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ABSTRACT. Assessing environmental risks on large dams is a challenging task. This paper describes a study on a novel and compre- 
hensive application of Bayesian Networks (BNs) on the Abolabbas dam in Iran. Bayesian networks are based on probability theory and 
provide a powerful tool for structuring conceptualizations of the interactions between variables with uncertainties. Firstly, the 
interaction-based structure of variables is developed using the graphical model. Then, the Bayesian Network input variables, which 
affect the risk in two categories ("hazards index" and "consequences index"), are determined and the relations between different 
variables are modeled. The probability values for the risk levels are derived from a novel fuzzy set analysis. The results show that the 
environmental risk of the Abolabbas dam is considered at a high level with 12.8 percent probability. Also, the sensitivity analysis is 
used to find out the most effective variables on the environmental risk of the dam site. Finally certain important action plans are 
suggested to reduce and control the risk which represents a novel way for the risk reduction. 
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1. Introduction  

One of the primary goals of sustainable development is 
to achieve economic growth in the form of coordinated pro- 
grams with environmental criteria and standards and to pre- 
vent degradation of renewable and non-renewable resources. 
To cope with population increase and living standard impro- 
vements, dams are widely built to deliver hydropower energy, 
to supply water for domestic, industrial and agricultural uses, 
and to help recreation activities. Dams have made important 
contributions to recent urban development, and their benefits 
have been considerable. However, critics of dams argue that 
the reduction of dams’ environmental impacts is a challenging 
problem (World Commission on Dams, 2000) and the natural 
environment has paid a heavy price for man-made dams in 
addition to population relocation and other social impacts 
(Bohlen and Lewis, 2008).  

There have been numerous studies on dams’ environ- 
mental impacts. It has been found that dams may damage up- 
stream riparian habitats (Ohmart et al., 1988), change the river 
flow regimes (Maingi and Marsh, 2002), degrade ecological 
systems (Baxter, 1977; Jansson et al., 2000), alter river sedi- 
ment load and riverbed morphology (Yang et al., 2005), in- 
crease invasive species (Mumba and Thompson, 2005), dama- 
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ge the health and viability of aquatic biota (Kingsford, 2000), 
and increase water quality and disease burden in human 
populations (Lerer and Scudder, 1999; Tullos et al., 2009). All 
these changes have increased the public’s concern over the 
adverse ecological, social, and economic consequences of 
dam building (Pejchar and Warner, 2001). 

Since many interconnected parameters play complex ro- 
les in the dam-environment interaction, it is a challenging 
problem to find a linkage between different elements of the 
environment and dams. Lack of long-term observation data 
also hampers the relevant research activities. As a result, the 
environmental impacts of dams and their associated risks are 
still poorly predicted.  

Currently, there are two categories of environmental risk 
assessment methods on dams: 1) classical models (i.e., proba- 
bilistic analysis); and 2) conceptual models (i.e., Multi-Cri- 
teria Decision-Making (MCDM), fuzzy set analysis) (Kangary 
and Riggs, 1989; Li et al., 2007; Jozi et al., 2012; Ahmadi et 
al., 2013). The classical approach is based on the quantitative 
information and data available to estimate frequency of ef- 
fects and exposure. Hazard frequencies are estimated using 
the past observed data. In practice, this approach has a major 
limitation due to a shortage of detailed quantitative/historical 
data, which is even more difficult in the phase of project 
development.  

Such a problem could be overcome with the conceptual 
approach. MCDM and fuzzy set analysis can all be carried out 
without long observation records. Recently, Bayesian Net- 
works (BNs) are increasingly used as a risk assessment tool 
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aided by graphical models to represent the complex intera- 
ctions between relevant causal influences on variables (e.g., 
Bacon et al., 2002; Borsuk et al., 2004; Bromley et al., 2005; 
Henriksen et al., 2007; Pollino et al., 2007; Ainslie et al., 2009; 
Chan et al., 2011; Patil and Deng, 2011; Wang et al., 2011). 
Increasingly, Bayesian Networks and object-oriented Baye- 
sian Networks have been used to model diverse problems of 
high complexity for water management applications (Borsuk 
et al., 2004; Sadoddin et al., 2005, Dorner et al., 2007; Hen- 
riksen and Barlebo, 2008; Farmani et al., 2009; Carmona et al., 
2011; Molina et al., 2011; Nikoo et al., 2011; Peng and Zhang, 
2012a, b). BNs are useful for integrating different compo- 
nents from different sources into a unified framework (Pearl, 
1988). Learning a Bayesian network includes learning the gra- 
ph structure and the related parameters. Some methods such 
as back-propagation and evolutionary algorithms are used to 
learn the BNs in the literature (Buntine and Weigend, 1991; 
Larrañaga et al., 2013). 

However, despite those published studies, there is a lack 
of systematic application of BNs on environmental risk asse- 
ssment of dam projects. In this study, Environmental Risk 
Assessment (ERA) is carried out to identify the environmental 
hazards and their consequences associated with a dam project. 
The goals of the research are: identifying the most effective 
hazards and environmental consequences of a dam, deve- 
loping the environmental risk assessment framework, apply- 
ing Bayesian Networks in quantifying the potential risk, asse- 
ssing the most effective variables on the environmental risk of 
the Abolabbas dam system as a case study, and investigating 
how changing the variables would influence the environ- 
mental risk.  

 

2. Conceptual Development  

Dam construction activities could impose severe environ- 
mental impacts that should be qualified and quantified for 
assessing the potential risks and reducing the negative impacts 
on the environment. Environmental risk assessment plays an 
important role in the environment management to mitigate 
project risks and achieve sustainable development. A combi- 
nation of techniques may be used to quantitatively investigate 
the risk by including certain levels of uncertainties for each 
variable. Further, risk-reduction strategies and action plans 
should be developed from understanding the posed risks by 
specific hazards and their impacts and consequences with un- 
certainties. Therefore, developing a graphical cause-effect 
model can draw the paths of assessing the risk.  

