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ABSTRACT. Due to its low hydraulic conductivity compacted soil-bentonite mixture is widely used as a barrier material at waste 

disposal site. The experimental determination of hydraulic conductivity of soil-bentonite mixture, which depends on the various 

physical and chemical and mineralogical factors, requires expensive and time consuming setup. Thus, a hybrid neural network model 

(combining genetic algorithm with neural network) is presented here as a complementary tool to model hydraulic conductivity of 

soil-bentonite mixture. The prediction capability of the model has been found to be satisfactory. The developed model yielded 

correlation coefficients of 0.98 and 0.97 for training and testing data sets, respectively. The proposed model was compared with 

conventional neural network models by using different statistical indicators such as Nash-Sutcliffe model efficiency and discrepancy 

ratio with standard deviation. It was found that the predictions obtained from developed model agreed well with experimental 

observations. Identification of important parameters and ranking their order of influence on hydraulic conductivity has been discussed 

by using input significance test. 
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1. Introduction 

To minimize or eliminate the risk of the ground water 

being contaminated due to the toxic chemicals present in the 

waste leachate, the design of waste disposal facilities typically 

involves some form of barrier which separates the waste from 

the groundwater system. The barrier material should possess a 

low value of hydraulic conductivity. Due to its high swelling 

capacity and contaminant adsorption capability, bentonite is 

used as a barrier material. Bentonite, which is derived from 

the in situ chemical alteration of volcanic ash (Mitchell and 

Soga, 2005) is primarily composed of mineral Montmorillo- 

nite (Al1.7Mg0.3)[Si4O10(OH)2]
-0.3(M)+0.3, where M represents 

the exchangeable cation, exerts a significant influence on the 

properties of the bentonite. Fine particles, interlayer swelling 

and a thick layer of bound water associated with Montmorillo- 

nite cause bentonite to exhibit low permeability to passage of 

water (Mesri and Olson, 1971). 

In order to achieve a higher compacted density and to 

reduce the shrinkage due to drying, bentonite is generally 

mixed with a locally available soil. Generally, a small amount 

of bentonite, typically 20% by its dry weight (Daniel, 1987; 
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Chapuis et al., 1992; Gleason et al., 1997), is used for this 

purpose in a soil-bentonite mixture. High swelling potential of 

bentonite in the presence of water resulting in the formation 

of a relatively ‘‘tight’’ soil matrix (Howell and Shackelford, 

1997) and provide a lower hydraulic conductivity value to 

soil-bentonite mixture. Since the hydraulic conductivity is one 

of the most important design criteria for the material to be 

used as a barrier material, hydraulic conductivity test is ca- 

rried out on soil-bentonite mixture before its being used at the 

waste disposal site. However due to very low hydraulic 

conductivity of sand-bentonite mixture, this test is not only 

time consuming but also expensive. Hence, it is very essential 

to develop a model to predict the hydraulic conductivity of 

soil-bentonite mixture.  

In recent years, there has been growing interest in utilize- 

tion of artificial intelligence based soft-computing techniques 

for modeling of complicated engineering problems. Soft com- 

puting is an emerging paradigm based on the backbone of arti- 

ficial intelligence, evolutionary/bio-inspired computing and 

probabilistic computing. These allow developing of statistical 

black-box models based entirely on historical/experimental 

data. The suitability of application of soft computing comes 

from the fact that it allows for uncertainties in measured va- 

lues. These “black-box” models are purely statistical models 

and model parameters are adjusted by providing training data 

so as to give predictions for independent and new inputs. 

Primarily, soft computing techniques include artificial neural 

network (ANN), fuzzy logic, genetic algorithms (GA), parti- 

cle swarm optimization (PSO) etc. Soft computing has been 
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employed extensively in geotechnical engineering with vary- 

ing applications. Najjar and Basheer (1996) evaluated the per- 

meability of compacted clay liners utilizing computational 

neural networks (CNN). The developed CNN models were 

used to predict the permeability of compacted clay for a 

known set of soil properties and field conditions. Shahin et al. 

