1.9 -2.5 -6.9 29.2 -1.3 -5.0 2.5 -4.8 
URLD 1.3 -- -7.9 -7.8 7.6 78.2 9.1 47.5 104.8 15.2 
URMD 1.9 7.9 -- 2.4 4.0 7.4 2.0 8.3 28.8 2.8 
URHD 2.5 7.8 -2.4 -- 2.7 1.2 0.2 2.3 19.6 0.9 
SWRN 6.9 -7.6 -4.0 -2.7 -- 12.9 0.4 2.8 -1.7 -1.9 
FRSD -29.2 -78.2 -7.4 -1.2 -12.9 -- -37.9 27.0 -62.9 -30.6 
RNGE 1.3 -9.1 -2.0 -0.2 -0.4 37.9 -- 5.2 -7.6 0.1 
HAY 5.0 -47.5 -8.3 -2.3 -2.8 -27.0 -5.2 -- 36.8 3.2 
AGRR -2.5 -104.8 -28.8 -19.6 1.7 62.9 7.6 -36.8 -- -23.5 
WETF 4.8 -15.2 -2.8 -0.9 1.9 30.6 -0.1 -3.2 23.5 -- 
a Land Cover: WATR is Open water; URLD is Low density urban; URMD is Medium density urban; URHD is High density urban; SWRN is Barren 
land; FRSD is Forest; RNGE is Range land; HAY is Pasture land; AGRR is Agriculture land; WETF is Wetland. 
b LI is the low density urban incentive scenario; MI is the urban developing scenario with historical trend; HI is the high density urban incentive scenario. 
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incentive developing scenario may potentially cause higher 
TSS loading than the HI urban incentive developing pattern, 
and higher TSS loading than MI which has the historical 
urban developing pattern for the past 20 years. 

The relationship between MI and HI scenarios varies in 

different climate scenarios and different time. In 2021, the MI 

scenario yields equal to or higher TSS loading than HI sce- 
nario under the A1B condition, but the opposite trend under 
the B1 scenario can be seen as all differences are negative. Un- 
der the A2 scenarios in 2021, three subbasins yield negative 
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Figure 5. Average annual daily TSS of MI land cover scenario subtracted by LI and HI scenarios in the three future climate 
scenarios in 2021 and 2031. The results of LI-MI are positive in 96% subbasins and are all higher than the results of HI-MI 

scenarios in 2021 and 2031 respectively. LI land use scenario may potentially induce higher TSS loading than the HI and MI 
scenarios. 

Table 4. SWAT Sensitive Parameters and Fitted Values 

Variable Parameter Name Description Fitted value 

Flow ESCO. Hru Soil evaporation compensation factor 0.935 
CN2.mgt Curve number 35.62 
CH_N2.rte Manning’s ‘n’ value for main channel 0.1 
CH_K2.rte Effective hydraulic conductivity in main channel 40 
ALPHA_BNK.rte Baseflow alpha factor for bank storage 0.218 
SURLAG.bsn Surface runoff lag time 20.9 
GW_REVAP.gw Ground water revap co-efficient 0.02 
GWQMN.gw Threshold water depth in the shallow aquifer 1.954 
GW_DELAY.gw Groundwater delay time 201.78 
ALPHA_BF.gw Baseflow alpha factor 0.975 
SOL_AWC.sol Soil available water capacity 0.159 
SOL_K.sol Saturated hydraulic conductivity 7.234 
SOL_BD.sol Moist bulk density 0.98 

TSS SPEXP.bsn Exponent of re-entrainment parameter for channel sediment routing 1.448 
ADJ_PKR.bsn Peak rate adjustment factor for sediment routing in the subbasin 1.6 
SPCON.bsn Linear re-entrainment parameter for channel sediment routing 0.009 
PRF.bsn Peak rate adjustment factor for sediment routing in the channel 0.7 
LAT_SED.hru Sediment concentration in lateral flow and groundwater flow 1337.5 
USLE_P.mgt USLE support practice factor 0.52 

   

A2LI-A1BLI_2021 
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Figure 4. Differences between the mean annual daily TSS of three climate scenarios in 2021 and 2031 in the group of LI land 
use scenarios. The differences between A2 and A1B (Figs. 4a and 4b), between A2 and B1 (Figs. 4c and 4d), and between 
A1B and B1 (Fig. 4e, 4f). The TSS loading rate accompanying with future climate scenario A2 is much higher than the 
loading rate with scenarios A1B and B1. 
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differences and three subbansins yield positive results, and the 
rest of subbasins have the same TSS loading rate in the two 
land change scenarios. In 2031, the differences of TSS loading 
rate between MI and HI land use scenarios have similar patterns 
in A2 and B1 climate scenarios as both land use scenarios 
with subbasin 2 yielding a negative value, and the rest of the 
values are all positive. However, in A1B emission scenario in 
2031, seven subbasins of HI scenario show lower TSS loading 
rate than MI scenario, and three subbasins exhibit higher load- 
ing rate. From Table 2, we can see that the changing rate of 
high density urban area is very small even with incentive 
strategy. The impacts of the HI urban changes on the TSS 
loading can be easily compensated by the changes in other ur- 
ban categories. This can be the reason why the differences in 
MI and HI scenarios are hard to quantify and the impacts of 
HI on TSS loading is difficult to predict. 