In this paper, in order to assess the environmental risk of 
a dam, a combination of probabilistic and fuzzy set analysis 
for risk assessment is used as shown in Figure 1. Different 
features and functions of the environmental risk of dams are 
identified in two main categories and their interactions are 
presented using a schematic cause-effect model. Then a Baye- 
sian network is developed based on the cause-effect diagrams.  

The conditional probabilities (CPTs) are utilized to ex- 
press the relationships between parents and child nodes. One 
of the novelties of this paper is transforming the scores of the 

model’s variables to the probability values in different lin- 
guistic ranges based on the fuzzy set analysis. The sensiti- 
vity analysis on the identification of most effective variables 
on the risk is performed and the best management practices 
are suggested to reduce and control the environmental risk. 
Here, brief discussions of the used methods are given. 

Developing cause-effec diagrams and 
defining the main sub-models

Literature review of ERA and EAI

Developing a BN structure based on the 
cause-effec diagrams

Developing CPTs based on experts’ 
judgments

Designing a questionnaire based on the 
input variables of the BN model 

Filling in questionnaire by the experts and 
scoring the input variables at a local level 

(Abolabbas Dam)  

Transformation the scores to the 
probabilities based on the fuzzy logic

Obtaining the probabilities of different 
level of environmental risk

Validation the BN model through a series 
of discussion meetings

Sensitivity analysis for determining the 
most effective variables on the risk  

Figure 1. Flowchart of the research methodology. 

 
2.1. Bayesian Network as a Risk Assessment Tool 

Bayesian networks are a modeling technique based on 
Bayes’ theorem that enables: (a) the explicit handling of the 
uncertainties associated with the application domain; and, (b) 
a graphical representation of the causal influences, which aid 
the explanation of the causes/effects described in the model.  

The network characterizes variable relationships through 
interlinked nodes and arcs. The nodes represent variables and 
the arcs relate causes to effects. Bayesian Networks are used 
to identify those key variable relationships within a system. 
Information between nodes is produced based on the Bayes 
theorem. Bayes’ theorem describes how the prior probability 
of A is updated by the observed evidence B. The theorem 
relates the conditional and marginal probabilities of A and B 
as follows: 

 (1) 
( ) ( )

( )
( )

P B A P A
P A B

P B
=
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where P(A) is the prior probability of the hypothesis (the pro- 
bability that A will be in a particular state, prior to conside- 
ration of any evidence); P(B|A) is the conditional probability 
(the likelihood of the evidence, given the hypothesis to be tes- 
ted); and P(A|B) is the posterior probability of the hypothesis 
(Bromley et al., 2005).  

 

 
Figure 2. An example of Bayesian networks. 
 

A simple Bayesian network is shown in Figure 2 to illu- 
strate the application of BNs. The network has three nodes: 
two basic nodes [hazards index ( h ) and consequences index 
( c )], and one end node [risk ( r )]. The nodes are connected 
by two arcs/links: h r− and .c r− The prior probability of risk 
is expressed as follows: 

 
3 3

1 1
1 1

( ) ( , , )i j
i j

P r r P r r h h c c
= =

= = = = =  (2) 

 
where P is probability, 1r = low risk, 1h = low, 2h = medium, 3h = 
high hazards index, 1c = low, 2c = medium, 3c = high cones- 
quences index. According to the joint probability theorem 
Equation 1 can be written as: 

 

1

1

( , , )

( ) ( ) ( , )

i j

i j i j

P r r h h c c

p h h p c c P r r h h c c

= = =

= = × = × = = =
 (3) 

 
where the conditional probabilities is considered on the right 
hand side of the equation. 

Now, consider a case with a medium hazard index ( h  
2h= ) and a medium consequences index ( 2c c= ), the pos- 

terior probability of low risk, 1 2 2( , )P r r h h c c= = =  can be 
calculated based on the definition of conditional probability 
as: 
 

1 2 2
1 2 2

2 2

( , , )
( , )

( , )

P r r h h c c
P r r h h c c

P h h c c

= = == = = =
= =

1 2 2
3

2 2
1

( , , )

( , , )k s s
k

P r r h h c c

P r r h h c c
=

= = ==
= = =

 (4) 

 
A number of commercial software packages are available 

for developing BN based models. The most popular ones are 
Analytica (Lumina, 2004); Netica (Norsys, 2005), Hugin 
(Hugin Expert A/S, 2004), GeNie (DSL, 2005) and Agenarisk 
(Fenton and Neil, 2004). The readers are referred to Uusitalo 

(2007) for more details about the BNs software. In the field of 
environmental modeling, Netica and Hugin are most frequent- 
tly used (Aguilera et al., 2011).  

The Netica software tool can build, learn, modify, and 
store nets (Norsys, 2005). One advantage of Netica is the 
comprehensive, flexible and user friendly graphical user inter- 
face included in the package. Netica offers single-finding sen- 
sitivity analysis, which determines how much our perception 
of values in other variables will change given different values 
of a certain variable (Uusitalo, 2007).  

 
2.2. Entropy Theory for Sensitivity Analysis 

Sensitivity of the target node(s) in the BN model to vari- 
ations in the other (evidence) nodes entered into the network 
can be assessed by sensitivity analysis (Pollino et al., 2007). 
Evidence nodes can be ranked based on evaluating the degree 
of variation in the BN’s posterior distribution resulting from 
changes in the evidence. The nodes ranking can assist the ex- 
pert in targeting future data collection. 