(2002) predicted the settlement of shallow foundations on 

cohesionless soils using ANN. Samui and Kumar (2006) has 

used neural network for two layer slope stability problem. 

Kumar and Samui (2008) analyzed pore water pressure res- 

ponse through neural network. Erzin et al (2009) studied the 

hydraulic conductivity of compacted fine grained soils deve- 

loping ANN and multiple regression analysis (MRA) models. 

Lim and Kolay (2009) predicted hydraulic conductivity of 

tropical soils by using ANN and demonstrated a comparison 

between the conventional estimation of hydraulic conductivity 

by using Shepard’s equation and the predicted hydraulic con- 

ductivity from ANN. Özgan (2009) used neural network to 

estimate the soil particle diameter under varying quantity of 

Sodium Hexametaphosphate. Bektas and Özgan (2010) fur- 

ther used adaptive neuro fuzzy inference system for estima- 

ting particle diameter of soils. Shahin (2010) developed ANN 

models for predicting axial capacity of pile foundations. Das 

et al. (2010) utilized computational intelligence techniques; 

artificial neural network and support vector machine to deve- 

lop models to predict swelling pressure of soil from the inputs; 

natural moisture content, dry density, liquid limit, plasticity 

index, and clay fraction of the soil. Jain et al. (2010) utilized 

ANN technique to predict the shear strength parameters of 

medium compressibility soil, which is influenced by basic 

properties of soil in unconsolidated undrained conditions. Das 

et al. (2011) utilized artificial intelligence to predict maximum 

dry density and unconfined compressive strength of cement 

stabilized soil using inputs like liquid limit, plasticity index, 

clay fraction, sand, gravel, moisture content  and cement 

content. Based on different statistical criteria the support 

vector machine (SVM) models were found to be better than 

ANN models for the prediction of maximum dry density and 

unconfined compressive Strength of cement stabilized soil. 

Adarsh et.al (2012) examined the potential of two soft compu- 

ting techniques, namely, SVM and genetic programming (GP), 

to predict ultimate bearing capacity of cohesionless soils be- 

neath shallow foundations. Das et al. (2012) used ANN and 

SVM for predicting the field hydraulic conductivity of clay 

liners. Manouchehrian et.al (2014) studied slope stability for 

circular mode failure by developing a model using genetic 

algorithm. 

Hydraulic conductivity prediction is one of the most 

challenging geotechnical engineering problems because inter- 

dependence on several parameters associated with uncertainty 

parameters. Thus the aim of the present work is to develop the 

hydraulic conductivity predictor by employing soft computing 

tool. The most versatile learning algorithm for the feed for- 

ward layered neural network is backpropagation. The back- 

propagation learning law is a supervised error-correction rule 

in which the output error, that is, the difference between the 

desired and the actual output is propagated back to the hidden 

layers. There are some drawbacks to backpropagation. For 

one, there is the "scaling problem". Backpropagation works 

well on simple training problems. However, as the problem 

complexity increases (due to increased dimensionality and/or 

greater complexity of the data), the performance of backpro- 

pagation falls off rapidly. The performance degradation ap- 

pears to stem from the fact that complex spaces have nearly 

global minima which are sparse among the local minima. 

Backpropagation cannot handle discontinuous optimality cri- 

teria or discontinuous node transfer functions. This precludes 

its use on some common node types and simple optimality 

criteria. Genetic algorithm, by working with a population of 

solutions, can seek many local minima, and thus increase the 

likelihood of finding global minimum. This advantage of the 

genetic algorithm can be applied to neural networks to opti- 

mize the topology and weight parameters. Genetic algorithm 

has the potential of producing a global minimum of the 

weight space and thereby avoiding local minima which is the 

most shortcoming of the back propagation algorithm. Thus, a 

hybrid model (combining genetic algorithm with neural net- 

work) has been adopted in the present work to model the 

hydraulic conductivity of soil-bentonite mixture.  

