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ABSTRACT. This study assesses the advantages and disadvantages of using 2 m spatial resolution data versus 30 m resolution data 
for a simulation model of land-use and land-cover change (LUCC). The model projects LUCC from 2005 to 2055 in the town of 
Lynnfield, Massachusetts, USA. This article describes four scenario storylines and then projects land-use and land-cover under each of 
the four scenarios with 2 m data and again with 30 m data. The disagreement between the 2 m output and its corresponding 30 m 
output ranges between 5.7% and 11.0% of the town. The disagreement due to allocation over small distances is greater than the 
disagreement due to the quantity of new residential growth. The projected quantities of new residential land-use in 2055 differ between 
the two resolutions by 1% of the town, whereas the visual differences in the spatial allocations are distinct and substantial. The results 
for this case study show that 30 m resolution data provides several practical and theoretical advantages over 2 m resolution data, due 
mainly to the fact that the 30 m resolution data match more closely the size of the patches of change. 
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1. Introduction 

1.1. Motivation and Literature Review 

Models of land-use and land-cover change (LUCC) are 
important tools to assess the impact of future land-use and 
development on society and the environment (Verburg et al., 
2002; Alcamo et al., 2008). The holistic ecological and so- 
cietal impacts of localized LUCC are often ignored or not 
immediately realized at the local or municipal level due to the 
incremental and complex processes of land change that can 
occur over multiple spatial and temporal scales (Dietzel and 
Clarke, 2004; Conway and Lathrop, 2005; Turner et al., 2007). 
LUCC models can provide insight into the cumulative 
impacts of LUCC. Scientists can use models to advise policy 
makers as to the potential impacts of development or con- 
servation actions and the actions’ effect on future landscape 
change. LUCC models are most commonly used to examine 
processes of landscape change and to investigate potential 
future landscape configurations before permanent alterations 
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are made (Agarwal et al., 2002; Dietzel and Clarke, 2004; 
Verburg et al., 2004; Conway and Lathrop, 2005). 

Spatially-explicit LUCC models can represent a comp- 
lex human-environment system. Calibration of these models 
are typically based on a set of idealized parameters to gene- 
rate multiple scenarios of change that can be used to test the 
sensitivity of the human-environment system (Veldkamp and 
Lambin, 2001; Verburg et al., 2004; Turner et al., 2007). 
Calibration data can include: a digital map of an initial time 
point, historical data for calculating the rate of each land 
transition, and spatial variables that influence the allocation  
of land change. Anticipated future transitions can be simu- 
lated with these data producing a scenario map for a sub- 
sequent time (Pontius et al., 2001; Pontius and Malanson, 
2005; Turner et al., 2007; Pontius et al., 2008).  

One of the most fundamental decisions in LUCC mode- 
ling concerns the spatial resolution of calibration data (Die- 
tzel and Clarke, 2004; Evans and Kelley, 2004; Hengl, 2006). 
The decision is critical because it determines the unit of 
observation in land change modeling and thus the degree to 
which the data and the model can accurately represent the 
spatial variability of land change processes (Verburg et al., 
1999; Gibson et al., 2000; Jantz and Goetz, 2005). The basic 
question of what spatial resolution is appropriate for a par- 
ticular LUCC analysis depends on the data availability, in- 
formation quality, model design, research goals, and compu- 
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ting resources (Agarwal et al., 2002; Verburg et al., 2004; 
Hengl, 2006). Medium spatial resolution data from satellite 
based sensors, i.e. 20 m to 1 km, have historically been the 
most common spatial resolution used in LUCC modeling, 
owing to their low management requirements, extensive spa- 
tial coverage, frequent temporal coverage, and inexpensive 
availability (Rogan and Chen, 2004). Examples include Ad- 
vanced Spaceborne Thermal Emission and Reflection Ra- 
diometer (ASTER) from 15 to 90 m, Satellite Pour l'Obser- 
vation de la Terre (SPOT) from 10 to 20 m, Moderate Re- 
solution Imaging Spectroradiometer (MODIS) from 250 m to 
1 km, and Landsat which is 30 m (Agarwal et al., 2002).  

The spatial resolution of calibration data in the LUCC 
modeling literature is often coarser than 20 m. Table 1 pro- 
vides a review of spatial resolutions and model applications 
for a selection of LUCC modeling studies. The use of me- 
dium spatial resolution data has been driven by the previous- 
ly listed practical benefits and by the widespread focus on 
modeling regional, national, and continental land-use and 
land-cover change. The use of medium spatial resolution data 
has also been driven by the desire to integrate ancillary data, 
such as census data, and by the continued use of LUCC 
models that have traditionally been designed to use and 
simulate coarse spatial resolution data and land change proce- 
ssses (Agarwal et al., 2002; Munroe and Muller, 2007; Alcamo 
et al., 2008). 

The recent development and proliferation of finer spa- 
tial resolution data of less than 20 m have led to more choice 
in the spatial resolution of data (Agarwal et al., 2002; Rogan 
and Chen, 2004; Herold et al., 2005). Examples include sate- 
llite based sensors such as WorldView-2 from 0.5 to 2.6 m, 
IKONOS from 1 to 4 m, QuickBird from 0.6 to 2.4 m, and 
OrbView-3 from 1 to 4 m. Simultaneously, advances in com- 
puting have led to increased interest in using fine spatial re- 

solution data in LUCC modeling (Dietzel and Clarke, 2004; 
Herold et al., 2005; Hengl, 2006). Fine resolution data have 
increasingly been explored for use in fine resolution and small 
spatial extent LUCC analysis (Forster et al., 1985; Jensen and 
Cowen, 1999; Herold et al., 2001; Herold et al., 2003; Herold 
et al., 2005). An example of this work includes Herold et al.’s 
(2005) study in Santa Barbara, CA, where IKONOS data were 
used in urban land-use change modeling in combination with 
urban spatial metrics. 

The spatial resolution of calibration data can have im- 
portant and substantial effects on the output, accuracy, and 
function of models, thus potentially limiting or enhancing the 
ability of a model to project future scenarios of change 
(d’Aquino et al., 2002; Dietzel and Clarke, 2004; Jantz and 
Goetz, 2005; Pan et al., 2010; van Delden et al., 2011). 
However, LUCC models have a wide diversity of other cha- 
racteristics that can also impact model output. These charac- 
teristics can include: the study area extent, the number of 
LUCC categories, the types of LUCC transitions, feedbacks, 
spatial dependency, and data requirements (Kok and Veld- 
kamp, 2001; Jantz and Goetz, 2005; Pontius and Malanson, 
2005; Pan et al., 2010; Pontius et al., 2011). When all other 
variables are held constant, quantities of projected land 
change and their spatial allocation can differ substantially 
depending on the spatial resolution of model calibration data 
(Jantz and Goetz, 2005). Relationships between social and 
biophysical processes change as a function of spatial resolu- 
tion (Walsh et al., 1999; Veldkamp and Lambin, 2001; Ver- 
burg et al., 2002), and relationships found at one resolution 
may not be evident at others (Gibson et al., 2000; Walsh et al., 
2001; Evans and Kelley, 2004; Jantz and Goetz, 2005). 
Coarsening spatial resolution can result in aggregation of the 
information contained in a map while finer spatial resolution 
can result in disaggregation (Verburg et al., 1999; Hengl, 2006; 

Table 1. Reported Spatial Resolutions and Associated Land-Use and Land-Cover Change Models* 

Site Simulation Spatial Resolutions (m) Model Reference 

South Central IN 30 60 90 120 150 240 300 480 Agent Based Evans and Kelley, 2004 

San Joaquin County, CA 100 200 400 SLEUTH Dietzel and Clarke, 2004 

North VA & South MD 45 90 180 300 SLEUTH Jantz and Goetz, 2005 

Miyun County, China 25 50 100 200 300 500 800 CLUE Pan et al., 2010 

Para, Brazil 20 – 81920 BLM Pontius et al., 2007 

Ipswich River Watershed MA 30 to 1000 GEOMOD Pontius et al., 2004a 

South West NJ 80 120 160 200 Build Out Conway and Lathrop, 2005 

Central America 15 45 75 CLUE Kok and Veldkamp, 2001 

Cho Don, Vietnam 32 – 51000 Agent Based Pontius et al., 2011 

Costa Rica & Honduras 15000 – 75000 CLUE Kok et al., 2001 

Philippines & Malaysia 150 CLUE Verburg et al., 2002 

China 32000 CLUE Verburg and Veldkamp, 2001 

Detroit, MI 26 LTM Pontius et al., 2008a 

Twin Cities, MN-WI 30 LTM Pontius et al., 2008a 

Ipswich River Watershed MA 30 MCE & OLS Schneider and Pontius, 2001 

* SLEUTH denotes Slope, Land-use, Exclusion, Urban Extent, Transportation, and Hillshade; BLM denotes Behavioral Landscape Model; LTM 
denotes Land Transformation Model; MCE denotes Multi-Criteria Evaluation; CLUE denotes Conversion of Land-Use Change and its Effects; OLS 
denotes Ordinary Least Squares regression. 
a Selected case studies are two of 13 applications presented by Pontius et al., 2008. 
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van Delden et al., 2011).  