Sensitivity analysis can be carried out using Shannon’s 
entropy, )(XH , which is the measure of information trans- 
ferred by the random variable, X. The formula for Shannon’s 
entropy is defined as (Pearl, 1991): 

 

−= )()()( xLogPxPXH         (5) 

 
where x is a state of the random variable. The entropy value, 

)(XH  is used to assess the further information required in 
addition to the current information to specify an alternative. 

Measuring the effect of one variable on another is refer- 
red to as mutual information, ),( YXI . It is employed to 
assess the effect of collecting information about one variable 
Y to reduce the uncertainty about variable X, as follows: (Pearl, 
1991): 

 
)()(),( YXHXHYXI −=  (6) 

 
The mutual entropy expresses the expected degree to 

which the joint probability of X and Y diverges from what it 
would be if X is independent of Y (Korb and Nicholson, 2004). 
If ( , )I X Y  is equal to zero, X and Y are mutually indepen- 
dent (Pearl, 1991). 

The entropy reduction associated with a node X means 
that the uncertainty in variable Y would be reduced by the 
increased observation about X. In this study for risk values, 
the Sensitivity to Findings function in Netica is used to iden- 
tify the most effective network variables on the risk. These 
variables are referred to as ‘findings nodes’ in the literatures.  

 
2.3. The Conceptual Model Development  

One of the traditional ways to assess the environmental 
risk is to evaluate the release of hazards or threats into the 
receiving environment using the recorded data and frequency 
analysis. Further, risk-reduction strategies and action plans 
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should be developed from improved understanding of both the 
risks posed by specific stressors and their impacts considering 
the uncertainties. In this paper, a Bayesian Network with two 
main sub-networks including hazards index and consequences 
index is developed for assessing the environmental risk. 
Therefore, we use a combination of techniques to quantitati- 
vely investigate the risk by including certain levels of uncer- 
tainties for each variable. 

Figures 3 and 4 illustrate the factors influencing hazards 
index and consequences index and their sub-indices, respect- 
tively. In developing hazard index, the most probable hazards 
in occurrence of an event (crisis) for a dam are determined 
based on the literatures review (Scott et al., 1997; Toner and 
Keddy, 1997; World Commission on Dams, 2000; Maingi and 
Marsh, 2002) and experts’ judgments through a series of mee- 
tings. The variables are classified in three major fields inclu- 
ding 1) dam failure hazard, 2) hazard caused by a lack of co- 

ordination, and 3) water quality and quantity hazard. Hazar- 
ds index includes all the factors which are effective for a dam.  

Dam failure potential is considered as a function of dam 
construction condition and geotechnical consideration such as 
landslide, liquefaction and seismicity. Dam failure potential is 
a key parameter for hazard index analysis.  

Dam-break emergency action plans are aimed at mini- 
mizing the possible dam-break consequences. The success of 
action plan implementation depends on public awareness, co- 
operation between sectors and operators’ education. Lack of 
the aforementioned factors during a severe flood makes seri- 
ous flood damages. Hydraulic parameters including reser- 
voir volume, inflow to the reservoir and water storage di- 
rectly influence the dam safety conditions which cause dam 
overtopping (Peng and Zhang, 2013). Water quality hazard is 
considered by water salinity, thermal stratification and oil po- 
llution in a reservoir.  

 

 Figure 3. Factors and their links in the hazards index. 
 

Figure 4. Factors and links in the consequences index. 
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The variables of consequences index are defined based 
on Environmental Impacts Assessment (EAI) guidelines. In 
these typical guidelines, the impacts (consequences) of the 
project development are assessed on natural, physiochemical 
and socioeconomic environments. For example, ICOLD (In- 
ternational Commission on Large Dams) has prepared a large 
and comprehensive matrix for use in EIAs for dams with 
these three major environments (ICOLD, 1980). Therefore, 
consequences index results from three sub-indices as 1) natu- 
ral environment including fauna, flora and protected area, 2) 
physiochemical environment including environmental pollu- 
tion, river and reservoir water quality, and 3) socioeconomic 
environment including ancient and historical structures, equa- 
lity, and economic improvement. These variables are integra- 
ted within a single framework by defining the cause-effect 
diagrams in this study. 

In the first step for assessing the environmental risk, the 
variables in hazards index and consequences index are iden- 
tified. The second step is to define the cause-effect relation- 
ships between the system variables as shown in Figures 3 and 
4. Tables 1 and 2 describe the input variables and their states 
in hazards and consequences indices, respectively. The struc- 
ture of a developed BN is based on the defined variables and 
the cause-effect relationships. 

 

3. Bayesian Network for the ERA of Abolabbas Dam 

3.1. Study Area 

In this study, the environmental risk assessment is con- 
ducted for a dam project, called Abolabbas, in Southwest Iran 

on the Abolabbas river as shown in Figure 5. The Abolabbas 
dam is located at 50º 11˝ N longitude and 31º 41˝ E latitude 
near the Baghmalek city. The goal of this project is to supply 
domestic water to the Baghmalek city and its neighboring 
villages as well as to produce hydropower energy and supply 
agricultural water demands. The catchment area upstream of 
the dam is about 284 km2. The reservoir volume at its normal 
water level is about 113 MCM with a height of 154 m from 
the riverbed.  