2. Materials and Methods 

Fifteen different types of bentonite from the different 

sources in Japan and the U.S.A. were selected for this study. 

Fifteen different types of mixed were obtained by mixing each 

bentonite with a locally available soil in a ratio of 20:100 by 

their dry weight. The physical and chemical properties of the 

bentonites and soil are listed in Table 1.  

 

2.1. Testing Procedures  

The free swelling of the bentonites was determined 

according to ASTM 5890 (2001). Hydrometer analysis as well 

as dry sieving was carried out as per as ASTM D 422-63 

(2002) to determine the grain size distributions of bentonite 

and soil. Liquid limit of the bentonites as well as soil-bento- 

nite mixtures were carried by Casagrande’s method (ASTM D 

4318, 2000) and fall cone method (JGS 0142, 2000) and the 

average value of these two was taken as the liquid limit. 

Methylene blue index test (ASTM C 837-99, 1984) was car- 

ried out to determine the percentage of Montmorillonite pre- 

sent in the bentonite. The cation exchange capacity (CEC) and 

exchangeable cations of the bentonites and the soil were 

determined by the ammonium acetate method as described by 

Chapman (1965) and Pratt (1965) respectively. The consoli- 

dation test was carried out in to determine the hydraulic 

conductivity on the mixtures using a standard consolidometer 

with 60 mm in diameter and 20 mm in thickness according to 

ASTM D 2435 (1996). The samples were prepared by adding 

de-ionized (DI) water to the different soil and bentonite mix- 

tures, and the initial water content of the samples was adjusted 

to their respective liquid limit. The consolidation ring was 

immersed in the DI water and entire consolidation cell was 

enclosed within a plastic bag to reduce evaporation. Then the 
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consolidation cells were allowed to equilibrate for 24 hour 

prior to commencing the test. All the samples were initially 

loaded with a stress of 4.9 kPa and increased gradually by an 

increment ratio of 1 as per ASTM D 2435 (1996) (i.e. increa- 

sed by 4.9, 9.8, 19.6, 39.2 kPa, etc. at each step) to a maxi- 

mum pressure of 1,254.4 kPa. 

 

2.2. Determination of Hydraulic Conductivity  

For each pressure increment the change in the thickness 

of the soil sample was measured from the readings of the dial 

gauge. The change in the void ratio corresponding to an in- 

crease in the overburden pressure was calculated as: 

 

0(1 )e H e H     (1) 

 

where Δe = Change in void ratio of sample due to increase in 

overburden pressure, ΔH = Change in the thickness of sample 

due to increase in overburden pressure, H = Initial thickness 

of the sample, and e0 = Initial void ratio of the sample. 

From the consolidation test result, a time-settlement cur- 

ve was obtained at each pressure increment. The coefficient of 

consolidation (cv) was obtained using Taylor's square root 

time method (Taylor, 1942). The co-efficient of volume cha- 

nge (mv) was calculated as: 

 

0(1 )y ym a e   (2) 

 

where av = Coefficient of compressibility = Δe/Δσ and Δσ = 

Change in pressure. 

The hydraulic conductivity (k) was calculated using the 

Equation (3) for various pressure increments using the coeffi- 

cient of consolidation and coefficient of volume change: 

 

y y wk c m   (3) 

 

where γw is the unit weight of the pore fluid. 

3. Modeling Approach 

In this paper, a hybrid algorithm using genetic algorithm 

(GA) technique is proposed to optimize parameters of the 

Multi-Layer Perceptron Neural Networks (MLPNN). A simple 

chromosome representation is used, which contains informa- 

tion about connections, weights and biases of the MLPNN. 

