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ABSTRACT. In this study, an entropy-copula method is proposed for modelling dependence between traffic volume and traffic noise 

on the Trans-Canada Highway (#1 highway of Canada) in the City of Regina based on a series of field experiment measurements. The 

proposed entropy-copula method combines the maximum entropy and copula methods into a general framework. The marginal distri-

butions of traffic volume and traffic noise are estimated through the principle of maximum entropy (POME) theory, and the joint 

probabilities are derived through the Gaussian and Student t copulas. The underlying assumptions of the coupled entropy-copula 

method are that: i) the entropy variables are mutually independent from each other, and ii) the marginal distributions of traffic flow and 

traffic noise are continuous. The proposed method is applied to two field experiment sites on the Trans-Canada Highway. Based on the 

K-S and A-D tests and RMSE value, the entropy method shows well performance in quantifying the probability distributions of traffic 

volume and traffic noise. Meanwhile, both the Gaussian and Student t copulas can well model the joint probability distributions of the 

traffic volume and traffic noise at the both experiment sites, which is demonstrated by the Cramér von Mises statistics and the RMSE 

value. Furthermore, the conditional CDFs of the traffic noise at the two experiment sites are derived based on the established copulas 

with respect to different traffic volume scenarios. These conditional CDFs indicate positive structures between traffic volume and traf-

fic noise at the both experiment sites. The conditional PDFs of the traffic noise under different traffic flow scenarios are also generated, 

indicating the potential reduction effect of traffic noise due to the decrease of the traffic volume. This proposed approach can quantify 

the dependence between traffic flow and traffic noise, and reveal the inherent uncertain relationship between these two variables. More- 

over, the obtained results can provide useful information for traffic noise reduction through traffic flow management. 
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1. Introduction 

Urban noise pollution is causing increased health risks in 

human beings, such as hearing impairment, cardiovascular dis- 

eases, and child physical development. Among various noise 

emission sources in urban area, the noise levels associated with 

transport, have increased dramatically since the mid-twentieth 

century (UN, 2004). Road traffic noise is caused by the com-

bination of rolling noise, consisting of the friction noise betw- 

een road surface and vehicle tires, and the propulsion noise 

caused by exhaust systems or engines. The levels of traffic noi- 

se are influenced by many factors such as types of engines, 

exhaust systems, tires interacting with the road, weather and 

road conditions. Generally, these factors can be categorized into 
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four clusters: traffic, road, environmental and weather factors. 

Heavier traffic volumes, higher speed, and greater number of 

trucks are expected to increase the loudness of traffic noise 

(Abo-Qudais and Alhiary, 2005). Traffic volume is one of the 

most significant impact factors for traffic noise pressure, espe-

cially on a highway that the speed of vehicles is almost con- 

stant. Consequently, quantifying the dependence between tra- 

ffic volume and traffic noise is required to explore the inher-

ent interrelationship between these two variables. Such quan-

tification can be helpful for decision makers to mitigate the tra- 

ffic noise levels from a view of traffic volume management. 

Temporal and spatial variations in vehicle volumes have 

a substantial impact on traffic noise emissions, especially on 

highways that the vehicle speed would not change dramatica- 

lly. The traffic flow is one of the two most important variables 

considered in the development of traffic noise prediction model 

(Alves Filho, 1997). Increased traffic flow, in terms of vehicles 

per hour, causes an increase in the noise level, given constant 

traffic composition, speed and driving patterns (da Paz et al., 

2005). Prevously, amounts of research have been proposed to 
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investigate the impacts of vehicle volume on traffic noise emis-

sions. For example, Mehdi et al. (2011) analyzed spatio-tem- 

poral patterns of road traffic noise pollution in Karachi, Paki-

stan. Agarwal and Swami (2011) proposed a comprehensive 

approach for the development of traffic noise prediction model 

for Jaipur city. Dai et al. (2013) developed a traffic noise predic- 

tion model on inland waterway of China using the FHWA. 

Engel et al. (2014) proposed statistical analysis of a combina-

tion of objective and subjective environmental noise data using 

factor analysis and multinomial logistic regression. However, 

most of previous research works mainly focused on traffic noise 

predictions, in which the traffic volume was considered as one 

of the main inputs. Also some statistical analyses between tra- 

ffic volume and traffic noise were conducted through simple 

correlation coefficient methods (e.g. Pearson’s r). For instance, 

through the analysis of variance (ANOVA) and the Tukey test, 

To et al. (2002) revealed that the total traffic flow and the num- 

ber of heavy vehicles are the most significant factors for traffic 

noise. The study proposed by da Paz and Zannin (2010) sho- 

wed that the traffic noise is highest correlated with the total 

vehicle flow, followed by the percentage of heavy vehicle and 

light vehicle flows. However, most previous studies just qual-

itatively indicate the impact of traffic flow on traffic noise. Few 

studies were reported to quantitatively investigate the inherent 

interrelationships between traffic volume and traffic noise, es- 

pecially for quantifying how the traffic noise would distribute 

under various traffic volume conditions.  