The flood release is through an oogee spillway with 8 m 
in length. The only village upstream of the dam is Malagha. 
Of the 50 villages located downstream of the Abolabbas dam 
(see Figure 5), 30% are riparian. The population growth rate 
in rural regions of Baghmalek during the last decade is 
-0.65% due to migration changes from rural to urban regions. 
The migration to urban areas is because of the low level of 
income and high unemployment of some farmers and also the 
lack of public health services. The rural population is about 
39,730 in 2012. About 40% of the total rural domestic water 
consumption is supplied through a water distribution system 
and the rest is supplied from springs, wells or rivers. The ma- 
jor irrigation method in the study area is rain-fed. The area of 
agricultural lands is about 28,453 ha with 51% in rural regions. 
The dominant crops in the area are wheat, rice and barley. The 
reservoir water quality studies show that the stratification 
state of the Abolabbas is Oligotrophic.  

In the ecosystems of the region, 78 and 12 plant species 
are identified, respectively. The dominant plant species are 
Compositae, Labiatae, Umbelliferae, Polygonaceae, and Con- 
volvulaceae. The specific plant species with national and in-  

Table 1. Description of the Input Variables of Hazards Index (Criteria) and Their States 

Sub-criteria Sub-criteria Sub-criteria States 

Dam Failure  
Potential 

Geotechnical 
Consideration 

Landslide Expert knowledge: Low, Medium, High 
Liquefaction Expert knowledge: Low, Medium, High 
Seismicity Low (PGA < 0.1g), Medium (0.1 - 0.25g), High (> 0.25 g) 

 Dam Structure Life-span The ratio of dam age over the designed dam life: Low (< 30%), Medium 
(30 - 60%), High (> 60%) 

 Design Safety Factor Low (< 1.5), Medium (1.5 - 2.5), High (> 2.5) 
Lack of 
Coordination 

Flood Hazard Time for Flood Warning Low (T < 8 hr), Medium (8 - 16 hr), High (> 24 hr) 
Flood Releasing Rate The facilities for water releasing such as spillway and bottom outlets: 

Low, Medium, High 
 Design Return Period Low (< 10000 yr), Medium (10000 yr), High (PMF) 
 Operating and 

Monitoring 
Public Education Low (No education program), Medium (Programs for operators), High 

(Programs for operators and public) 
 Operators Number of operators for double curve arc and H > 100m: Low (< 10), 

Medium (10 - 30), High (> 30) (ICOLD, 1986) 
 Cooperation Cooperation between operator organizations: Low, Medium, High 
Water Quality 
and Quantity 

Water Storage Reservoir Volume Low (V < 1 MCM), Medium (1 - 10 m), High (> 10 m) (ICOLD, 1986) 
 Reservoir Height Low (H < 15 m), Medium (15 - 30 m), High (> 45 m) (ICOLD, 1986) 

  Freeboard Low (Fb < 1.5 m), Medium (1.5 - 2 m), High (> 2 m) 
 Water Quality  Stratification Low (Oligotrophic), Medium (Mesotrophic), High (Eutrophic) 
 Oil Pollution Low (Oil transferring pipes located far upstream of the reservoir), High 

(not far) 
 Salinity Low (< 1000 mg/L), Medium (1000 - 2000 mg/L), High (> 2000 mg/L) 



A. Ahmadi et al. / Journal of Environmental Informatics 25(1) 46-59 (2015) 

 

51 

ternational values include Pistachio, Quercus, Rhamnus, Scro- 
phularia and Astragalus. The dominant mammal species are 
Canidae and Hystricidae, Leporidae and Muridae, and Cani- 
dae. 7 bird species are identified and the dominant ones are 
Alcedinidae, Ciconia ciconia, and Accipiteridae. The five fish 
species identified include Cyprinidae, Balitoridae, Nemachei- 
lus, Barbus barbulus and Copoeta aculeate. The accessibility 

to the river and four fish species for fishing activities increase 
the recreation attractions in the study area.  

 
3.2. Development of Bayesian Network Structure 

In this study, the existing qualitative and quantitative data 
are gathered to model the cause-effect relationships for envi- 

Table 2. Description of the Input Variables of Consequences Index (Criteria) and Their States 

Sub-criteria Sub-criteria Sub-criteria States 

Natural 
Environment 

Flora Threatened Flora The percentage of threatened flora that will become 
increasingly vulnerable < 10% decrease: Small, 10 - 20% 
decrease: Medium, > 20% High changes 

Diversity Changes in flora species diversity < 10% decrease: Low, 10 - 
20% decrease: Medium, > 20% High changes 

Density of Important  
and Valued Species 

Changes in important and valued species < 10% decrease: 
Low, 10 - 20% decrease: Medium, > 20% High changes 

Fauna Birds Changes in birds species < 10% decrease: Low, 10 - 20% 
decrease: Medium, > 20% High changes 

Mammals Changes in mammals species < 10% decrease: Low, 10 - 20% 
decrease: Medium, > 20% High changes 

Fishes Valued Species Changes in important and valued species < 10% decrease: 
Low, 10 - 20% decrease: Medium, > 20% High changes 

Migration The percentage of fishes that will become migrated, < 20%, 
Low, 20 - 40 Medium, > 40% High 

Protected Area Based on National Parks and Wildlife Service: Low, Medium, 
High 

Physiochemical 
Environment 

Physical Environment River 
Morphology 

Trap efficiency, Low (< 40%), Medium (40 - 80%), High (> 
80%) 

Erosion Erosion potential < 2 Low, 2 - 5 Medium, > 5 High 
Reservoir Water Quality Turbidity Low (< 5 NTU), Medium (5 - 100 NTU), High (> 100 NTU) 

Microbial  
Contamination 

Pathogens daily concentration: Low < 100 mg/100 ml, 100 - 
300 mg/100 ml, > 300 mg/100 ml 