The parameter learning process, based on GA technique and 

backpropagation algorithm, is a two-step learning process. In 

the first step, the initial parameters, such as weights and bia- 

ses of the neural network are tuned by the GA. In the second 

step, the backpropagation algorithm and the Levenberg-Mar- 

quadtt method is introduced to train the initial neural network 

to yield optimal values of weights and biases of the ANN. The 

block diagram of the proposed hybrid algorithm is depicted by 

Figure 1. This model describes a hybrid learning algorithm of 

MLPNN by using the GA to optimize the parameters of the 

network. All the parameters of the network are encoded to 

form a long chromosome and tuned by the GA. Then, as a 

result of the GA process, the backpropagation (BP) algorithm 

is used to train the network. The procedure of the hybrid BP 

learning algorithm is presented as follows. 

 

3.1. Chromosome Representation 

An MLPNN can be represented by a directed graph, 

encoded on a chromosome with each parameter (weights and 

biases). All these parameters are memorized by a row vector 

C = (ci), i = 1, 2, ..., M, where M is the number of all NN 

parameters. The chromosome can be written as: 

 

 Table 1. The Physical and Chemical Properties of the Bentonites and Soil 

Bentonite/Soil type LLB (%) LLM (%) Activity CF (%) CEC MM (%) ESP (%) FS (mL/2g) 

Western bond  

Super clay  

Volclay  

Federal FB-1  

Federal FB-2  

Federal FB-3  

Premiumgel 

Neokunibond  

Asama  

Kunigel VAS 

Akagi  

Hotaka  

New Hotaka  

Kunibond 

Panther creak 

Soil  

678.0 

615.5 

567.0 

522.6 

542.0 

560.9 

511.2 

510.5 

481.0 

391.4 

360.1 

310.5 

290.2 

192.2 

119.4 

52.0 

133 

140.5 

123.5 

121.22 

119.6 

134.03 

118 

102.3 

83.63 

92.7 

73.15 

78.5 

90.67 

85.22 

74.08 

- 

7.2 

6.9 

6.4 

5.9 

6.1 

6.3 

6.3 

6.4 

5.8 

4.8 

4.9 

4.2 

3.8 

2.5 

2.1 

1.9 

85.7 

82.8 

80.8 

78.8 

79.3 

79.0 

74.1 

69.5 

73.6 

69.2 

62.0 

61.4 

60.1 

53.1 

32.4 

12.0 

83.3 

72.3 

80.7 

64.7 

64.2 

62.6 

92.4 

77.0 

70.1 

61.0 

84.2 

85.1 

95.6 

82.7 

81.4 

18.8 

65.7 

57.1 

62.8 

49.2 

48.5 

48.5 

53.5 

70 

40 

72.8 

45.7 

45 

54.3 

72.3 

50 

- 

44.9 

64.5 

44.2 

28.1 

23.6 

30.6 

53.8 

51.8 

23.8 

53.3 

25.1 

19.6 

25.2 

19.9 

1.7 

- 

29 

25 

29 

24 

21 

20 

24 

19 

13 

21 

14 

14 

15 

9 

6 

0 

*LLB = Liquid limit of bentonite; LLM = Liquid limit of soil-bentonite mixtures; CF = Clay fraction (%); CEC = Cation exchange 

capacity (cmolc/kg); MM = Montmorillonite content (%); ESP=Exchangeable sodium percentage (%); FS=Free swelling. 
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1 2[ , ]C W W  (4) 

 

where W1 denotes the connective weight of link between the 

input layer and the first hidden layer and W2 is the connective 

weight of link between the hidden layer and output layer. 

 

3.2. Fitness Function 

The fitness function is dependent on problem and is used 

to evaluate the performance of each individual. The error 

signal of the output neuron j at iteration n (i.e., presentation of 

the nth
 training example) is defined by: 

 

( ) ( ) ( )j j je n d n y n   (5) 

 

where ( )jd n is the simulated output and ( )jy n is the actual des- 

ired output. 

The instantaneous value of the error energy for neuron j 

can also be defined as:
2(1 2) ( )je n . Correspondingly, the value 

of ξ(n) is obtained by summing
2(1 2) ( )je n over all neurons in 

the output layer (Haykin, 1999): 

 

21
( ) ( )

2
j

j C

n e n


   (6) 

 

where the set C includes all the neurons in the output layer of 

the network. For MLPNN it is the sum squared error. The 

fitness is defined as by summing ξ(n) over all n with respect 

to the set size N; as shown by: 

 

1

( )
N

n

F n


  (7) 

 

Here, the objective is to minimize F(·) subject to weights and 

biases. 