Copula and entropy methods have been widely used in 

many engineering applications such as streamflow simulation, 

drought frequency analysis, flooding forecasting, bearing str- 

ength prediction, and so on. For instance, Reddy and Ganguli 

(2011) applied copula method to derive the drought severity- 

duration-frequency curves. Sraj et al. (2014) used copula fun- 

ction for bivariate flood frequency risk analysis. Kong et al. 

(2015) proposed a maximum entropy-Gumbel-Hougaard cop-

ula method for simulation of monthly streamflow in Xiangxi 

River, China. However, no study was reported to use copula 

and entropy method for traffic noise impact analysis. 

Consequently, this study aims to model dependence betw- 

een traffic volume and traffic noise through an entropy-copula 

method. As an extension of pervious research, this study will 

innovatively introduce the copula method into traffic noise im- 

pacts analysis. From a view of statistics, this research work will 

explore the inherent interrelationship between traffic noise and 

traffic flow, and reveal the traffic noise mitigation effect through 

traffic flow reduction. The proposed entropy-copula method 

combines the maximum entropy and copula methods into a 

general framework, in which the marginal distributions of tra- 

ffic volume and traffic noise are estimated through the princi-

ple of maximum entropy (POME) theory, and the joint proba-

bilities (including joint cumulative distribution function (CDF) 

and joint probability density function (PDF)) are derived thr- 

ough the Gaussian and Student t copulas. The reasons we ch- 

oose the coupled entropy-copula approach are that (i) the en-

tropy method can approximate any probability function; (ii) the 

copula method can allow the marginal distribution and the joint 

distribution to be calculated in separate processes, and different 

marginal distributions to be used together to generate the joint 

distribution. The proposed method would then be applied to 

model the dependence of traffic volume and traffic noise on 

the Trans-Canada Highway (#1 highway of Canada) in the City 

of Regina, based on a series of field experiment measurements. 

2. Methodology 

2.1. Entropy Theory 

The concept of entropy was firstly introduced by Shannon 

(1948) to quantitatively measure the mean uncertainty associ-

ated with a probability distribution of a random variable (Chen 

et al., 2013). Jaynes (1957a, b, 1982) then developed the prin-

ciple of maximum entropy (POME) for deriving a probability 

distribution with given constraints reflecting certain informa- 

tion. Shannon entropy is one of the widely used entropies for 

many engineering applications such as drought analysis, strea- 

mflow forecasting, and bearing strength prediction. (Singh, 

1997; Huang 1998; Huang et al., 2006; Singh, 2011; Li, 2013). 

The definitions of Shannon entropy can be based on both 

discrete and continuous random variables. For a discrete ran-

dom variable X = {x1, x2, …, xn}, the entropy for X can be de- 

fined as: 

 

1

( ) ( )ln( ( ))
n

i i

i

H X p x p x


   (1) 

 

where p(xi) is the probability for X = xi. 

If the random variable X is continuous and holds a proba- 

bility density function (PDF) f(x), the Shannon entropy H(X) 

is defined as (Shannon, 1948): 

 

( ) ( )ln ( )
b

a
H X f x f x dx   (2) 

 

where H(X) is the entropy of X (also referred to as entropy fun- 

ction); x is a value of random variable X. a and b are the lower 

and upper limits of X, respectively.  

The principle of maximum entropy (POME), formulated 

by Jaynes (1957a, b), is established to find the most suitable 

probability distribution subject to the given information. In 

the mathematical frame of POME, the given information is 

expressed as a set of constraints formed as expectations of fun- 

ction hi(x) (Papalexiou and Koutsoyiannis, 2012): 

 

( ) ( ) ( ( ))
b

i i
a

h x f x dx E h x  (3) 

 

The application of the principle of maximum entropy is 

based on the assumption that the entropy variables are mutual-

ly independent from each other (Jaynes, 1957a). In the estima- 

tion of PDFs for traffic flow and noise, it is necessary to pre-

serve the statistical characteristics of the observed samples. 