The LUCC literature has found that for various spatial 
resolutions greater than 20 m, calibration data spatial reso- 
lution alone can cause substantial differences in model out- 
put and performance in terms of quantity, allocation, and 
accuracy of projected land cover change (Evans and Kelley, 
2004; Pontius et al., 2004a; Jantz and Goetz, 2005; Pontius et 
al., 2007). As pixels become coarser, the reference data and 
the simulated data can become more similar. For one app- 
lication of GEOMOD, the resolution of the calibration data 
was found to be finer than the resolution at which the model 
could accurately predict the spatial allocation of land change 
(Pontius et al., 2004a). 

In agent based LUCC models, it has been found that 
spatial resolution has a considerable impact on model para- 
meters and, subsequently, on model outputs. Weights for an 
agent based model differ as a function of scale, with finer 
resolution data able to better capture observed processes of 
change operating on the landscape. Coarse spatial resolution 
data may not be able to capture the spatial variance in the 
landscape, and thus may not provide enough information for 
parameters used in the model simulations (Evans and Kelley, 
2004). Similar results have been found for the urban growth 
model Slope, Land-use, Exclusion, Urban Extent, Transpor- 
tation, and Hillshade (SLEUTH). SLEUTH performed better 
at certain spatial resolutions than others where SLEUTH 
underestimated the quantity of urban edge pixels at finer 
spatial resolutions. The variations in the operational scales of 
parameters that represent the processes of land-change in the 
model were found to be the main cause of model per- 
formance instability (Jantz and Goetz, 2005). Kok and Veld- 
kamp (2001) assessed the Conversion of Land-Use Change 
and its Effects (CLUE) model, for which they found the 
spatial resolution of input data did not substantially change 
model output, although spatial resolution did change the ex- 
planatory power of the driver variables representing the land 
change processes. Their findings are in contradiction to the 
conclusions of similar studies of CLUE, which found that the 
data’s spatial resolution has a substantial influence on model 
performance. The coarse spatial resolution of the calibration 
input parameters in their specific case may have limited the 
detection of model instability at finer resolutions (Kok and 
Veldkamp, 2001). These findings reveal the variable effects of 
data’s spatial resolution across model platforms and para- 
meters. 

While much is known about the effects of spatial reso- 
lution on LUCC models at spatial resolutions coarser than 20 
m, the LUCC modeling literature lacks a comprehensive 
discussion of the practical and analytical benefits and limi- 
tations of very fine spatial resolution data, i.e. finer than 20 m. 
As fine resolution data become ubiquitous, the profession 
must better understand the implications of using fine resolu- 
tion data in LUCC modeling (Herold et al., 2005; Hengl, 
2006). Issues surrounding the utility of very fine spatial 
resolution calibration data include: 1) the practical applica- 
tions in local and regional extent land change modeling, and  

2) the theoretical considerations of how well these data re- 
present landscapes and processes of change. This paper exa- 
mines how the spatial resolution of calibration data influences 
the output maps of a LUCC model and examines the practical 
aspects of LUCC modeling at finer versus coarser spatial 
resolutions. 

 

1.2. Research Objective 

The objective of this study is to assess the advantages 
and disadvantages of using 2 m resolution data versus 30 m 
resolution data in spatially explicit land-use and land-cover 
change modeling. A fifty year (2005 ~ 2055) LUCC pro- 
jection is constructed for the town of Lynnfield, Massa- 
chusetts, USA. Historical 1971 and 1999 land-use data from 
MassGIS (2009) are used to calibrate the LUCC model to 
derive the historical trend of land-use conversion to residen- 
tial and to calculate the residential growth rate to determine 
projected pixel quantities for the land-use change model. Step 
one projects potential residential growth over the 50 year time 
period at 2 m spatial resolution under four scenarios of growth, 
which vary in the quantity and concentration of residential 
growth. Step two projects potential residential growth over the 
same time period at 30 m spatial resolution using an iden- 
tical methodology for the same set of scenarios. Step three 
compares the results of the 2 m spatial resolution model out- 
put to the coarser spatial resolution 30 m model output. This 
article compares the outputs resulting from differences in 
spatial resolution. This research is motivated by the desire: 1) 
to determine the utility of very fine resolution data and its 
effects on model outputs in spatially explicit LUCC modeling 
and 2) to address the growing interest in using fine spatial 
resolution data for LUCC modeling. 

 

1.3. Study Area 

Figure 1 shows the study area, the town of Lynnfield, in 
northeastern Massachusetts, USA. The area is centered at 
71º02’ W and 42º32’ N, within the Ipswich River watershed, 
and is 27 km². In 1971, Lynnfield was composed of dense  
and sparse urban development (36% of the town), mixed 
deciduous and coniferous forest (43%), wetlands (6%), and 
open land (12%). In 1999, Lynnfield was composed of dense 
and sparse urban development (45%), mixed deciduous and 
coniferous forest (36%), wetlands (6%), and open land (10%). 
The average size of a residential ownership parcel in Lynn- 
field is 0.25 ha as derived from MassGIS (2009) residential 
land-use tax assessor parcel data. The town had a population 
in 2000 of 11,542 (US Census, 2010). The Metropolitan Area 
Planning Council MetroFuture initiative (Reardon, 2008) des- 
cribed Lynnfield as a maturing suburb of metropolitan Boston, 
which is characterized as having a majority of housing stock 
single family and owner occupied, projected residential 
growth of 11% from 2000 to 2030, and a dwindling supply of 
unprotected developable land with less than 25% of land left 
as potentially developable (Reardon, 2008). 
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Figure 1. Figure 1. Study area in Lynnfield, Massachusetts, 
USA (left) and land-use in 2005 (right).  
Note: Land-use categories are an aggregate of the original 40-category 
classification from MassGIS (2009). 

 

Southern New England, particularly north and central 
Massachusetts, is currently undergoing tremendous landsca- 
pe alteration resulting from urban and suburban sprawl and 
other land-cover conversions (DeNormandie, 2009). Resi- 
dential housing accounts for approximately 87% of all land- 
use conversion in Massachusetts where residential home lot 
sizes have increased 47% since the 1970s (Breunig, 2003; 
DeNormandie, 2009). More than 16,000 ha were converted  
to residential development from 1999 to 2005 where 12,000 
ha were converted from forest and 4,000 ha from agricul- 
tural land. Between 1999 and 2005, Massachusetts experien- 
ced approximately 9 ha transition to urban land-use each day 
(DeNormandie, 2009). 