 

3.3. Selection 

The selection operator is to select individuals from the 

population for reproduction based on the relative fitness value 

of each individual. The extraction can be carried out in several 

ways. One of the most commonly used selection methods is 

the roulette wheel selection (Goldberg, 1989), where indivi- 

duals are extracted in probability following a Monte Carlo 

procedure. The extraction probability pr(Xi) of each individual 

Xi is proportional to its fitness F(Xi) as a ratio to the average 

fitness of all the individuals. The offsprings are produced 

based on this selection. 

 

3.4. Crossover 

To apply the standard crossover operator the individuals 

of the population are randomly paired. Crossover takes two 

parents and performs an interpolation of the two parents. Each 

pair is then recombined, and the new individuals (offsprings) 

are formed by the interpolation of parents. 

 

3.5. Mutation 

After crossover, the new individuals are subjected to 

mutation. Mutation prevents the algorithm being trapped in a 

local minimum. A variable is selected with a certain probabi- 

lity and its value is modified by a random value. Here, we 

choose non-uniform mutation method. Non-uniform mutation 

changes one of the genes of the parent based on a non-uni- 

form probability distribution. 

 

3.6. Levenberg-Marquadt Method  

Levenberg-Marquardt works by making the assumption 

that the underlying function being modeled by the neural 

network is linear. Based on this calculation, the minimum can 

be determined exactly in a single step. The calculated mini- 

mum is tested, and if the error there is lower, the algorithm 

moves the weights to the new point. This process is repeated 

iteratively on each generation. The equations for changing the 

weights (ΔW) during training in Levenberg-Marquardt me- 

thod are given as follows: 

 
1( )T TW J J I J e     (8) 

 

where J is the Jacobian matrix of the derivative of each error 

to each weight, µ is a scalar and e is an error vector. The 

Levenberg-Marquardt algorithm performs very well and its 

 

 

 

  

 

 

 

 

 

 

 

Start 

Creating initial 
MLPNN 

GA start 

Initializing GA 
parameters, crossover, 

mutation 
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fitness 

Satisfying the 
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New 
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 Figure 1. Flowchart of the learning algorithm. 
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efficiency is found to be of several orders above the conven- 

tional back propagation with learning rate and momentum 

factor. 

4. Results and Discussion 

Entire modeling and analysis has been done by the use of 

neural network and genetic algorithm toolbox of MATALB® 

software. Since the hydraulic conductivity depends on the fac- 

tors such as percentage of Montmorillonite; liquid limit of 

bentonite and soil-bentonite mixture; free swelling, cation ex- 

change capacity, exchangeable sodium percentage (ESP), spe- 

cific surface area and activity of bentonite along with overbur- 

den pressure and void ratio, these factors were chosen as input 

variables in ANN. The total number of input variables is 10. 

Total number of observations used in the modeling is 73. As 

recommended by Masters (1993), observations are randomly 

divided into two statistically consistent sets: a training set for 

model calibration and an independent set for model testing. 

For development of ANN model, two-third of the total data 

has been used for training and one-third for testing. It should 

be noted that, like all empirical models, ANNs perform best in 

interpolation rather than extrapolation (Masters, 1993); conse- 

quently, the extreme values of the available data are included 

in the training set. The statistics of the data used for the trai- 

ning and testing sets are given in Table 2.  

Once data have been divided into training and testing sets, 

the input and output variables are preprocessed by scaling 

them between 0.0 and 1.0 to eliminate their dimension and to 

ensure that all variables receive equal attention during training. 

The simple linear mapping of the variables’ practical extremes 

to the neural network’s practical extremes is adopted for 

scaling, as it is the most common method for this purpose 

(Masters, 1993). As part of this method, for each variable x 

with minimum and maximum values xmin and xmax, respect- 

tively, the scaled value of xn is calculated as follows: 

min max min( ) ( )nx x x x x   . The final architecture of neural 

net used in the analysis is 10-10-1 and given in the Figure 2. 