Consequently, mean, standard deviation, skewness and kurto-

sis can be regarded as constraints for deriving the distributions 

of traffic flow and noise. In detail, Equation (3) can be expre- 
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ssed as: 

 

0 ( ) 1
b

a
C f x dx   (4) 

 

( ) ( ) ( ) 1, 2, ... ,
b

i i i
a

C h x f x dx h x i m        (5) 

 

where x is traffic flow or noise value; hi(x)
 
is a known function 

of random variable X, which can be specified as h1 = x, h2 = x2, 

h3 = x3, and h4 = x4, for the proposed constraints; ( )ih x is the ex- 

pectation of ( )ih x , which can be specified as { x , 2x , 3x , 4x }. 

Equation (4) states that the PDF must satisfy the cumulative 

probability theorem (Huang and Loucks, 2000; Li et al., 2010). 

The maximization of entropy, based on specified constrai- 

nts expressed as Equations (4) and (5), can be accomplished 

by using the method of Lagrange multipliers. The Langrangian 

function L, subject to Equations (4) and (5), can be expressed 

as (Kapur and Kesavan, 1992; Li and Huang 2009): 

 

0( )ln ( ) ( 1)[ ( ) 1]
b b

a a
L f x f x dx f x dx       

1

[ ( ) ( ) ]
m b

i i i
a

i

f x h x dx C


    (6) 

 

where ( 1, 2, ... , )i i m      are the Lagrange multipliers. f(x) is 

the PDF of random variable X; hi(x) are known functions of X; 

Ci are constraints of f(x). Then f(x) can be generated through 

maximizing L, leading to the derivative of L respect to f(x) be- 

ing zero (Li et al., 2008a,b; 2009; Lv et al., 2010): 

 

0

1

[1 ln ( )] ( 1) ( ) 0
m

i i

i

L
f x h x

f
 




      


   (7) 

 

Hence, the resulting maximum-entropy-based (ME-based) 

PDF can be expressed as (Kapur and Kesavan, 1992): 

   

0

1

( ) exp[ ( )]
m

i i

i

f x h x 


     (8) 

 

Substituting Equation (8) into Equation (4), the 0th Lagrange 

multiplier 0 can be obtained as: 

 

0
0

1

ln[ exp( ( )) ]
m

i i

i

h x dx 




   (9) 

 

Consequently, the probability density function for X can 

be obtained as follows (Qin et al., 2007): 

 

0
1 1

( ) exp[ ln( exp( ( )) ) ( )]
m m

i i i i

i i

f x h x dx h x 


 

       (10) 

 

The PDF defined by Equation (10) can preserve the most im-

portant statistical moments. The cumulative distribution func-

tion (CDF) of the ME-based PDF can be expressed as: 

 

( ) ( )
x

X
a

E x f t dt   (11) 

 

In general, the analytical solutions for obtaining the Lag- 

range multipliers do not exist, and then the numerical solution 

method is required (Hao and Singh, 2011). As stated by Hao 

and Singh (2011), the Lagrange multipliers can be find through 

minimizing a convex function expressed as: 

 

0
1 1

( ) ln( exp( ( )) ) ( )
m m

i i i i

i i

Z h x dx h x  


 

      (12) 

 

In this study, the Lagrange multipliers ( 1, 2, ... , )i i m       

in Equation (12) can be determined using the Conjugate Gra-

dient (CG) method. The CG method has played a special role 

in solving large scale nonlinear optimization problems with ad- 

vantages of super linear convergence, simple recurrence for-

mula and less calculation. The detailed process of CG method 

is presented as follows (Kong et al., 2015): 

(1) Starting from some initial value
(0) ; 

(2) Let the initial value of search direction
(0)d : 

 

(0) (0)

(0)

( 1, 2, ... , )
i

Z
d g i m




    


     

 

(3) For step 0, 1, ... , 1k n     , calculate: 

 

( ) ( ) ( ) ( ) ( )( ) min ( )k k k k kf d f d       

 

( 1) ( ) ( ) ( )k k k kd      

 

( ) ( )( )k kg Z   

 

( 1) ( 1) ( )

( ) 2

( ) 2

( )T

k k k

k

k

g g g

g


  
  

 

( 1) ( 1) ( ) ( )k k k kd g d     

 

The advantage of the entropy-based method is that no as-

sumption is required about the marginal distribution of the his- 

torical data, and can be applied to non-normal data without tra- 

nsforming these data to normal (Hao and Singh, 2011). Conse- 

quently, this approach can be suitable for estimating the proba- 

bility distributions without known forms. Furthermore, the pro- 

bability distributions derived by POME is the least biased esti- 

mate possible on the given information and it is maximally non- 

committal with regard to missing information. (Papalexiou and 

Koutsoyiannis, 2012). However, the POME may be computa-

tionally cumbersome when more statistics are to be preserved 
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and determination of more Lagrange multipliers is involved 

(Hao and Singh, 2011). 