 
2. Methods 

2.1. Data 

The Commonwealth of Massachusetts (MassGIS, 2009) 
supplied vector maps concerning land-use for 1971, 1999, and 
2005. These data are used to calculate the historical trend   
of land-use conversion to residential from 1971 to 1999 and  
to calculate the residential growth rate to determine projected 
pixel quantities for the land-use change model. The 1971 and 
1999 land-use data have a minimum mapping unit (MMU)  
of 0.4 ha. The land-use data were constructed by the Uni- 
versity of Massachusetts Amherst, Department of Forestry 
Resource Mapping Project through orthophotograph inter- 
pretation and manual and automatic digitizing of 1:25,000 
aerial orthophotographs. The 1971 classification has 21 cate- 
gories, but is an aggregate of 104 originally digitized cate- 
gories. The 1999 land-use map has 37 categories and is an 
update of the original 1971 classification where orthophoto- 
graphs were used as a reference for updating, thus differences 
between 1971 and 1999 are likely to indicate real land-use 
change (MassGIS, 2009). 

A modernized mapping technique generated the 2005 
land-use data, thus differences between the 1999 map and the 
2005 map reflect both actual land-use change and the change 
in mapping technique. The 2005 map has 40 land-use classi- 
fication categories that are generally consistent with the cate- 
gories of 1971 ~ 1999. The 2005 data have a mapping unit 
between 0.1 and 0.4 ha. In Lynnfield, the average size of an 
individual residential land-use polygon in these 2005 data   
is 3.7 ha. These data were constructed using semi-automated 
classification of orthophotographs acquired in April 2005 at a 
spatial resolution of 0.45 m, thus each pixel accounts for 
0.00002 ha. The 2005 land-use vector data were constructed 
by combining the classified imagery with attributes from the 
manually-compiled 1999 land-use data, tax assessor parcel 
information, and other ancillary data concerning impervious 
surfaces and wetlands (MassGIS, 2009). The 2005 land-use 
data are more detailed than the 1971 ~ 1999 land-use data, 
thus 2005 is used as the starting point of the simulation. The 
data of 1971 ~ 1999 are consistent concerning the method to 
measure change, so those data are used to project the quan- 
tity of residential growth. MassGIS does not offer information 
concerning accuracy assessment of the land-use maps for 
1971, 1999, and 2005. 

In addition to the land-use datasets, protected and rec- 
reational open space, major roads, and community bounda- 
ries were acquired in the form of a vector dataset from the 
Commonwealth of Massachusetts (MassGIS, 2009). Protec- 
ted and recreational open space data last updated in May 2009 
are used in combination with the 2005 land-use data to con- 
struct a map of areas available and unavailable for projected 
residential development. These data contain boundaries of con- 
servation lands and outdoor recreational facilities originally 
digitized in 1988 from 1:25,000 scale maps. The data indicate 
the level of protection of conservation land and are conti- 
nuously updated (MassGIS, 2009). The Executive Office of 
Transportation - Office of Transportation Planning Roads 
major roads data, last updated in October 2009, are used to 
construct the concentrated projected residential development 
scenario suitability map. These data were constructed through 
orthophotograph digitizing and include linework from earlier 
1:5,000 road and rail centerlines and United States Geological 
Survey 1:100,000 roads digital line graphs (MassGIS, 2009). 
The community boundaries data were originally created in 
2004, updating earlier ground survey 1:25,000 scale boun- 
daries, and were last updated in September 2009 (MassGIS, 
2009). 

 
2.2. Data Processing 

All vector datasets are subset to the study area town 
boundary and are converted from vector to raster format into 
two different spatial resolutions, 2 and 30 m. The 2 and 30 m 
spatial resolutions were selected as approximate representa- 
tions of aerial and satellite based fine resolution sensors, and 
medium resolution satellite sensors and common standard 
data products, respectively (Rogan and Chen, 2004).  

The 2 and 30 m raster transformations are both based on 
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the original vector data. The conversion process used in this 
study for vector polygon to raster relies on using a base grid 
map that specifies the spatial extent, resolution, and projection 
information for the new raster map. The vector polygon data 
are placed on top of this raster grid, and vector polygons that 
cover the centroid of a pixel in the base grid are represented 
as a pixel in the raster map. If a polygon does not cover a 
centroid of a pixel, then the polygon feature will not be 
represented in the raster map. If there are overlapping poly- 
gons on a single pixel centroid, the polygon with the high-  
est identification value is selected for raster representation 
(Eastman, 2009). All data utilize the North American Datum 
1983, Massachusetts State Plane Zone 1 coordinate system. 
The methodology outlined in this and the proceeding section 
is applied to both the 2 and 30 m datasets to ensure the only 
difference between the model outputs are due to spatial 
resolution and not from the methodology. 

Boolean maps of the 1971, 1999, and 2005 land-use data 
are created by reclassifying all pixels as either residential or 
non-residential. To determine areas in the 2005 land-use map 
that are suitable for projected residential development, the 
2005 40 class classification is reduced to a three class classi- 
fication using the reclassification procedure in Table 2.  

Pixels are assigned one of three categories: available for 
residential development, already developed, and unavailable 
for development. The protected and recreational open space 
data are also reclassified, with all permanently protected open 
space considered unavailable for development regardless of 
its classification in the 2005 land-use data. The reclassified 
protected and recreational open space data are then combined 
with the reclassified three class 2005 land-use data. 

 

2.3. Land Change Simulation 

2.3.1. GEOMOD 

The land-use and land-cover change model GEOMOD is 
used to project residential development over the fifty year 
time interval from 2005 to 2055. GEOMOD is a pixel based, 
spatially explicit model that simulates the spatial pattern of 
land change between two land-use categories over time (Hall 
et al. 1995; Pontius et al. 2001). The minimum input re- 
quirements for GEOMOD are: the simulation start and end 
times, a map of the start time for two land categories, and an 

estimate of each category's total number of pixels at the end 
time. Additionally, the user usually supplies driver maps from 
which GEOMOD creates a suitability map. The suitability 
map indicates the relative priority of pixels in the landscape to 
transition from one category to another. A high rank corre- 
sponds to a high transition priority for the gaining category 
while a low rank corresponds to a low transition priority for 
the gaining category. GEOMOD allocates the pixels to classi- 
fy as one of the two categories for the end time based on the 
suitability map. GEOMOD simulates a one way transition, 
such as from non-residential to residential land. The user spe- 
cifies a net change in the number of residential pixels from the 
start time to the end time, then GEOMOD searches among the 
non-residential pixels using the suitability map to select the 
pixels to convert to residential. All other cells within the map 
will persist and no cells will show change from residential to 
non-residential (Pontius and Chen, 2006). For more detailed 
information on GEOMOD please see Pontius and Chen 
(2006). 

GEOMOD was chosen for this analysis because it ad- 
dresses our purpose in Lynnfield, MA, where we are intere- 
sted in a one-way growth of residential area. Furthermore, we 
can control the model because the design of GEOMOD allows 
the user to specify the number of pixels of simulated change 
independently from the allocation of that change. GEOMOD 
also offers substantial flexibility in the required input data, as 
GEOMOD requires only one beginning land-use map for cali- 
bration. 
 
2.3.2. Scenario Development 

Four scenarios of projected residential development are 
constructed with variable quantities of gross gain and spatial 
allocation of residential development. These scenarios inclu- 
de: 1) low quantity and dispersed allocation, 2) low quantity 
and concentrated allocation, 3) high quantity and dispersed 
allocation, and 4) high quantity and concentrated allocation. 
These scenarios portray two distinct frameworks of alterna- 
tive spatial allocations of residential development represent- 
ting: 1) suburban sprawl resulting in dispersed allocation of 
development and 2) higher density concentrated allocation of 
development such as those created under smart growth stra- 
tegies. See Rose et al. (2009) for a comprehensive definition 
of smart growth. 