Carcinogenic  Cancer Risk, < 10-6 : Low, 10-6 - 10-7: Medium, > 10-7 High  

Environment 
Pollution 

River Quantity Environmental Flow based on Montana method, Low (Q > 
100% Environmental Flow), Medium (70 - 100%), High (< 
70%) 

Quality   EC: Low (< 0.75 msi/cm), Medium (0.75 - 3 msi/cm), High (> 
3 msi/cm) 

Purification Water Velocity in the river, Low (< 3 m/s), Medium (3 - 5 
m/s), High (> 5 m/s) 

Groundwater Quantity Low: < 0.5 ML/ha, Medium: 0.5 - 2.5 ML/ha, High: > 2.5 
ML/ha (Wang et al.; 2011) 

Quality EC: Low (< 0.75 msi/cm), Medium (0.25 - 5 msi/cm), High (> 
5 msi/cm) 

Soil Pollution EC: Low (< 0.4 msi/cm), Medium (0.4 - 1.6 msi/cm), High (> 
1.6 msi/cm) 

Socioeconomic 
Environment 

Ancient and Historical Structures Expert knowledge: Low, Medium, High 
Equality Public Health and Sanitary 

Condition 
Water distribution and wastewater collection systems, Low (< 
80%), Medium (80 - 95%), High (> 95%) 

Migration The ratio of rural population rate over urban population 
migration rate : Low (> 1), Medium (0.9 - 1), High (< 1) 

Resettlement Number of people that will resettle: Low (< 100), Medium 
(100 - 1000), High (> 1000) ICOLD - 1989 

Economic 
Conditions 

Income Low (0 - 1,000), Medium (1,0000 - 5,000), High (> 5,000) 
Euros/ha year 

Infrastructural Development Expert knowledge: Low, Medium, High 
Employment  Number of employees/ha year: Low (< 0.1), Medium (0.1- 

0.3), High (> 0.3) 
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ronmental risk assessment. A Bayesian network is developed 
based on the hazards index, the consequences index and their 
sub-indices, defined in Figures 3 to 4 and listed in Tables 1 
and 2. The graphical structure of the developed Bayesian 
network based on the system variables and their interactions is 
presented in Figure 6. The BN consists of two sub-models: 
hazards index and the consequences index.  

 
Table 3. Conditional Probability Table for the Environmental 
Risk  

State Hazards 
Index 

Consequences 
Index 

Risk 

Low Medium High 

1 Low Low 100 0 0 
2 Low Medium 50 50 0 
3 Low High 25 50 25 
4 Medium Low 50 50 0 
5 Medium Medium 25 50 25 
6 Medium High 0 50 50 
7 High Low 25 50 25 
8 High Medium 0 50 50 
9 High High 0 0 100 

 
The developed Bayesian network has three major typical 

elements including nodes, links and Conditional Probability 
Tables (CPTs). 

1. Nodes are displayed as boxes representing system va- 
riables. A node consists of a set of states that the node 
variables may take. In Figure 6 for example, the conse- 
quences index has three states (low, medium and high). 

Probabilities describe the chances that the variable takes 
on a particular state. For example, in Figure 6 there is a 
67.5% chance that the consequences index is low, 25.5% 
chance medium and 7% chance high. 

2. Links represent causal relationships between nodes and 
are displayed as arrows between boxes. In Figure 6, for 
example, consequences index and hazards index are 
parent nodes, representing causes, of the child node of 
risk. 

3. Conditional probability tables (CPTs) representing the 
relationship between the parent and child nodes are 
behind the Bayesian network. The quantitative relation- 
ships between a child node and its parent nodes are 
defined in each table (Wang et al., 2011). 

 

4. Results and Discussion 

4.1. Variables and Relationships 

The first stage in the model development is to work out 
the relationships between model variables in the graphical and 
probability structure. The next stage is to estimate parameters, 
which involves specifying the CPTs for each node. For each 
variable, the number of states should be kept to a minimum 
(preferably three) as a compromise between resolutions of the 
variable ranges and model complexity.  

For example, Table 3 shows the CPTs for risk variables 
based on hazards and consequences indices. The CPTs in this 
table can be interpreted as the probability that risk will be in 
its high, medium and low states, given the states of hazards  

 
Figure 5. Location of the Abolabbas Dam in southwestern Iran. 
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and consequences indices. The highlighted row of the table 
illustrates that if the consequences index is low and hazards 
index is high, there is a 25% chance that the risk will be low, a 
50% chance that the risk will be medium, and a 25% chance 
that it will be high. The table structure for a node is generated 
by considering all possible combinations of parent node sta- 
tes. 

The CPTs are generated based on the logic explicit 
documentation using deterministic equations or manually. For 
example, the framework of Table 3 is created based on the 
risk matrix approach presented in the documented literature. 
As can be seen in this table, if the hazards and consequences 
indices are at high levels, the probability of high risk will be 
100%. On the other hand, if the hazards and consequences 
indices are at low levels, the probability of low risk will be 
100%. 

The probability estimates are elicited from two sources of 
information: experiential knowledge of experts, and docu- 
mented scientific knowledge in the form of reports and scien- 
tific literature. In this study, the conditional relationships are 
specified utilizing the expert and analyst judgments because 
of data scarcity.  

 
4.2. Synthesis of Knowledge into a Bayesian Network 

The next stage is to assign node values to the parent 
states. In this study, the node values are assigned based on the 
experiential knowledge of experts, and documented scientific 
knowledge. The experts are selected to elicit a range of know- 
ledge as broad as possible in the fields of hydraulics, ecology, 
hydrology, forestry, environmental management and other di- 
sciplines relevant in different aspects of Environmental Im- 
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Figure 6. The developed Bayesian network to assess the environmental risk. 
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pact Assessment (EIA) process. The EIA report is provided by 
MahabGhods Consulting Engineering Company (2010) and 
approved by Khouzestan Water and Power Organization (KW- 
PO). There are 32 experts selected in this project. 