The transfer function used in the model is tan-sigmoid for 

both input to hidden and hidden to output layers. The idea 

behind choosing sigmoid functions as transfer functions is 

that it bears a greater resemblance to the biological neurons. 

In case of sigmoid functions, the output of the neurons varies 

continuously but not linearly with the input. Results of neural 

modeling are shown in Figure 3. It can be clearly seen from 

Figure 3 that the linear coefficient of correlation is very high 

between observed data and values predicted through neural 

nets and it is 0.98 and 0.97 in training and testing respectively.  

This shows the learning and generalization performance 

of the network is good. Comparison has been done on the 

basis of Nash-Sutcliffe model efficiency and discrepancy ratio 

with standard deviation. The Nash-Sutcliffe model efficiency 

coefficient (E) is used to assess the predictive power of 

models (Nash and Sutcliffe, 1970). It is defined as: 

 
2

2

( )
1

( )

observed simulated
E

observed observed mean


 






 (9) 

 

The value of E can range from -∞ to 1.0, with higher 

values indicating a better overall fit and 1.0 indicating a 

perfect fit. An efficiency of 0 (E = 0) indicates that the model 

predictions are as accurate as the mean of the observed data, 

whereas an efficiency less than zero (E < 0) occurs when the 

Table 2. Summary of Statistical Details of the Data 

Variables Mean Minimum Maximum Std.Dev. 

LLM 102.24 74.08 123.50 19.11 

LLB 415.85 119.40 567.00 160.01 

CEC 74.38 61.00 92.40 10.81 

ESP 31.09 1.74 53.77 17.01 

FS 18.38 6.00 29.00 7.63 

MM 56.14 40.00 72.80 11.23 

Activity 4.98 2.07 6.40 1.63 

CF 67.66 32.40 80.80 15.79 

Pressure (Kpa) 278.49 4.90 1255.68 397.78 

Average void ratio 1.56 0.74 2.74 0.53 

Hydraulic conductivity (cm/sec) 5.90E-08 1.71E-09 6.66E-07 1.08E-07 

 

 

Figure 2. Single layer neural network architecture for 

hydraulic conductivity. 
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observed mean is a better predictor than the model. The 

discrepancy ratio and standard deviation have been used to 

indicate the accuracy of the goodness-of-fit. The discrepancy 

ratio indicates the goodness-of-fit between the predicted and 

observed results. One of the ways to measure the goodness- 

of-fit is the use of standard deviation (Yang and Simôes, 2005) 

based on the average value of the logarithm ratio between 

computed and measured results using the following equation:  

 

2

log

1

a

a

simulated
D

observed

No. of  observations


  
  

  





 (10) 

 

where,  

 

log

 a

simulated

observed
D

No. of  observations

 
 
 


 (11) 

 

is a perfect fit for 0a  . 

Two standard training algorithms, the Levenberg-Mar- 

quardt (LM) optimization and the BFGS (Broyden, Fletcher, 

Goldfarb, and Shanno) quasi-Newton method, have been used 

to compare the GA-ANN results. Table 3 enlists the results. 

Table 3 suggests that present developed model performs better 

than other methods when compared with different statistical 

measures.  

The form of the developed model is as follows:  

2 2 1 1( ( ))Y f W f W X  (12) 

 

where Y [1] is the output value of the model, W1 [10 10] is the 

input-hidden layer weight values and W2 [1 10] hidden-output 

layer weight values. X [10 1] is the input patterns and f1 and f2 

are the hyperbolic tangent transfer functions. The developed 

model has been applied to the independent data sets taken 

from Mishra et al. (2008) for prediction of hydraulic conduc- 

tivity. Figure 4 shows the parity plot of hydraulic conductivity. 