Table 2. Conversion from 40-Category* 2005 Land-Use Classification to 3-Category Classification 

Already Developed Unavailable for Development Available for Development 

Recreation Non-Forest Wetland Cropland 

Existing Residential Water Pasture 

Commercial / Industrial Saltwater Sandy Beach Forest 

Transportation All Permanently Protected Open Space Mining 

Waste Disposal  Open Land 

Powerline / Utility  Transitional 

Golf Course  Orchard 

Marina  Nursery 

Urban Public / Institutional  Brush land / Successional 

* Land-use names have in some cases been aggregated from their original names. See MassGIS (2009) for more details on MassGIS 2005 40-category 
definitions and 2009 protected and recreational open space definitions. 
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The high quantity dispersed allocation scenario assumes 
that current trends in the quantity and the spatial allocation  
of new residential development continue over the next 50 
years. The high quantity concentrated allocation scenario 
assumes that current trends in the quantity of new residential 
development continue, but that new development will be con- 
centrated near major roads. The low quantity dispersed allo- 
cation scenario assumes that the quantity of residential deve- 
lopment will occur more slowly than in the past, but that 
current trends in dispersed spatial allocation of new deve- 
lopment will continue. The low quantity concentrated al- 
location scenario assumes that the quantity of new residen- 
tial development will occur more slowly than in the past and 
that new development will be concentrated near major roads. 
The high quantity and low quantity scenarios are designed to 
represent the same quantity of population growth, assuming 
that residential development will be higher-density under the 
concentrated scenarios. 

 

2.3.3. Projected Residential Pixel Quantities 

The town of Lynnfield is assigned a residential growth 
rate based on its historical residential development growth 
rate between 1971 and 1999. According to the vector land- 
use data, the percentage of the town’s area that was residen- 
tial increased from 33 to 41% between 1971 and 1999. In 
comparison, the respective raster data differ from the vector 
data by only one-tenth of one percentage point. Equation (1) 
is used to calculate the residential growth rate using the 1971 
and 1999 land-use maps: 

1

1999 1971
1999

1971

R
g 1

R


 
        

                          (1)  

where 

g = annual proportional growth rate of residential deve- 
lopment 

R1971 = number of pixels classified as residential in 1971 

R1999 = number of pixels classified as residential in 1999 

The resulting annual growth rate is 0.828% for the 30 m 
data and 0.823% for the 2 m data. These annual exponential 
growth rates are applied to the respective spatial resolution 
residential 2005 land-use maps to project the number of new 
residential pixels in 2055. An exponential function of grow-  
th is assumed because it can be applied in a straight forward 
manner to the base at 2005. Equations (2) and (3) apply the 
growth rate to project the number of residential pixels in 
2055: 

 50

2005 1highR R g       (2) 

2005
2005 2

high
low

R R
R R


   (3) 

where 

Rhigh = number of pixels classified as residential in 2055 
under the high quantity scenario 

Rlow = number of pixels classified as residential in 2055 
under the low quantity scenario 

R2005 = number of pixels classified as residential in 2005 

Under the high quantity scenarios in Equation (2), the 
quantity of residential development is assigned an area of  
Rhigh pixels in 2055. Under the low quantity scenarios in 
Equation (3), the quantity of residential development in 2055 
Rlow is assigned half the net residential growth found under  
the high quantity scenario Rhigh. The low quantity pixel cal- 
culation Rlow is designed to reflect the assumption that new 
development will be twice as dense under the low quantity 
scenarios. The low quantity scenarios assume that new 
development accommodates an equivalent population increase 
in one-half the area of additional residential development as 
compared to the high quantity scenarios. 

 

2.3.4. Projected Residential Spatial Allocation 

Two distinct methods are used for the spatial allocation 
of projected residential development from 2005 to 2055. 
These two methods correspond to the dispersed and concen- 
trated scenarios, which are designed to represent two diffe- 
rent patterns of residential development. Under the dispersed 
scenarios, GEOMOD creates 2 and 30 m land-use transition 
suitability maps by overlaying the 1971 land-use data with the 
2005 residential land-use map. The non-residential land-use 
categories that transition most intensively to residential during 
1971 ~ 2005 are assigned a highest priority for conversion to 
residential land between 2005 and 2055 (Figure 2). 

Figure 2. Intensity of conversion to residential development 
during 1971-2005 expressed as a percent of each of seven 
non-residential categories at 1971. Uniform line shows inten- 
sity of change in the town during 1971-2005. 

 

Under the concentrated scenarios, residential develop- 
ment is allocated based on a pixel's distance from major roads. 
Pixels closer to major roads are assigned a higher suitability 
ranking and pixels farther from roads are assigned a lower 
suitability ranking. Both 2 and 30 m residential transition 
suitability maps are created by using the roads data to assign 
each pixel a suitability value for conversion to residential 
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development between 2005 and 2055. The concentrated sce- 
nario suitability calculation is shown as Equation (4): 

max

k
k

D
P

D
   (4) 

where 
Pk = suitability value for pixel k 
Dk = distance from pixel k to nearest major road 
Dmax = maximum Dk among all pixels in the town 
The 2005 three category reclassified map is used to mask 

out areas unavailable for new development in the suitability 
maps for both the dispersed and concentrated scenarios. For a 
methodology work flow summary for all processing and 
model construction steps see Figure 3. 
 
2.3.5. Comparison of 2 and 30 m Model Output  

Map comparisons are conducted on the 2 and 30 m mo- 
del outputs for all scenarios to identify differences in the 
outputs caused by the calibration data’s spatial resolution. 
Map comparison is also performed on the 2 and 30 m input 
2005 residential land-use maps, to examine the effect of the 
vector to raster conversion process. To facilitate map 
comparison between the 2 and 30 m data, the 30 m data are 
converted to 2 m. 

Map crosstabulation is a common technique for dis- 
cerning differences between maps. Crosstabulation is used to 
extract statistics of map agreement and disagreement. This 
study uses the map comparison method of pixel quantity and 
allocation disagreement, as outlined in Pontius and Millones 
(2011). Map disagreement is divided into two types: Quantity 
disagreement and allocation disagreement. Quantity disagree- 
ment is the map disagreement due to the difference in quantity 
of pixels for each category in the 2 m resolution map versus 
the 30 m resolution map. Allocation disagreement is the 
additional disagreement associated with the differing spatial 
allocation for each category in the 2 m resolution map versus 
the 30 m resolution map. Total disagreement is the sum of 
quantity disagreement and allocation disagreement. We show 
the maps and give summary statistics for each comparison of 
a 2 m resolution map and its corresponding 30 m resolution 
map. 

 

3. Results 

Residential in the original 2005 vector land-use data 
comprised 882 ha, equivalent to 33% of Lynnfield. Figure 4 
shows that the 2 m spatial resolution land-use change model 
projects that residential land-use will increase to 49% of the 
town under the high quantity scenarios, and to 41% of the 
town under the low quantity scenarios, by 2055. The 30 m  

 
 

Figure 3. Diagram of methodology. (a) Data processing; (b) Land change simulation. 



S. D. Blanchard et al. / Journal of Environmental Informatics xx(x) xx-xx (2014) 

 

8 

 
 

Figure 4. Area of residential land-use as percent of town area 
in 2005 and 2055.  
Note: Bars show the 2005 land-use vector data and the four projected sce- 
narios. The area for the 2005 vector data is calculated from the original 
vector data. Areas for all other datasets are calculated from their respect- 
tive raster resolutions. 
 

 
 

Figure 5. The 2 m and 30 m model outputs for high quantity 
scenarios of projected residential growth during 2005-2055.  
(a) 2 m Concentrated high quantity residential development;  
(b) 30 m Concentrated high quantity residential development; 
(c) 2 m Dispersed high quantity residential development;  
(d) 30 m Dispersed high quantity residential development. 

 

spatial resolution land-use change model projects that 
residential land-use will increase to 48 and 40% of the town 
under the high and low quantity scenarios, respectively, by 
2055. 

Figure 5 shows the 2 and 30 m outputs from the high  

 Figure 6. Comparison of 2 m versus 30 m resolution maps. 
 

 
 

Figure 7. Comparison of 2 m and 30 m model outputs for 
four scenarios of projected residential use in 2055.  
(a) Concentrated high quantity residential development;  
(b) Concentrated low quantity residential development;  
(c) Dispersed high quantity residential development;  
(d) Dispersed low quantity residential development. 
 

quantity scenarios. Slight differences between the spatial re- 
solution outputs are evident in Figure 5. The scattered pa- 
ttern in the 30 m dispersed high quantity output is due to 
pseudo random spatial allocation of projected residential pi- 
xels that have tied suitability values. 