 

2.2. Copula Method 

The word ‘copula’ was first employed in a mathematical 

or a statistical sense by Sklar (1959) in the theorem describing 

the functions that connect one-dimensional distributions func-

tions to form multivariate distribution functions (Nelsen, 2006). 

After that, amounts of mathematical theories were developed 

on copulas for multivariate dependence analysis. In this study, 

some definitions and concepts on copulas to be used will be 

presented in this section. The interested reader is referred to 

Joe (1997) and Nelsen (2006) for more detailed description of 

copula function properties. 

Copulas are joint cumulative distribution functions of n 

univariate standard uniform random variables. For example, a 

bivariate copula can be represented as: 

 

C: [0, 1]2
 [0, 1] (13) 

 

It has to fulfil “boundary” and “increasing” conditions as 

follows:  

 

(1) C(u, 1) = u, C(1, v) = v and C(u, 0) = C(0, v) = 0,  

 

(2) C(u1, u2) + C(v1, v2) – C(u1, v2) – C(v1, u2) ≥ 0 if u1 ≥ v1, u2 

≥ v2 and u1, u2, v1, v2 [0, 1].  

 

For n-dimensional distribution function F, it can be writ-

ten as: 

 

1 21 2 1 2( , , ..., ) ( ( ), ( ), ..., ( ))
nn X X X nF x x x C F x F x F x  (14) 

 

where
1 21 2( ), ( ), ..., ( )

nX X X nF x F x F x are marginal distributions of 

random vector (X1, X2, …, Xn). If these marginal distributions 

are continuous, a single copula function C exists, which can 

be written as (Sraj et al., 2014): 

 

1 2

1 1 1

1 2 1 2( , , ..., ) ( ( ), ( ), ..., ( ))
nn X X X nC u u u F F u F u F u    (15)   

 

where 0 ≤ u1, u2, …, un ≤ 1. 

The Archimedean, elliptical and extreme value copulas are 

some widely applied classes of copula functions. In the present 

study, the Gaussian and Student t copulas, as two widely used 

elliptical copulas would be considered for the analysis due to 

its capability of modelling the asymmetric or unbalanced rela-

tionship and dependence structures. The analytical expressions 

of bivariate Gaussian and Student t copulas are elaborately de- 

rived based on some pioneering works (Kelly and Krzyszto-

fowicz, 1997; Fang et al., 2002; Demarta and McNeil, 2005; 

Žežula, 2009; Ma et al., 2013). 

The Gaussian copula can be expressed as: 

 
1 1

1 2 1 2( , ; ) ( ( ), ( ))C u u u u 

      

1 1
1 2( ) ( )

1

3 1

2 2

1 1
exp( )

2
(2 ) | |

u u
T d



  


 
 


  w w w  (16) 

 

where 1 1

1 2( ( ), ( ))u u 

   denotes the bivariate standard nor- 

mal distribution; 1( )  means the inverse of the standard nor- 

mal distribution of ( )  ;  is the covariance matrix; w = [w1, 

w2]
T represents the corresponding integral variables. The den-

sity function of the Gaussian copula can be formulated as: 

 
2

11 2
1 2 1

1 2 2

( , ; ) 1 1
( , ; ) exp( ( ))

2
| |

T TC u u
c u u

u u

 
     

 


ζ ζ ζ ζ   

 (17) 

 

where 1 1

1 2[ ( ), ( )] .Tu u   ζ  

The formulation of Student t copula can be expressed as: 

 
1 1

1 2 , 1 2( , ; , ) ( ( ), ( ))C u u T T u T u    

 

1 1
1 2

31
( ) ( )

2
3 1

2 2

3
( )

2 (1 )

( )( ) | |
2

T
T u T u

d
 







  

 





 

 
 

w w
w  (18) 

 

with the density expressed as: 

 

12
21 2 2

1 2

1 2

3
( ) ( )

( , ; , ) 2 2( , ; , ) | | [ ]
1

( ) ( )
2 2

C u u
c u u

u u

 



 


 

 
    

 
 

3

2
1

11 22

2

1

(1 )

[ ( )]
(1 )

T

i

i

T b
























ζ ζ

 (19) 

 

where 1 1

, 1 2( ( ), ( ))T T u T u  

 

 denotes the bivariate Student t dis- 

tribution, and 1( )T
  denotes the inverse of the Student t distri- 

bution, with υ being the degree of freedom of Student t distri- 

bution; Γ(.) denotes the gamma distribution; 1( )i ib T u

 , i = 1, 

2 and 1 1

1 2[ ( ), ( )]TT u T u 

 ζ . 