In comparing the results of climate scenarios (Figure 4) 
versus land cover scenarios (Figure 5), it is readily evident 
that the magnitude of the different TSS loading rate from the 
different climate scenarios is much higher than those from the 
land cover change scenarios. One may be tempted to conclude 

that the impacts of climate changes on the TSS loading rate 
may be larger than the impacts from the land cover changes in 
the study area. However, this conclusion is equally arguable 
and requires extensive sensitivity analysis. The biggest 
problem is the fact that future projections use a number of 
assumptions that in itself bear uncertainties with various para- 
meters settings.  

 

Table 5. Statistics for the Model Calibration and Validation 

Variables  Flow TSS 

Stations Calibration Validation Calibration Validation 

Below 
Grafton 

R2: 0.99 R2: 0.99 R2: 0.83 R2: 0.67 
NS: 0.99 NS: 0.99 NS: 0.65 NS: 0.61 

St. Charles R2: 0.99 R2: 0.99 R2: 0.76 R2: 0.83 
NS: 0.99 NS: 0.99 NS: 0.66 NS: 0.71 

St. Louis R2: 0.99 R2: 0.99 R2: 0.87 R2: 0.87 
NS: 0.99 NS: 0.99 NS: 0.81 NS: 0.86 

Chester R2: 0.99 R2: 0.99 R2: 0.79 R2: 0.83 
NS: 0.99 NS: 0.99 NS: 0.76 NS: 0.81 
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Figure 5. Average annual daily TSS of MI land cover scenario subtracted by LI and HI scenarios in the three future climate 
scenarios in 2021 and 2031. The results of LI-MI are positive in 96% subbasins and are all higher than the results of HI-MI 
scenarios in 2021 and 2031 respectively. LI land use scenario may potentially induce higher TSS loading than the HI and MI 
scenarios. 
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5.6. Correlation Analysis between TSS Loading and Urban 
Area  

As shown in Figure 5, TSS loading expressed by the diffe- 
rence between LI scenarios and MI scenarios are positive for 
the 96% of the subbasins, and generally higher than the results 
of the HI scenarios subtracted by MI scenarios. This implies 
that the LI may cause a higher TSS loading compared to the 
other two LCLUC scenarios in all future climate conditions. 
In order to identify the correlation between TSS loading rate 
and urban developing patterns, we select eight subbasins 
which have variable TSS loading rate in different climate sce- 
narios, and plot the differences of TSS loading rate with the 
low density urban area of LI and MI scenarios (Table 6). A 
common feature of these eight subbasins is the high percentage   

of the low density urban area (i.e., the percentage of seven sub- 
basins are all higher than 27%), and only one subbasin has a 
lower percentage but still above 13%. The percentages of low 
density urban area of each subbasin in LI are all higher than in 
MI in 2021 and 2031 and the percentage difference between 
LI and MI in 2031 is increasing compared with 2021. But 
from Table 6, we also notice that the magnitude of different 
TSS loading rate between the land cover scenarios and the 
changing trends of TSS loading rate from 2021 to 2031 are 
not consistent with the percentage of low density urban 
change in the subbasins. This is an indication that different 
land cover scenarios have different TSS loading rate in these 
subbasins with high low density urban area cover, but the 
magnitude of different TSS loading rate does not depend on 

 

Table 6. Average Annual Daily TSS Loading Rate and Percentage of Low Density Urban Area between LI and MI in 2021 
and 2031 

Subbasin Area (km2) % of URLDa 
(LI)b 

% of URLD 
(MI)b 

% difference of 
URLD 

LI-MI A1B 
(tons/d) 

LI-MI A2 (tons/d) LI-MI B1 
(tons/d) 

2021 

14 136 68.4 65.6 2.8 35 533 70 
15 421 35.3 33.8 1.4 483 488 133 
19 445 43.6 41.8 1.8 4 471 16 
25 285 82.0 78.6 3.3 78 188 87 
26 271 28.6 27.4 1.2 1842 582 390 
31 96 61.5 59.0 2.5 1 15 2 
32 118 30.5 29.2 1.2 1958 1533 675 
40 406 13.5 13.0 0.6 22 67 8 

2031 

14 136 80.1 68.9 11.3 251 506 1440 
15 421 41.3 35.5 5.8 543 381 293 
19 445 51.0 43.8 7.2 382 102 103 
25 285 96.0 82.5 13.5 208 6384 8336 
26 271 33.5 28.7 4.7 825 600 -117 
31 96 72.0 61.9 10.1 7 75 95 
32 118 35.7 30.7 5.0 1233 7142 8467 
40 406 15.8 13.6 2.2 133 618 492 
a URLD is low density urban land cover. 
b LI is the low density urban incentive scenario; MI is the urban developing scenario with historical trend. 
 