Figure 6 summarizes the difference between a 2 m map 
and its corresponding 30 m map for five pairs of maps. For all 
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five cases, the allocation disagreement is larger than the 
quantity disagreement. The 2 and 30 m 2005 residential 
land-use maps differ on 5.9% of the town. Disagreement 
between the 2 and 30 m output maps range from 5.7 to 11.0% 
of the town. 

Figure 7 shows map agreement and disagreement be- 
tween all scenario pairs for the 2 and 30 m outputs. Black 
indicates disagreement attributable to pixel edge mis-match- 
ing resulting from rasterization. The scattered pattern in the 
dispersed outputs is due to pseudo random spatial allocation 
of projected residential gain among pixels that have tied 
suitability values. Figure 8 highlights particular areas in the 
comparison between the 2 and 30 m outputs for the concen- 
trated high quantity scenario. The highlighted areas serve as 
prime examples of the three types of map disagreement. 

 

 
Figure 8. Sources of disagreement between the 2 m and 30 m 
output maps from the concentrated high quantity scenario. 

 
4. Discussion 

4.1. Interpretation of Results 

4.1.1. Area of Projected Residential Growth in 2055 

Figure 4 shows that for the high quantity scenarios, the 
quantity of new residential growth projected by the 2 m model 
is larger by 1.2% of the town than the quantity projected by 
the 30 m model. For the low quantity scenarios, Figure 4 
shows that the amount of growth projected by the 2 m model 
is larger by 1% of the town than the quantity projected by the 
30 m model. These area disagreements are also reflected in 
the quantity disagreement in Figure 6. The 2 m scenarios 

simulate more change compared to the corresponding 30 m 
scenarios because spatial resolution influences the calculation 
of Equations (1), (2) and (3). Rasterization of the 1971 and 
1999 residential land-use maps cause slight differences be- 
tween the 2 and 30 m raster versions of those maps, thus 
Equation (1) produces slightly different growth rate per- 
centages: 0.823 for the 2 m and 0.828 for the 30 m model. 
Equations (2) and (3) amplify these differences over a 50 year 
time span.  

The differences in the output between the 2 and 30 m 
models and the different projected growth rates confirm that 
the spatial resolution of calibration data can produce diffe- 
rent results when identical methods are applied. These results 
confirm that spatial resolution is a critical component in the 
construction of a model, a finding supported by the LUCC 
modeling literature (Kok and Veldkamp, 2001; Evans and 
Kelley, 2004; Jantz and Goetz, 2005). This study agrees with 
previous studies that have found that the spatial resolution of 
calibration data in a LUCC model can have a considerable 
impact on the parameters of a model and subsequently the 
outputs of a model (Evans and Kelley, 2004; Pontius et al., 
2004a; Jantz and Goetz, 2005; Pontius et al., 2007; van 
Delden et al., 2011).  

 

4.1.2. Quantitative Crosstabulations 

As shown in Figure 6, the 2 and 30 m input 2005 resi- 
dential land-use maps have a 5.9% map disagreement. This 
disagreement is attributable to the vector to raster conversion 
process, and serves as a baseline for examining the other 
crosstabulations. Spatial allocation of new residential pixels 
accounts for the largest share of map disagreement for all four 
scenarios. In most cases, disagreement due to spatial allo- 
cation in the model output maps occurs because the 2 and 30 
m suitability maps differ along feature edges, with the 2 m 
pixels forming smoother edges than the 30 m pixels.  

 

4.1.3. Qualitative Spatial Crosstabulation 

Figure 8 examines the qualitative spatial crosstabulation 
between the 2 m and the 30 m concentrated high quantity 
scenarios. This crosstabulation map offers insight into the 
different types of map disagreement present between the 
model outputs. The example labeled (1) shows map 
disagreement where the 2 m model simulated residential gain 
and the 30 m model simulated non-residential persistence 
during 2005 ~ 2055. Because the 2 m model has a slightly 
higher growth rate, more pixels were allocated to new 
residential development; thus, Figure 8 has more blue pixels 
than red pixels, with the area extent of the projected new 
residential development in the 2 m concentrated high quantity 
scenario output map extending approximately 90 to 200 m 
farther than the extent in the 30 m output map. This map 
difference is the most visibly striking of the differences 
caused by the spatial resolution of the calibration data. 

The example labeled as (2) in Figure 8 shows map 
disagreement resulting from feature edge mis-match. Feature 
edge mis-match in this case is caused by the differences in the 
representation of feature boundaries between the 2 and 30 m 
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calibration data. The 2 m spatial resolution results in a finer 
edge along feature boundaries as compared to the 30 m spatial 
resolution.  

The example labeled as (3) also shows map disagree- 
ment due to vector to raster conversion. We examined these 
locations further by comparing 1:5,000 color orthophoto- 
graphs from 2005 (MassGIS, 2009) with the original 2005 
vector land-use data. The orthophotographs indicate that the 
straight feature is a railroad line through wetland. The 2005 
land-use vector data indicates the line is forest. The 2 m raster 
land-use data for 2005 considers the line as forest. The 30 m 
raster land-use data for 2005 considers the line as wetland. 
The 2 m scenario map shows residential gain, whereas the 30 
m map shows non-residential persistence. The cartographic 
error in the 2005 vector data, in this case a land-use mis- 
classification, is transferred to the 2 m raster data because the 
finer spatial resolution allows for representation of finer 
features in the calibration data. The 30 m output did not trans- 
fer the misclassification, because the 30 m pixels are coarser 
than the incorrectly classified feature in the vector land-use 
map. This example illustrates how cartographic error in a 
model’s calibration data may be more easily transferred to the 
results via vector to raster conversion, if the calibration data 
are of a fine enough resolution to enable the transfer. 

The example labeled as (4) in Figure 8 shows map 
disagreement due to the spatial resolution of the data along 
the study area boundary. Here, the edges of the study area do 
not match because of the different pixel spatial resolution. 
Like example (2), example (4) highlights a case in which 
spatial resolution causes differences in model output because 
of its effect on the definition of a feature's edge. 

 

4.2. Advantages of 30 m Data 

The results of this study indicate that 30 m spatial reso- 
lution data offers substantial practical and theoretical advan- 
tages over 2 m resolution data when simulating residential 
development at the town level. This study found that using  
30 m data reduces the transfer of cartographic error in the 
input data to the model outputs. Example (3) in Figure 8 
shows how one cartographic error such as a land-use miscla- 
ssification in the 2005 land-use data is transferred to the 2 m 
model output, but not to the 30 m output, because the feature 
causing the error is smaller than the minimum feature size 
captured in the 30 m data. This example suggests that any 
cartographic error or slight misalignment in the input data 
could be transferred to a model output, if the spatial resolu- 
tion used in the model is small enough to represent the error. 
While any spatial resolution has the potential to transfer 
cartographic error in the input data to model output, finer 
spatial resolution data are more prone to transferring small 
cartographic errors that would be masked by coarser data. 
This effect is especially apparent when rasterizing fine reso- 
lution vector data. 

Coarser spatial resolution data also offer a theoretical 
advantage, in that interpretations of model output may be 
more consistent with ground observations. Smaller pixels are 

often difficult to substantiate at local and regional scales; for 
example, a building or residential lot may be composed of 40 
or more 2 m pixels, whereas one 30 m pixel may be sufficient 
to encompass an entire building or a large portion of a lot. The 
difficulty of interpretation is pronounced when features on the 
landscape are modeled at a fine enough resolution that a 
contiguous parcel, lot, or building is not apparent in the output 
because a model must classify a very large number of con- 
tiguous pixels consistently in order to represent any feature 
that could exist on the ground. For example in this study, there 
is difficulty in interpreting any isolated 2 m pixel that the 
model classifies as residential development, since a single 
pixel does not cover enough area to represent a contiguous 
feature such as a building or lot.  