The main points discussed at these meetings are about 
variable selection and network architecture. The experts sug- 
gest the variables should be defined based on Environmental 
Impacts Assessment (EAI) guidelines. In these typical guide- 
lines, the impacts (consequences) of project development are 
assessed on natural, physiochemical and socioeconomic envi- 
ronments. Also the input nodes in each environment are 
selected based on the recommendation of the EAI guidelines 
and conformation by experts. For developing hazard index, 
the most probable hazards of a dam are proposed and classi- 
fied in three major fields. 

In this study, we designed a questionnaire to be filled in 
by the experts about the effectiveness of input variables on the 
environmental risk of the Abolabbas dam. A sample of the 
questionnaire used in the study is presented in Table 4. As 
shown in this table, the items to be asked from the experts are 
the input nodes of the BN model. The score to each item is 
obtained from the experts in a range from 0 to 10 and their 
averages are presented in Table 4.  

The assigned scores to different variables on the environ- 
mental risk should be considered as the input values. A node 
value consists of the set of probabilities considering our cu- 
rrent knowledge including uncertainty for describing the 
chances that the node outcome takes on a particular state. In 
order to transform the scoring values to probability values of 

different states, the Fuzzy set analysis is used. These states are 
linguistic functions such as low, medium, and high conside- 
ring the number of variable states in BN. Figure 7 shows the 
fuzzy transformation functions with three (low, medium and 
high) states. Unlike conventional fuzzy set analysis, fu- 
zziness here represents ignorance or uncertainty on the vari- 
able which corresponds well to the belief in the Bayesian 
probability concept. Transformation of the scores to the pro- 
bability values for different states using Fuzzy set analysis is 
an innovative part of this research.  
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Figure 7. The fuzzy transformation to change scores into 
probabilities. 
 

The probability values of the fuzzy transformation con- 
sidering the number of variable states in BN are presented in 
Table 4. For example, the score of 6 is represented by 
probability values of 80% in the medium state and 20% in the 
high state. So the score of 6 is transformed to the probabilities 

Table 4. The Scores Assigned to the Variables in the Developed BN 

Impacts/ Consequences 
Scores 
(0-10) 

Probability  
Impacts/ Consequences 

Scores 
(0-10) 

Probability  
L M H L M H 

Threatened Flora 1 80 20 0 Resettlement 4 20 80 0 
Diversity 6 0 80 20 Income 9 0 20 80 
Density of Important and Valued 
Species 

2 60 40 0 Infrastructural 
Development 

7 0 60 40 

Birds 2 60 40 0 Employment 9 0 20 80 
Mammals 4 20 80 0 Landslide 2 60 40 0 
Important and Valued Species 6 0 80 20 Liquefaction 1 80 20 0 
Migration 6 0 80 20 Seismicity 7 0 60 40 
Protected Area 2 60 40 0 Life-span 1 80 20 0 
River Morphology 4 20 80 0 Factor of Safety  1 80 20 0 
Erosion 4 20 80 0 Time for Flood Warning 5 0 100 0 
Turbidity 3 40 60 0 Flood Releasing 6 0 80 20 
Microbial Contamination 7 0 60 40 Return Period  4 20 80 0 
Carcinogenic and Toxicant 4 20 80 0 Public Education 3 40 60 0 
River Quantity 9 0 20 80 Operators 6 0 80 20 
River Quality 6 0 80 20 Cooperation 3 40 60 0 
Purification 2 60 40 0 Reservoir Volume 8 0 40 60 
Groundwater Quantity 2 60 40 0 Reservoir Height 7 0 60 40 
Groundwater Quality 4 20 80 0 Freeboard 1 80 20 0 
Soil Pollution 5 0 100 0 Stratification 3 40 60 0 
Ancient and Historical Structures 1 80 20 0 Oil Pollution 3 40 60 0 
Public Health Services 9 0 20 80 Salinity 2 60 40 0 
Migration 1 80 20 0      
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in low, medium and high states. Utilizing the information and 
data from a wide range of sources (as presented in Tables 2 to 
4), a Bayesian network is constructed to capture the current 
understanding on the potential effects of dam construction on 
environmental risk. 

 
4.3. Environmental Risk Evaluation 

One way to validate a developed model is to compare the 
model output with the outputs of other risk assessment me- 
thods or the observed data. The other methods such as Multi- 
Criteria Decision-Making based on scoring and weighting 
achieve a single value without any levels of uncertainty. Be- 
cause of this difference between the result types, the com- 
parison of the results is challenging (Borsuk et al., 2004; 
Wang et al, 2011).  

Also in the existing case, the Abolabbas dam is under 

construction and there is no recorded data on the level of risks 
or other variables such as damage records, and water releases 
from the reservoir. Instead the model and each sub-model 
have been validated using the existing data for the current 
conditions through a review by local experts through discu- 
ssion meetings held with the experts from MCEC and KWPO.  