Table 7. Percentage of Agricultural Land in LI and MI in 2021 and 2031 

Subbasinsa % of AGRRb (LI)c % of AGRR (MI)c % of AGRR (LI) % of AGRR (MI) 

 2021 2031 

14 7.7 7.7 7.2 7.5 
15 17.1 17.3 16.2 16.8 
19 20.4 20.6 19.3 20.0 
25 0.0 0.0 0.0 0.0 
26 25.9 26.2 24.5 25.5 
31 0.4 0.4 0.4 0.4 
32 22.0 22.3 20.8 21.7 
40 27.1 27.4 25.6 26.7 
a Subbasins here only include those having different average annual daily TSS loading rate under different land cover scenarios. 
b AGRR is agriculture land. 
c LI is the low density urban incentive scenario; MI is the urban developing scenario with historical trend. 
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the percentage of low density urban cover area. 

We list the percentage of agricultural land of the sub- 
basins having different average annual daily TSS loading rate 
under different land cover scenarios in Table 7. The magni- 
tude of different TSS loading rate in Table 6 corresponds to 
the percentage of agricultural land in Table 7. For example, 
the higher the percentage of the agriculture land, the larger the 
TSS loading rate and the different land cover scenarios, or 
vice versa. The areas with high low density urban land cover 
of LI is related to higher TSS loading rate than MI and HI and 
the source of TSS is mainly from agricultural land. 

The results in this section indicated that when the low 
density urban is encouraged to develop with a higher growing 
rate (LI), the runoff may potentially increase compared to the 
MI with the historical urban development patterns. The incen- 
tive of high density urban development of MI scenario also 
impacts the runoff, but not as much as the impacts from LI. 
When runoff increases, more TSS is carried by the runoff and 
loaded into the rivers. 

6. Conclusions 

This paper developed a general model of the implications 
of climate change and land use modifications to the water qu- 
ality in the St. Louis metropolitan regions. The outcome of 
this study is useful in identifying the effects of LCLUC chara- 
cterized by rapid suburbanization and depopulation of urban 
core on water resources. 

The results revealed that the future climate variability 
and land cover changes may have potential impacts on the 
suspended sediment loading into the surface waters at the con- 
fluence of Mississippi River, Missouri River, and Illinois River. 
The impacts from climate changes would be much severe than 
from urban expansion based on the simulation results of the 
three climate change scenarios. The A2 emission climate sce- 
nario characterized by high CO2 emission with slow technolo- 
gical change yields significantly higher TSS loading rate in 
the research area.  

The impacts of land cover changes on the TSS loading rate 
is smaller than the impacts from climate change, but it is still 
noticeable in subbasin scale. The LI scenario with high deve- 
lopment of low density urban area yielded higher TSS conta- 
minant to the water body than another two land cover scena- 
rios. The results also indicated the primary contributor of TSS 
loading rate increase is the forest lost and urban expansion, 
and the TSS contaminant is mainly came from agricultural 
land. We conclude that the urban sprawl developing pattern 
accompanied by deforestation increase the surface runoff whi- 
ch can cause heavier erosion in the agriculture land and trans- 
port higher amount of suspended sediment into the river. The 
loading of anthropogenic fertilizers superimposed on the sus- 
pended sediment from agriculture can further accelerate water 
quality deterioration.  

This study presented a methodology to predict the changes 
in the sediment load from the study area which is expected to 
impact the water quality of the three important rivers. However, 

the uncertainties of the model outputs were not quantified due 
to data limitations. The specific location of study site at a con- 
flux of larger rivers may be associated with causality of simu- 
lation uncertainties and errors in model calibration. There is a 
big channel band at the upper section of the confluence of the 
Mississippi River and Illinois River. This big band can reduce 
the flow velocity thereby increasing settling velocity of sedi- 
ments. The Melvin Price Locks and Dam located above the 
confluence of Missouri and Mississippi River can also be a 
potential factor that contribute sediment transport downstream. 
In addition, the sediment from the impervious surfaces cannot 
be measured and simulated accurately. All these factors may 
have brought additional uncertainties to our results. Additional 
study that will quantify these uncertainties are deemed recom- 
mended. 
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