Suburban residential development in Massachusetts ge- 
nerally occurs in patches that include more than one indivi- 
dual parcel. In the town of Lynnfield, individual residential 
ownership parcels are on average 0.25 ha. The spatial re- 
solution of the pixels in the maps is 2 m, which translates to 
0.0004 ha per pixel. Thus the pixel is much smaller than the 

average residential parcel. Residential land change occurs at 
the parcel resolution or coarser, thus simulating land-use 
change at a 2 m by 2 m pixels is problematic when the 0.25 ha 
average residential parcel size in Lynnfield is more equi- 
valent to 50 m by 50 m pixels. It is difficult to interpret the 
results of a model when large discrepancies exist between  
the resolution of the pixels and the resolution of the pheno-  
mena being modeled. Common LUCC model features such as 
parcels, lots, and buildings may be more easily captured when 
the resolution of the data matches the resolution of the 
phenomenon. 

From a practical standpoint, coarser spatial resolution 
data also reduces data processing and management require- 
ments. In general, calculation time has been found to increa- 
se exponentially with the total number of pixels in a raster 
dataset (Hengl, 2006). Dietzel and Clarke (2004) found 
computational time for the SLEUTH model doubled when  
the resolution of input data went from 400 to 200 m. GEO- 
MOD model runtimes for the model in this study ranged  
from 20 minutes to 96 hours for the 2 m data, while run-  
times for the 30 m ranged from 20 minutes to 1 hour. Run- 
time for both datasets depended on the particular modeling 
scenario. We found any resolution finer than 2 m was impo- 
ssible with our desktop computer due to memory limitations. 
Data management requirements for the finer resolution data 
were also greater than those for the coarser 30 m data. For 
example, the input rasterized 2005 land-use map requires 30 
megabytes of hard disk drive storage in its 2 m resolution 
form, and only 0.13 megabytes in its 30 m resolution form.  

Another practical advantage of using coarser data is that 
many standard spatial data products have a spatial reso-  
lution of 20 to 250 m (Rogan and Chen, 2004). Coarser data 
that are near 30 m spatial resolution are more readily trans- 
ferable, compatible, and comparable with standard and wi- 
dely available satellite products such as Landsat (30 m) and 
MODIS (250 m ~ 1 km) (Rogan and Chen, 2004) and stan- 
dard land-cover products such as the 30 m Coastal Change 
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Analysis Program (C-CAP) (NOAA, 2010), Gap Analysis 
Program (GAP) (USGS, 2010), and the National Land Cover 
Database (NLCD) (EPA, 2007). Coarse spatial resolution data 
are also more compatible with statistical data, such as census 
data and economic indicators that are often used as ancillary 
data in LUCC modeling (Agarwal et al., 2002; Munroe and 
Muller, 2007; Alcamo et al., 2008). 

 

4.3. Advantages of 2 m Data 

Fine spatial resolution data, such as the 2 m data used in 
this study offers a few advantages over coarser spatial 
resolution data for town level LUCC modeling. Fine spatial 
resolution pixels can capture smaller landscape features that 
may be lost in coarser resolution data. Examples of such 
landscape features can include linear corridors for transport- 
tation or utilities and fine scale land-use of areas that tend to 
border or separate other land-uses such as forested land that 
may separate residential parcels in suburban areas. Addi- 
tionally, fine spatial resolution pixels represent boundaries 
and edges of features on the landscape more realistically, 
creating smoother feature edges that correspond more clo- 
sely to ground observations.  

 

4.4. Recommendations for Selecting Spatial Resolution 

Ideally, spatial resolution should be compatible with 
processing capabilities and should represent relevant land- 
scape features (Woodcock and Strahler, 1987; Hengl, 2006; 
van Delden et al., 2011). In reality, however, LUCC mo- 
delers do not often have the luxury of selecting the spatial 
resolution of calibration data. The most accessible data avai- 
lable are frequently a main determinant of spatial resolution. 

Many scholars provide basic heuristics that can be used 
to inform the selection of spatial resolution. For example, 
McBratney (2003) suggests selecting a spatial resolution in 
which at least 2 x 2 pixels represent the smallest rounded 
object of interest and at least 2 pixels represent the width of 
elongated objects. Dietzel and Clarke (2004) recommend 
using a spatial resolution of approximately 10 m to capture 
land change occurring at the parcel level, and a resolution of 
250 m to 1 km to capture changes occurring at the national 
level. It is clear from the variety of recommendations in the 
literature that there is no one optimal spatial resolution, but 
only approximate ranges applicable in specific circumstan- 
ces. Any spatially explicit process has an inherent spatial 
resolution (Agarwal et al., 2002; Evans and Kelley, 2004; 
Hengl, 2006), and attempts to model land change processes  
at spatial resolutions finer or coarser than the process’ in- 
herent spatial resolution will likely fail to represent the 
process’ spatial variability (Agarwal et al., 2002; van Delden 
et al., 2011). For example, the process of local parcel level 
land-use change is not represented well by 2 m pixels, as our 
study demonstrates. 

 

5. Conclusions 

The objective of this study is to assess the advantages 

and disadvantages of using 2 m data versus 30 m data in a 
spatially explicit land-use and land-cover change model, using 
a case study in suburban USA. The results underscore the 
importance of spatial resolution in LUCC modeling, and high- 
light particularly important implications for local and regional 
scale modeling. This study demonstrates that differences in 
the spatial resolution of calibration data can produce mea- 
surable differences in LUCC model outputs, even when all 
other modeling steps are the same. 

The 2 and 30 m output maps differ in their respective 
quantities of projected 2055 residential land-use by approxi- 
mately 32 ha, i.e. 1.2% of the town. This area difference is 
equivalent to approximately 128 average size residential 
parcels, which have an average residential parcel area of 0.25 
ha for the town of Lynnfield. The two output maps also differ 
in their spatial allocation of residential development. Diffe- 
rences in spatial allocation are caused by differences in the 
definition of feature edges between the two resolutions, with 
the 2 m resolution producing smoother edges, and by the 
greater tendency of the 2 m data to transfer small imperfec- 
tions in the original vector map to the final model output. The 
combination of quantity and allocation differences results in 
output maps that are visually distinctive. 

The 30 m data offers both practical and theoretical ad- 
vantages over the 2 m data in our case study. Practical 
advantages include less transfer of imperfections in the input 
data to the outputs, lower data handling requirements, and 
greater compatibility with standard satellite and non-remo- 
tely sensed statistical data. The theoretical advantages inclu- 
de a closer match between pixel size and the scale of the 
process being studied, since new residential development 
occurs in patches closer in size to 900 square meters than 4 
square meters. 

The 2 m data offers better representation of smaller fea- 
tures and edges. However, improvements in landscape repre- 
sentation at this resolution do not offer any substantial ana- 
lytical benefit for our case study. 

The results of this study support the existing consensus in 
the LUCC modeling literature regarding the potential of 
spatial resolution to alter the parameters and outputs of a 
LUCC model (Evans and Kelley, 2004; Pontius et al., 2004a; 
Jantz and Goetz, 2005; Pontius et al., 2007; van Delden et al., 
2011), reinforcing the conclusion that spatial resolution is    
a critical consideration in LUCC modeling. Most impor- 
tantly, this study confirms and extends this knowledge to 
spatial resolutions finer than that traditionally used in the 
LUCC modeling literature, i.e. finer than 20 m, informing 
modelers who seek to utilize very fine spatial resolution data. 
It is evident that as finer resolution land-use data become 
available, the selection of spatial resolution will remain a 
pertinent and important factor in the selection of data, the 
calibration of models, and in the interpretation of model out- 
put. The spatial resolution of data should always be consi- 
dered in the design, implementation, and interpretation of a 
LUCC model, as its effects on model output may be subs- 
tantial. An investigator should not assume that it is prefe- 
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rable to use data at a resolution finer than the minimum 
resolution of the modeled phenomenon; in fact, the opposite 
may be true. Modelers are offered greater advantages when 
the size of the unit of the map matches the size of the unit of 
the phenomenon of interest. 
 