Firstly, the cause-effect diagram and the interpretation of 
each of the variables are presented. A discussion is then fo- 
llowed to ensure that the developed diagram did not differ 
significantly from the experts’ understanding of the function 
of the system. Subsequently, the CPTs are generated to asso- 
ciate with the problematic nodes by considering all possible 
combinations of the parent node states. The probabilities assi- 
gned to different uncertainty levels (e.g. Low, Medium and 
High in Table 3) of child nodes are checked by experts’ know- 
ledge. Then the quantitative elements of the model are ga- 
thered. For this purpose, a questionnaire about the effect- 

Table 5. The Ranked Effective Variables on the Environmental Risk  

Variable Mutual Information Percent Variance of Beliefs Input Variable 

RISK 1.40228 100 0.365702  
Hazards Index 0.25787 18.4 0.049807  
Consequences Index 0.13943 9.94 0.021363  
Dam Failure Potential 0.09387 6.69 0.015755  
Natural Environment 0.04273 3.05 0.005106  
Water Quality and Quantity 0.0275 1.96 0.005423  
Dam Structure 0.02412 1.72 0.004391  
Physiochemical Environment 0.01566 1.12 0.002446  
Flora 0.01396 0.995 0.001717  
Geotechnical Consideration 0.01258 0.897 0.002139  
Lack of Coordination 0.0085 0.606 0.00178  
Physical Environment 0.00587 0.419 0.000916  
Fauna 0.00512 0.365 0.000677  
Physical Environment 0.00448 0.32 0.000789  
Threatened Flora 0.00385 0.275 0.000501  
Water Quality Hazard 0.00381 0.272 0.000701  
Reservoir Water Quality 0.00259 0.185 0.000411  
Water Storage 0.00253 0.18 0.000518  
Operating and Monitoring 0.00203 0.145 0.000426  
Flood Hazard 0.00193 0.138 0.000404  
Factor of Safety 0.00192 0.137 0.000362  
Life-span 0.00186 0.133 0.000333  
Ancient and Historical Structures 0.00151 0.108 0.000268  
Birds 0.00122 0.0873 0.000163  
Liquefaction 0.00121 0.0861 0.000212  
Protected Area 0.00105 0.0747 0.000141  
Landslide 0.00086 0.0612 0.000154  
Turbidity 0.00084 0.06 0.000135  
Diversity 0.0008 0.0568 0.000104  
Environment Pollution 0.00058 0.0417 9.32E-05  
Operators 0.00058 0.0413 0.000123  
Salinity 0.00054 0.0388 0.000103  
Erosion 0.00049 0.0353 0.000079  
Sediment 0.00049 0.0353 0.000079  
Density of Valued Species 0.0004 0.0286 5.23E-05  
Stratification 0.00034 0.0241 6.48E-05  
Return Period 0.00034 0.024 6.98E-05  
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tiveness of input variables on the environmental risk of the 
Abolabbas dam is filled in by scoring the input variables.  

Validation of the developed BN is achieved through the 
use of the tool by experts to check that the model is behaving 
as expected. The model validation process is completed du- 
ring the discussion meetings. The experts are asked to exa- 
mine the model outputs to see if they are consistent with their 
belief. If the results do not agree with experts’ expectations, 
the procedure to examine the structure and CPTs of the net- 
work and the scores to the input variables is carried out.  

Some minor changes in the Bayesian diagram have been 
carried out especially in the consequences index sub-model. 
The final results show that the environmental risk is at a low 
level of risk with 51.7% probability, at a medium level with 
35.5% probability, and at a high level with 12.8% probability. 
Overall, the environmental risk is in the low and medium 
levels with 87.2% probability. 

 

4.4. Sensitivity Analysis  

Table 5 shows the mutual information, the level of contri- 
bution in percent and variance of beliefs for different vari- 
ables. Variances of beliefs provide an indication of the uncer- 
tainty surrounding the estimates. 

The mutual information is used for ranking the variables 
according to the capacity for further evidence at these vari- 
ables to change the posterior probability of the environmental 
risk. In other words the mutual information describes the ex- 
pected reduction in mutual information of a query variable, x , 
due to a finding, y  as presented in Table 5. For example, the 
mutual information between the hazards index and the risk is 
0.258 whereas it is 0.139 between the consequences index and 
the risk. It shows that the uncertainty in the risk variable 
would be reduced more by increasing the observations about 
the hazards index rather than increasing the information about 
consequences index.  

According to the results, for the consequences index, the 
natural environment, physiochemical environment and then 
physical environment including changes in flora, fauna, re- 
servoir water quality and especially bird community respect- 
tively have dominant influences on the risk. For the hazards 

index, the most influential variables are dam failure hazard, 
water quality and quantity hazard, dam structure, geotechnical 
considerations and hazard caused by a lack of coordination, 
respectively. In the fifth column of Table 5, the input variables 
are marked. These input variables as the independent vari- 
ables could be controlled by managers for risk reduction. The 
sensitivity analysis highlights the dominant influence of cer- 
tain input variables including threatened flora, factor of safety, 
dam’s life-span, ancient and historical structures, birds, lique- 
faction, and protected area. The rest of the input variables are 
less important and should demand less effort in quantifying 
them since they contribute little to improve the predictive 
accuracy of the model in the risk estimation. These variables 
are in the last rows of Table 5.  

BNs allow assessing the relative changes in the output’s 
probability in a certain state associated with changes in input 
nodes. This is the second type of sensitivity analyses used in 
evaluating the BN. In this way, the current probability of 
environmental risk at the high level, as well as the minimum 
and maximum of the risk probability at the high level due to 
the input variable changes are identified. Figure 8 presents the 
minimum, maximum and current probabilities of environ- 
mental risk at a high level due to changes of each variable. 
The probability of each input node can be altered over the 
probability space, and changes in the risk node.  

Figure 8 shows the model sensitivity for all the variables 
to the environmental risk of the Abolabbas dam. In general, 
dam failure potential and impacts on natural environment 
have the greatest influences on the environmental risk. In this 
figure, the red line shows the current probability of the high 
level risk and the low and top bounds of the red line present 
the potential probability of the high risk that could be varied 
by changing each variable. The variables with wide top bound 
in Figure 8 shows that the variables could be considered as 
threats and should be controlled to avoid the risk increment. 
Also, the variable with wide left bound in Figure 8 shows that 
the variables could be considered as an opportunity for risk 
reduction.  