The parameters of Gaussian and Student t copula can be 

estimated through the maximum pseudo-likelihood estimation 

method (Nadarajah and Kotz, 2005; Nadarajah, 2006; Shiau, 

2006; Shiau et al., 2007; Reddy and Ganguli, 2011; Ma et al., 

2013). For bivariate Gaussian copula, its maximum pseudo- 

likelihood function can be expressed as: 

 

1 2 1 2

1

( , ; ) ( , ; )
n

i i i

i

L x x c u u


    (20) 

 

where c(.) is the density function of Gaussian copula; i means 

the ith observation (x1i, x2i);
11 1( )i X iu F x ,

22 2( )i X iu F x denote 

the marginal probability distributions of considered variables; 

and Σi is the covariance matrix of (x1i, x2i). Then the unknown 
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parameter in Gaussian copula Σ can be estimated through 

ln / 0L   . Thus we have: 

 

1 2

1

{ln[ ( , ; )]} 0
n

i i i

i

c u u



 


  (21) 

 

For the bivariate Student t copula, the maximum pseudo- 

likelihood function can be expressed as: 

 

1 2 1 2

1

( , ; , ) ( , ; , )
n

i i i

i

L x x c u u 


    (22) 

 

Consequently, the unknown parameters Σ and can be obtained 

through considering ln / 0L   and ln / 0L    , and thus 

we can have: 

 

1 2

1

1 2

1

{ln[ ( , ; , )]} 0

{ln[ ( , ; , )]} 0

n

i i i

i

n

i i i

i

c u u

c u u











  


  

 




 (23) 

 

If an appropriate copula function is established, the condi- 

tional joint distribution can then be obtained. Following Zhang 

and Singh (2006), the conditional distribution function of U1 

given U2 = u2 can be expressed as: 

 

1 2 2| 1 1 1 2 2 1 2 2 2

2

( ) ( | ) ( , ) |U U uC u C U u U u C u u U u
u




    


 (24) 

 

Similar conditional cumulative distribution for U2 given U1 = 

u1 can be obtained. Moreover, the conditional cumulative dis- 

tribution function of U1 given U2 ≤ u2 can be expressed as: 

 

1 2 2

1 2
| 1 1 1 2 2

2

( , )
( ) ( | )U U u

C u u
C u C U u U u

u
      (25) 

 

Likewise, an equivalent formula for the conditional distribution 

function for U2 given U1 ≤ u1 can be obtained. 

Moreover, the probability density function (pdf) of a co- 

pula function can be expressed as: 

 
2

1 2
1 2

1 2

( , )
( , )

C u u
c u u

u u




 
 (26) 

 

and the joint pdf of the two random variables can be obtained 

as: 

 

1 2

2 2

1 2 1 2 1 2
1 2 1 2

1 2 1 2 1 2

( , ) ( , )
( , ) ( ) ( )X X

C u u C u u u u
f x x f x f x

x x u u x x

   
   

     

1 2( , )c u u  (27) 

 

Consequently, the conditional pdf of X1, given the value of X2, 

can be formulated as: 

 

1

2

1 2
1 2 1 1 2

2

( , )
( | ) ( ) ( , )

( )
X

X

f x x
f x x f x c u u

f x
   (28) 

 

and the conditional pdf of X2, given the value of X1, can be 

expressed as: 

 

2

1 2
2 1 2 1 2

1 1

( , )
( | ) ( ) ( , )

( )
X

X

f x x
f x x f x c u u

f x
   (29) 

 

The application of copulas has grown rapidly in enginee- 

ring and science fields, due to its superior capability of descri- 

bing the dependence among multiple variables. The main ad- 

vantage of copula approach is the independence between con-

struction of joint distribution and choice of marginal distribu-

tions of individual variables. It can separate the estimation pro- 

cess of marginal and joint probability distributions. Consequ- 

ently, multiple marginal distributions can be integrated into the 

joint probability through copula. 

 

2.3. Goodness-of-fit Statistical Tests 

After parameter estimation for both the marginal and joi- 

nt distributions, the goodness-of-fit statistic tests would be per- 

formed to determine whether those estimated distributions are 

satisfied. The root mean square error (RMSE), the Kolmogo-

rov-Smirnov (K-S) and the Anderson-Darling (A-D) goodness- 

of-fit tests would be employed to evaluate the performance of 

the marginal distributions obtained through the entropy meth-

od. And the Rosenblatt transformation (Rosenblatt, 1952) wou- 

ld be applied to investigate the performance of joint distribu-

tions in describing the dependency between traffic flow and tra- 

ffic noise. 

 

2.3.1. Goodness-of-fit Statistics for Marginal Distribution 

In the process of evaluating the performance of marginal 

distribution obtained through the entropy method, the empiri-

cal nonexceedance probabilities would be obtained through the 

Gringorten plotting position formula (Gringorten, 1963), whi- 

ch is expressed as: 

 

 
0.44

0.12

k
P K k

N


 


 (30) 

 

where N stands for the sample size; k stands for the kth small-

est observation in the data set; and the data set was arranged 

in an increasing order.  