Acknowledgments. The United States’ National Science Foundation 
(NSF) supported this work via the following programs: Long Term 
Ecological Research via grants OCE-0423565 & OEC-1058747, 
Coupled Natural Human Systems via grant BCS-0709685, and 
Research Experiences for Undergraduates via grant SES-0849985. 
Human-Environment Regional Observatory (HERO) of Central 
Massachusetts at Clark University provided additional support. The 
Commonwealth of Massachusetts, Massachusetts Geographic Infor- 
mation System, Office of Geographic and Environmental Information, 
Executive Office of Energy and Environmental Affairs supplied data. 
Dr. John Rogan, Dr. Yelena Ogneva-Himmelberger, and anonymous 
reviewers provided helpful comments. 
 

References 
 

Agarwal, C., Green, G.M., Grove, J.M., Evans, T.P., and Schweik, 
C.M. (2002). A review and assessment of land-use change mo-  
dels: dynamics of space, time, and human choice, CIPEC Col- 
laborative Report No. 1. USFS Publication GTR-NE-297. Joint 
publication by the Center for the Study of Institutions, Population, 
and Environmental Change (CIPEC) at Indiana University- 
Bloomington and the United States Department of Agriculture 
(USDA), United States Forest Service (USFS). USDA Forest 
Service Northeastern Forest Research Station.  

Alcamo, J., Kok, K., Busch, G., and Priess, J. (2008). Searching for 
the future of land: scenarios from the local to global scale. In 
Environmental Futures, Volume 2: The Practice of Environ- 
mental Scenario Analysis (Developments in Integrated Enviro- 
nmental Assessment) eds. Alcamo, J. Elsevier: Oxford, UK. 

Breunig, J. (2003). Losing Ground: At what Cost? Changes in Land 
Use and Their Impact on Habitat, Biodiversity, and Ecosystem 
Services in Massachusetts. Massachusetts Audubon Society, Third 
Edition: Summary Report, 1-24. 

Conway, T.M., and Lathrop, R.G. (2005). Alternative land use 
regulations and environmental impacts: assessing future land use 
in an urbanizing watershed. Landscape Urban Plann., 71(1), 1-15. 
http://dx.doi.org/10.1016/j.landurbplan.2003.08.005 

d’Aquino, P., August, P., Balmann, A., Berger, T., Bousquet, F., 
Brondízio, E., Brown, D.G., Couclelis, H., Deadman, P., Goodchild, 
M.F., Gotts, N.M., Gumerman, G.J., Hoffmann, M.J., Huigen, 
M.G.A., Irwin, E., Janssen, M.A., Johnston, R., Kohler, T., Law, 
A.N.R., Lee, V., Le Page, C., Lim, K., Manson, S.M., McConnell, 
W.J., McCracken, S., Moran, E., Najlis, R., Nassauer, J.I., Opaluch, 
J.J., Page, S.E., Parker, D.C., Polhill, J.G., Robinson, D. , 
Thompson, R., Torrens, P., Warren, K.(2002). Agent-Based Models 
of Land-Use and Land-Cover Change. Proc. of an International 
Workshop, October 4–7, 2001, Irvine, California, USA. 

DeNormandie, J. (2009). Losing Ground: Beyond the footprint: 
Patterns of development and their impact on the nature of Massa- 
chusetts. Massachusetts Audubon Society, Fourth Edition, 1-32. 

Dietzel, C., and Clarke, K.C. (2004). Spatial Differences in 
Multi-Resolution Urban Automata Modeling. Trans. GIS, 8(4), 
479-492. http://dx.doi.org/10.1111/j.1467-9671.2004.00197.x 

Eastman, J.R. (2009). IDRISI 16: The Taiga Edition, Worcester, MA, 
Clark University, USA. 

EPA, United States Environmental Protection Agency. (2007). 
National Land Cover Data (NLCD), Multi-Resolution Land 
Characteristics Consortium (MRLC), Research Triangle Foun- 
dation, NC. http://www.epa.gov/mrlc/  

Evans, T.P., and Kelley, H. (2004). Multi-scale analysis of a 
household level agent-based model of landcover change. J. 
Environ.Manage.,72(1), 57-72.http://dx.doi.org/10.1016/j.jenvman. 
2004.02.008 

Forster, B.C. (1985). An examination of some problems and solutions 
in monitoring urban area from satellite platforms. Int. J. Remote 
Sens.,6(1), 139-151. http://dx.doi.org/10.1080/01431168508948430 

Gibson, C.C., Ostrom, E., and Ahn, T.K. (2000). The concept of scale 
and the human dimensions of global change: a survey. Ecol. Econ., 
32(2),217-239. http://dx.doi.org/10.1016/S0921-8009(99)00092-0 

Hall, Charles A.S., Tian, H.Q., Qi, Y., Robert, G.P.Jr., and Joseph, C. 
(1995). Modelling spatial and temporal patterns of tropical land- 
use change. J. Biogeogr., 22, 753-757. http://dx.doi.org/10.2307/ 
2845977 

Hengl, T. (2006). Finding the right pixel size. Comput. Geotech., 
32(9), 1283-1298. http://dx.doi.org/10.1016/j.cageo.2005.11.008 

HERO (2010). Human-Environment Regional Observatory of  
Central Massachusetts at Clark University, Worcester, MA. 
http://www.clarku.edu/departments/hero/  

Herold, M., Menz, G., and Clarke, K.C. (2001). Remote sensing and 
urban growth models - demands and perspectives. Symposium on 
remote sensing of urban areas, Regensburg, Germany, Regens- 
burger Geographische Schriften, 35. 

Herold, M., Gardner, M.E., and Roberts, D.A. (2003). Spectral 
resolution requirements for mapping urban areas. Geoscience and 
Remote Sensing, IEEE Transactions on, 41(9), 1907-1919. 
http://dx.doi.org/10.1109/TGRS.2003.815238 

Herold, M., Couclelis, H., and Clarke, K.C. (2005). The role of 
spatial metrics in the analysis and modeling of urban land use 
change. Comput., Environ. Urban Syst., 29(4), 369-399. http:// 
dx.doi.org/10.1016/j.compenvurbsys.2003.12.001 

Jantz, C.A., and Goetz, S.J. (2005). Analysis of scale dependencies in 
an urban land-use-change model. Int. J. Geogr. Inf. Sci., 19(2), 
217-241. http://dx.doi.org/10.1080/13658810410001713425 

Jensen, R., and Cowen, D.C. (1999). Remote sensing of urban / 
suburban infrastructure and socio-economic attributes. Photo- 
gramm. Eng. Remote Sensing., 65(5), 611-622.  

Rose, Jonathan Companies LLC, Wallace Roberts, and Todd LLC. 
(2009). Smart Growth Guidelines for Sustainable Design and 
Development. United States Environmental Protection Agency, 
Office of Policy, Economics and Innovation: Smart Growth 
Implementation Assistance Program and Connecticut Capital 
Region Council of Governments. 