For example, the current probability at the high level of 
the risk is about 12.8%. In the worst circumstance for the 
“threatened flora” variable (when there is no conservation for  
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Figure 8. The sensitivity analysis results at the high level of the environmental risk. 
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Figure 9. The sensitivity analysis results at the high level of 
the risk for variables in hazards index category. 
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Figure 10. The sensitivity analysis results at the high level of 
the risk for variables in consequences index category. 
 

the threatened flora), the probability at the high level of the 
risk could be changed to 17.2%. In the best circumstance for 
the “threatened flora” variable (with the conservation action 
plans), the probability could be reduced to 11.7%. Therefore, 
the “threatened flora” variable has the wide bound between 
the current and the maximum probabilities of the risk with the 
significant influence on the increment of the probability at the 
high level of the risk. This variable is identified as a threat and 
should be controlled to avoid the risk increment.  

This study is the first application of sensitivity analysis to 
support the decisions for proposing the action plans in risk 
reduction/control. The minimum and maximum values of the 
risk corresponding to variable changes in the hazards and the 
consequences are shown in Figures 9 and 10, respectively. 
The results show that the variables of the dam failure potential, 
soil properties, water quality hazard, dam’s life-span in the 
hazards index category and natural environment, flora, fauna 
and threatened flora in the consequences index category shou- 
ld be considered in developing the risk mitigation strategies to 
reduce the probability of the risk at the high level. As shown 
in Figures 9 and 10, these variables have the wide top range 
with the potential to increase the risk identified as threats and 

weakness of the system.  

Importantly, it has been found that if we could control 
some variables such as dam failure hazard, water quality and 
quantity hazards, dam structure, water storage, lack of co- 
ordination from the hazards index category and natural envi- 
ronment, physicochemical environment, physical environ- 
ment, reservoir water quality and flora in the consequences 
index category, significant reduction of the risk could be 
achieved. Some variables including the dam failure potential, 
natural environment, and flora have significant influence on 
both risk reduction and risk control identified as critical va- 
riables. 

 

4.5. Action Plans for Risk Reduction 

In order to reduce the risk at the high level, certain action 
plans are suggested to control the dam failure hazard, water 
quality and quantity hazard, and reduce the natural environ- 
mental changes. Actions include preparing the guidelines for 
crises management, performing the training exercise, impro- 
ving the operator’s knowledge and skills, and public aware- 
ness. To control the water quality and quantity hazards, cer- 
tain practices to mitigate some significant risks include satis- 
fying environmental water requirements especially in summer 
from the lower intakes, organizing and collecting industrial 
wastewater before its discharge to the reservoir, and moni- 
toring and maintaining oil transfer pipelines. For mitigating 
the harmful impacts of dam construction on the natural envi- 
ronment, attention should be paid on the protection of narrow 
woodlands on the river banks such as Salix, Populus and 
Vitex plant species, as well as to build a fish ladder to reduce 
the effects of habitat fragmentation. 

 

5. Conclusions 

This paper describes a study to use Bayesian Networks 
for environmental risk assessment of dams. The Bayesian 
network is developed to model the relationships between the 
variables using the CPTs. The scheme is examined for the 
Abolabbas dam utilizing the scores transformed from the pro- 
babilities using Fuzzy set analysis. To explore and learn about 
the risks management, sensitivity analysis has been performed. 
Firstly, the most influential inputs are identified by measuring 
the sensitivity of changes in probabilities of the risk while 
inputs variables are perturbed. The changes on the environ- 
mental risk at the high level are evaluated. Based on the dis- 
tance between the current risk and its minimum and maxi- 
mum values, the control risk reduction strategies are recom- 
mended. The results show that the variables of the dam failure 
potential, natural environment and flora are critical and should 
be controlled through the risk reduction action plans. To re- 
duce the high level risk, certain action plans are suggested.  

It should be noticed that the risk assessment approach 
using the Bayesian Network has several advantages over the 
MCDM techniques. The main advantage of the BN technique 
is that the model outputs consist of a probability values rather
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than a single and relative value. Secondly, BNs allow deter- 
mining the probabilities of different risk levels. They provide 
an approach to decision making incorporating the uncertainty 
related to human behaviors. The ability of a Bayesian network 
model to handle qualitative data is one of the distinctive ad- 
vantages of the approach. 

Various simplifications are considered in BNs develop- 
ment. For example, in order to reduce the overall size of the 
CPTs, the number of discrete states is reduced. Limitation on 
the number of discrete states is one of the problems associated 
with the use of BN. The ability of Bayesian modeling techni- 
ques to deal with continuous data is limited (Jensen, 2001) 
and such data generally needs to be discretized. Discretization 
can only capture rough characteristics of the original distribu- 
tion (Uusitalo, 2007). The problem has been partially solved 
in the Agenarisk tool which allows the user to create conti- 
nuous nodes, although there are restrictions on the number of 
links (parents) that a node can have.  

Due to the problems associated with the use of BN, more 
work could be done to improve the BN capabilities.  

1. More accurate data of different disciplines of environ- 
mental risks should be collected. Then, the BN is updated ba- 
sed on the collected data. 

2. The ability of Bayesian modeling techniques to deal 
with more parent nodes should be improved. 

3. The model results should be validated based in the re- 
corded data of different dams. 

4. Since a BN only uses discrete variables, automatic data 
discretization techniques could be useful. 

5. BNs should be improved for utilizing continuous-state 
variables. The shortcoming of not considering continuous- 
state variables may be incorporated using different distribu- 
tion functions. 
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