It can be seen from the Figure 4 that linear coefficient of 

correction is 0.97 and the value of E and σa are 0.92 and 0.024. 

Thus it can be said that the applicability of the present model 

is satisfactory and resulting weights can be used for further 

field applications.  

A variety of methods are available for the estimation of 

the contribution of predictor variables in relationship to the 

output. For example, Partial Derivative method provides a 

profile of the output variations for small changes of each input 

variable and classification of the relative contributions of each 

variable to the network output. ‘Stepwise’ method is based on 

the classical stepwise approach that consists of adding or 

rejecting step by step one input variable and noting the effect 

on the output results (Gevrey et al., 2003). ‘Profile’ method 

proposed by Lek et al. (1996) studies each input variable 

successively when the others are blocked at fixed values. In 

the neural network, the connection weights between neurons 

are the linkages between the input and the output of the 

network, and therefore are the link between the problem and 

the solution (Olden and Jackson, 2002). Garson algorithm or 

 Table 3. Comparative Analysis of Different Intelligent Predictors  

Methodology 
R2 E  

Training Testing Training Testing Training Testing 

GA-ANN 0.98 0.97 0.97 0.94 0.02 0.07 

ANN-LM 0.97 0.92 0.95 0.92 0.092 0.28 

ANN-BFGS 0.94 0.88 0.92 0.9 0.06 0.13 

  

 
 

  Figure 3. Performance of hybrid neural network model for training and test sets. 
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‘Weights’ method includes partitioning the connection wei- 

ghts to determine the relative importance of the various inputs. 

In the present work, Garson algorithm has been implemented 

to know the importance of the input variables on output. 

Garson (1991) proposed a method for partitioning the neural 

network connection weights in order to determine the relative 

importance of each input variable in the network. The metho- 

dology for this algorithm is as follows: 

(a) For each hidden neuron h, divide the absolute value of 

the input-hidden layer connection weight by the sum of the 

absolute value of the input-hidden layer connection weight of 

all input neurons, i.e., for h = 1 to nh, and i = 1 to ni: 

 

1

ih

ih ni

ih

i

W
A

W





 (13) 

 

(b) For each input neuron i, divide the sum of the Aih for 

each hidden neuron by the sum for each hidden neuron of the 

sum for each input neuron of Aih, multiply by 100. The 

relative importance of all output weights attributable to the 

given input variable is then obtained. For i = 1 to ni: 
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Garson’s algorithm is based on the weight matrices of the 

neural network. The calculations have been shown in the 

Table 4. 

As it can be seen from Table 4, the percentage of Mont- 

morillonite has much more effect on hydraulic conductivity of 

soil-bentonite mixture than others. Since Montmorillonite di- 

rectly influences the thickness of the diffuse double layer 

which in turn controls the hydraulic conductivity, it predicts 

the hydraulic conductivity quite accurately in comparison to 

other parameters. The other important parameter is the liquid 

limit of the bentonite as it is also related with the amount of 

diffuse double layer water present. On the other hand, perc- 

entage of clay fraction present in the soil has least influenced 

on the hydraulic conductivity amongst all the parameters 

followed by liquid limit of mixture and cation exchange 

capacity. Since only those clay particle which exhibits swel- 

ling behaviour influences the hydraulic conductivity, percent- 

tage of clay fraction, which do not distinguishes swelling and 

non-swelling clay particles type, it occupies the least position. 

5. Conclusions 

In this study an attempt has been made to predict the 

hydraulic conductivity of soil-bentonite mixture using the 

hybrid-neural network model. In this way, a qualitative effect 

of all types of parameters can be incorporated in the predict- 

tion analysis. The generalization capacity of the model is very 

good considering there are so many different parameters af- 

fectting hydraulic conductivity. Based on different statistical 

performance criteria, the developed model is found to be more 

efficient compared with the conventional ANN model. The 

input significance test shows that the percentage of Montmo- 

rillonite and liquid limit of the bentonite are the most impor- 

tant parameters affecting hydraulic conductivity of soil-bento- 

nite mixture. 
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