The RMSE, the K-S test and the A-D test are used to eva- 

luated the probability distributions of traffic flow and noise 

estimated through the entropy method. The RMSE can be ex- 

pressed as (Willmott and Matsuura, 2005): 
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 
2

1

K
est obs

k k

k

x x

RMSE
K






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 (31) 

 

where est

kx denotes theoretical value from the fitted probability 

distribution; obs

kx denotes the empirical probability obtained th- 

rough Equation (30); K is the sample size. 

The K-S test is a nonparametric probability distribution 

free test (Zhang and Singh, 2012). The statistic of K-S test quan- 

tifies the largest vertical difference between the estimated and 

empirical distributions (Massey, 1951; Razali and Wah, 2011). 

Given n increasing ordered data points, x(.), the K-S test statis-

tic is defined as (Conover, 1999): 

 

   supx nT F x F x   (32) 

 

where F*(x) means the estimated distribution, Fn(x) denotes 

the empirical distribution, and ‘sup’ stands for supermum. The 

null hypothesis H0 is: F(x) = F*(x) for all x from -∞ to ∞ (The 

sample data follow the hypothesized distribution). If T excee- 

ds the 1 – α quantile, then we reject H0 at the level of signifi-

cance, α (Razali and Wah, 2011). The P-value for K-S test was 

approximated using Miller’s approximation (Zhang and Singh, 

2012). 

The A-D test is one of the most powerful empirical distri- 

bution function (EDF) tests (Arshad et al., 2003). It can exam-

ine whether the sample data is drawn from a specific distribu-

tion (Scholz, 1987; Farrel and Stewart, 2006). Given n increa- 

sing ordered data points, x(.), the A-D test statistic can be ex-

pressed as follows (Anderson and Darling, 1954; Arshad et al., 

2003): 

 

       2

1

1

1
2 1 log log 1

n

n i n i

i

W n i F x F x
n

 

 



       (33) 

 

where F*(xi) stands for the cumulative distribution function of 

the hypothesized distribution. The null hypothesis H0 is: The 

sample data follow the hypothesized distribution. If 2

nW  ex-

ceeds the 1 – α quantile, then we reject H0 at the level of sig-

nificance, α (Razali and Wah, 2011). The P-value for A-D test 

was approximated using Monte Carlo simulation (Zhang and 

Singh, 2012). 

 

2.3.2. Goodness-of-fit Statistics for Copula 

The goodness-of-fit test based on Rosenblatt transforma- 

tion will be employed in this study to evaluate the performance 

of copula based on the recommendation by Genest et al. (2009). 

Definition (Genest et al., 2009): Rosenblatt’s probability 

integral transform of a bivariate copula C is the mapping : 

(0, 1)  (0, 1) which to (u, v) (0, 1)2 assigns another vec-

tor (u, v) = (e1, e2) (0, 1) with e1 = u and e2 = C(v|u). 

A critical property of Rosenblatt’s probability integral tran- 

sform is that the joint distribution of υ = (u, v) is distributed as 

C, denoted as υ ~ C, if and only if the joint distribution of 

   is the bivariate independence copula  1 2 1 2,C e e e e   , 

denoted as   C  ～ (Genest et al., 2009). 

Based on the property of Rosenblatt’s transform, the null 

hypothesis H0: υ ~ CC0 is equivalent to *

0H :    ~ C  

for some  , where  0 :C C    is the specific parame- 

tric family of copulas and is an open subset of Rp for some 

integer p ≥ 1 (Genest et al., 2009). 

The steps of Rosenblatt transformation are as flows: 

(1) Null hypothesis H0: 0C C～ . 

(2) Under the null hypothesis H0, the empirical distribution fun- 

ction: 

 

     
1

1
, 0,1

n

n i

i

D
n 

  1 E    (34) 

 
where  

ii iUE (i = 1, 2, …, n) are pseudo-observations 

from the independence copula C ; Ui (i = 1, 2, …, n) are pseu- 

do-observations from the copula C;  ,u v denotes the 

marginal distributions of random variables X and Y; n is the 

sample size. 