Kok, K., Farrow, A., Veldkamp, A., and Verburg, P. H. (2001). A 
method and application of multi-scale validation in spatial land use 
models. Agric., Ecosyst. Environ., 85, 223-238. http://dx.doi.org/ 
10.1016/S0167-8809(01)00186-4 

Kok, K., and Veldkamp, A. (2001). Evaluating impact of spatial 
scales on land use pattern analysis in Central America. Agric., 
Ecosyst. Environ., 85(1), 205-221. http://dx.doi.org/10.1016/ 
S0167-8809(01)00185-2 

MassGIS (2009). Massachusetts Geographic Information System. 
Office of Geographic and Environmental Information, Comm- 
onwealth of Massachusetts, Executive Office of Energy and 
Environmental Affairs. http://www.mass.gov/mgis/  

McBratney, A.B., Mendonca Santos, M.L., and Minasny, B. (2003). 
On digital soil mapping. Geoderma, 117(1), 3-52. http://dx.doi.org 
/10.1016/S0016-7061(03)00223-4 

Munroe, D.K., and Muller, D. (2007). Issues in spatially explicit 
statistical land-use/cover change (LUCC) models: Examples from 
western Honduras and the Central Highlands of Vietnam. Land 
Use Policy, 24(3), 521-530. http://dx.doi.org/10.1016/j.landusepol. 
2005.09.007 



S. D. Blanchard et al. / Journal of Environmental Informatics xx(x) xx-xx (2014) 

 

13 

NOAA, United States National Oceanic and Atmospheric Admi- 
nistration. (2010). Coastal Change Analysis Program (C-CAP), 
Digital Coast, NOAA Coastal Services Center, Charleston, SC, 
USA. http://coast.noaa.gov/digitalcoast/data/ccapregional/  

Pan, Y., Roth, A., Yu, Z., and Doluschit, R. (2010). The impact of 
variation in scale on the behavior of a cellular automata used for 
land use change modeling. Comput., Environ. Urban Syst., 34(5), 
400-408. http://dx.doi.org/10.1016/j.compenvurbsys.2010.03.003 

Pontius, R.G., Cornell, J.D., and Hall, C.A.S. (2001). Modeling the 
spatial pattern of land-use change with GEOMOD2: application 
and validation for Costa Rica. Agric., Ecosyst. Environ., 1775, 
1-13. http://dx.doi.org/10.1016/S0167-8809(01)00183-9 

Pontius, R.G., Huffaker, D., and Denman, K. (2004a). Useful te- 
chniques of validation for spatially explicit land-change mod-   
els. Ecol. Model., 179(4), 445-461. http://dx.doi.org/10.1016/j. 
ecolmodel.2004.05.010 

Pontius, R.G., Shusas, E., and McEachern, M. (2004b). Detecting 
important categorical land changes while accounting for persi- 
stence. Agric., Ecosyst. Environ., 101(2), 251-268. http://dx.doi. 
org/10.1016/j.agee.2003.09.008 

Pontius, R.G., and Malanson, J. (2005). Comparison of the structure 
and accuracy of two land change models. Int. J. Geogr. Inf. Sci., 19 
(2), 243-265. http://dx.doi.org/10.1080/13658810410001713434 

Pontius, R.G. and Chen, H. (2006). GEOMOD Modeling. Chapter of 
help system in Eastman, J.R. IDRISI 17: The Selva Edition. 
Worcester MA, Clark Labs, USA. 

Pontius, R.G., Walker, R., Yao-Kumah, R., Arima, E., Aldrich, S., 
Caldas, M., and Vergara, D. (2007). Accuracy assessment for a 
simulation model of Amazonian deforestation. Ann. Assoc. Am. 
Geogr., 97(4), 677-695. http://dx.doi.org/10.1111/j.1467-8306.2007. 
00577.x 

Pontius, R.G., and Millones, M. (2011). Death to Kappa: birth of 
quantity disagreement and allocation disagreement for accura-   
cy assessment. Int. J. Remote Sens., 32(15), 4407-4429. http://dx. 
doi.org/10.1080/01431161.2011.552923 

Pontius, R.G., Boersma, W., Christophe Castella, J., Clarke, K., Nijs, 
T., Dietzel, C., Duan, Z., Fotsing, E., Goldstein, N., Kok, K., 
Koomen, E., Lippitt, C.D., McConnell, W., MohdSood, A., 
Pijanowski, B., Pithadia, S., Sweeney, S., Trung, T.N., Veldkamp, 
A.T., and Verburg, P.H. (2008). Comparing the input, output, and 
validation maps for several models of land change. Ann. Reg. Sci., 
42(1), 11-37. http://dx.doi.org/10.1007/s00168-007-0138-2 

Pontius, R.G., Peethambaram, S., and Castella, J. (2011). Comp- 
arison of Three Maps at Multiple Resolutions: a case study of land 
change simulation in Cho Don District, Vietnam. Ann. Assoc. Am. 
Geogr., 101(1), 45-62. http://dx.doi.org/10.1080/00045608.2010. 
517742 

Reardon, T. (2008). Regional Plan: Goals and Objectives. Met- 
roFuture, Metropolitan Area Planning Council, Boston, MA, 1-60. 

Rogan, J., and Chen, D.M. (2004). Remote sensing technology for 
mapping and monitoring land-cover and land-use change. Prog. 
Plann., 61(4), 301-325. http://dx.doi.org/10.1016/S0305-9006(03) 
00066-7 

 
 
 
 
 
 
 
 
 
 
 

Schneider, L.C., and Pontius, R.G. (2001). Modeling land-use change  
in the Ipswich watershed, Massachusetts, USA. Agric., Ecosyst. 
Environ., 85(1), 83-94. http://dx.doi.org/10.1016/S0167-8809(01) 
00189-X 

Turner II, B.L., Lambin, E.F., and Reenberg, A. (2007). The 
emergence of land change science for global environmental 
change and sustainability. Proc. Natl. Acad. Sci., 104(52), 
20666-20671. http://dx.doi.org/10.1073/pnas.0704119104 

US Census, United States Census Bureau. (2010). United States 
Census Bureau, United States Department of Commerce, 
Washington, DC. http://www.census.gov/ 

USGS (2010). Gap Analysis Program (GAP), National Biologi-   
cal Information Infrastructure, United States Geological Sur-   
vey, Reston, VA, USA. http://gapanalysis.usgs.gov/ 

Van Delden, H., Van Vliet, J., Rutledge, D.T., and Kirkby, M.J. 
(2011). Comparison of scale and scaling issues in integrated 
land-use models for policy support. Agric., Ecosyst. Environ., 
142(1), 18-28. http://dx.doi.org/10.1016/j.agee.2011.03.005 

Veldkamp, A., and Lambin, E.F. (2001). Predicting land-use change. 
Agric., Ecosyst. Environ., 85 (1), 1-6. http://dx.doi.org/10.1016/ 
S0167-8809(01)00199-2 

Veldkamp, A., Verburg, P.H., Kok, K., De Koning, G.H.J., Priess, J., 
and Bergsma, A.R. (2001). The need for scale sensitive approaches 
in spatially explicit land use change modeling. Environ. Model. 
Assess.,6(2), 111-121. http://dx.doi.org/10.1023/A:1011572301150 

Verburg, O.H., De Koning, G. H. J., Kok, K., Veldkamp, A., and 
Bouma, J.(1999). A spatial explicit allocation procedure for 
modeling the pattern of land use change based upon actual land 
use. Ecol. Model., 116, 45-61. http://dx.doi.org/10.1016/S0304- 
3800(98)00156-2 

Verburg, P. H., and Veldkamp, A. (2001). The role of spatially 
explicit models in land-use change research: a case study for 
cropping patterns in China. Agric., Ecosyst. Environ., 85(1), 
177-190. http://dx.doi.org/10.1016/S0167-8809(01)00184-0 

Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, 
V., and Mastura, S.S.A. (2002). Modeling the spatial dynamics of 
regional land use: the CLUE-S model. Environ. Manage., 30(3), 
391-405. http://dx.doi.org/10.1007/s00267-002-2630-x 

Verburg, P.H., Schot, P.P., Dijst, M.J., and Veldkamp, A. (2004). Land 
use change modelling: current practice and research priorities. 
GeoJournal, 61(4), 309-324. http://dx.doi.org/10.1007/s10708- 
004-4946-y 

Walsh, S. J., Evans, T. P., Welsh, W. F., Entwisle, B., and Rindfuss, 
R.R. (1999). Scale-dependent relationships between population 
and environment in northeastern Thailand. Photogramm. Eng. 
Remote Sensing, 65(1), 97-105. 

Walsh, S.J., Crawford, T.W., Welsh, W.F., and Crews-Meyer, K.A. 
(2001). A multiscale analysis of LULC and NDVI variation in 
Nang Rong district, northeast Thailand. Agric., Ecosyst. Environ., 
85(1), 47-64. http://dx.doi.org/10.1016/S0167-8809(01)00202-X 

Woodcock, C.E., and Strahler, A.H. (1987). The factor of scale in 
remote sensing. Remote Sens. Environ., 21(3), 311-332. http://dx. 
doi.org/10.1016/0034-4257(87)90015-0 

 