The Cramér von Mises statistic can be used to test the 

null hypothesis H0 (Genest et al., 2009): 
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where  max ,a b a b  . The corresponding P-value of the 

Cra- mér von Mises test statistic is: 
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 (36) 

3. Case Study 

3.1. Selection of the Measuring Sites 

Regina is the capital city of the Province Saskatchewan, 

Canada, with a population of more than 200,000. The City of 

Regina can be reached by several highways including the 

Trans-Canada Highway (#1 highway of Canada) from both 

the west and east sides and four provincial highways from oth-

er directions. The city is served with the Ring Road, a high sp- 

eed connection between Regina's east and northwest that loops 

around the city's east side (the west side of the loop is formed 

by a busy road named Lewvan Drive). Future plans will be 

conducted to construct another perimeter highway to encircle 

the city farther out. This type of highways with no traffic lights 

is one of the important sources of traffic noise in most cities 

in Canada. 

In order to investigate the dependence between traffic flow 

and traffic noise pressure, two locations, named the South and 

North site, as shown in Figure 1, are selected as the measuring 

sites. These two sites are distributed along the Trans-Canada 
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Highway on which the speed limit is 100 km/h. More signifi-

cantly, the sites are very close to each other with similar traffic 

and road construction conditions. The South site is located 

along Assiniboine Ave to Wascana Pkwy in the City, and the 

North site is on the opposite side of the South site, located from 

Wascana Pkwy to Assiniboine Ave. The field experiment was 

conducted two times, with each time lasting one week (May 

24 to 31, and July 12 to 19). 

 

  

Figure 1. Selection of the measuring sites. 

 
3.2. Data Collection 

In the field experiment, the sound pressure levels are mea- 

sured by utilizing the B&K Modular Precision Sound Analyz-

er 2260 in the experiment. Sound Analyzer 2260 supports one- 

channel measurements of environmental noise and noise at 

work, including real-time analyses of sound, and measurements 

of reverberation time. The resolution/accuracy for this instru-

ment is 6.3 Hz to 20 kHz in 1/3-octaves of the frequency range 

covered and it can be extended to allow measurements of re- 

verberation time in 1/1- or 1/3-octaves. To ensure the quality 

of the experimental data, the equipment is firmly fixed on the 

measuring sites with cement blocks as shown in Figure 2. In 

addition, a power box is set beside the equipment to provide 

electric power for a longtime required for the testing. As can 

be seen in Figure 2, all the equipment and accessories were set 

in a sealed case. The case was locked and fixed on the cement 

blocks to prevent any possible damage. 

Traffic noise from a stream of vehicles varies over time 

in strength depending on many different factors such as num-

ber of vehicles passed by, speed, weather conditions in the tests 

and so on. The time averaged noise level is employed to con-

vert the fluctuating values of a certain time interval into a sim- 

ple mean value. In current research, a 1-hour time-averaged 

noise level (LAeq1h) is employed as temporal noise indicator 

for further analysis. The layout of the microphone adopted in 

the experiment is shown in Figure 3. The microphone is pla- 

ced 1.5 m above the ground, and 7.5 m away from the center 

line of the highway, as can be seen in the figure. The data co- 

llected and analyzed are the One-Hour Time-Averaged Noise 

Pressure Level in terms of equivalent continuous sound level 

LAeq (dB) and Traffic Flow Q is measured with the unit in vehi- 

cle/hour, indicating the passing motor vehicles in a unit time. In 

this research, the traffic flow at the testing spots along Trans- 

Canada Highway are collected and supplied by the City of 

Regina. Tables 1 and 2 present the statistical characteristics for 

field measurements of the traffic flow and traffic noise 

 
Table 1. The Statistic Characteristic for the Traffic Flow and 

Traffic Noise at the North Site 

North 

NO.   Traffic Flow Traffic Noise 

1 Percentile Minimum 104.00  41.10  

25% 591.00  54.60  

50% 1271.00  61.50  

75% 1631.00  63.40  

Maximum 2869.00  72.60  

2 Range 2765.00  31.50  

3 Mean 1175.58  59.41  

4 Std 641.29  6.18  

5 Skewness 0.01  -0.33  

6 Kurtosis -0.61  -0.35  

 
Table 2. The Statistic Characteristic for the Traffic Flow and 

Traffic Noise at the South Site 

South 

NO.   Traffic Flow Traffic Noise 

1 Percentile Minimum 87.00  40.30  

25% 625.00  49.60  

50% 1241.00  59.40  

75% 1699.00  63.70  

Maximum 2724.00  69.80  

2 Range 2637.00  29.50  

3 Mean 1195.50  56.80  

4 Std 681.65  8.45  

5 Skewness 0.11  -0.38  

6 Kurtosis -0.76  -1.18  

4. Result Analysis and Discussion 

4.1. Marginal Distribution Estimation through Entropy 

Method 

Based on the principal of maximum entropy (POME) th- 

eory, the marginal probability density functions (PDFs) and 

cumulative probability functions (CDFs) can be expressed as 

Equations (10) and (11). Then the Conjugate Gradient (CG) 

method was employed to generate the unknown parameters in 

Equation (10), with the initial values of λ(0) being the mean, 

standard deviation (i.e. Std), skewness, and kurtosis. The gen-

erated marginal CDFs were compared with the empirical CDFs 

estimated from the Gringorten plotting position formula (Grin- 

gorten, 1963). Figure 4 shows the comparison between the th- 

eoretical probabilities, calculated through the ME-based PDF, 

and the empirical probabilities obtained through Gringorten 

plotting position formula at the North site. Figure 5 presents 
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the comparison of the theoretical probabilities and the empir-

ical probabilities at the South site. They indicates that the ME- 

based PDFs can fit the empirical probabilities very well, but 

the ME-based PDFs for the traffic flows performed better than 

those for the traffic noise. 

To further evaluate the performance of the entropy meth-

od in quantifying the probability distributions for the traffic 

volumes and traffic noise levels, the RMSE values, K-S test 

and A-D test are employed to reflect the effectiveness of the 

ME-based marginal distributions. As presented in Table 3, the 

P-values calculated from both K-S test and A-D test are higher 

than 0.05 for both traffic volumes and noise levels at the North 

and South sites. These results indicate that the null hypothesis 

cannot be rejected, and the marginal distributions obtained th- 

rough the entropy method can appropriately quantify the distri- 

bution of the measured traffic volume and noise. Furthermore, 

the P-values of K-S and A-D test for traffic flow are higher 

than those for traffic noise at the North Site, while the RMSE 

value for traffic flow is smaller than that for traffic noise. The- 

se indicate that the ME-based PDF performed better for traffic 

volume than that for traffic noise at the North site. Similar con- 

dition appears at the South site. Such results are consistent with 

the results showed in Figures 4 and 5.  

 
4.2. Joint Probability Distributions for Traffic Flow and 
Traffic Noise through the Gaussian and Student t Copulas 

Traffic volume is one of the most important factors in tra- 

ffic noise emission. Before modelling the dependence between 

traffic volume and noise in the highway of the City of Regina, 

the correlations between traffic volume and traffic noise are 

investigated. The Pearson’s, Spearman’s and Kendall’s corre-

lation coefficients were employed in this study to analyze the 

inherent relationship between traffic volume and noise. As sho- 

wn in Table 4, the traffic noise and traffic volume is highly 

 

① Power Box 

② Case 

③ Cement Block 

④ Wood Block and B&K 10m Microphone            

Ext. Cable AO 0442 

⑤ B&K Microphone Holder UA 1317 

⑥ B&K Large Round Windscreen UA 0237 

⑦ B&K Modular Precision Sound Analyzer 

2260 

 

Figure 2. Experimental instruments and setup. 
 

 

1.5 m 

7.5 m 

3.7 m 

 
Figure 3. Layout of microphone adopted in the experiments. 
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monotone association. Specifically, the correlation coefficients 

in Table 4 indicate a positive monotonic association between 

traffic noise and volume.  

To further quantify the inherent interrelationship between 

the traffic volume and noise, the Gaussian copula and Student 

t copula are applied to model the dependence between these 

two variables. The parameters in the Gaussian and Student t 

copulas were estimated through the maximum pseudolikeli-

hood estimation method. Figure 6 shows the joint CDF and 

PDF of traffic volume and noise, obtained through the Gauss-

ian and Student t copulas, at the North site. Figure 7 presents 

the joint CDF and PDF of traffic volume and noise at the South 

site. As shown in Figure 6, the PDFs generated through the 

Gaussian and Student t copulas showed an apparently upper 

tail dependence between traffic noise and volume, indicating 

the fact that extreme traffic volume would usually result in ex- 

treme traffic noise level. A similar upper tail dependence ap-

peared in the joint PDFs at the South site, as can be seen in Fi- 

gure 7. In Figures 6 and 7, the values on the z axis are obtained 

through the joint PDF with respect to the standard values of 

traffic volume and traffic flow, which vary within the unit in- 

terval (i.e. [0, 1]). This leads to extremely high values of pdf. 

Furthermore, to apparently reveal the probabilistic distribution 

characteristics of traffic flow and traffic noise, the values on 

the x and y axis are set as the original data. 

To identify the performance of the Gaussian and Student 

t copulas in modelling the joint probability of traffic volume 

and traffic noise, comparisons between the theoretical and 

empirical joint cumulative probabilities were conducted, in 

which the empirical probabilities were calculated based on the 

bivariate Gringorten plotting position formula (Zhang and Sin- 

gh, 2006), and the theoretical probabilities were obtained thr- 

ough the estimated Gaussian and Student t copulas Figure 7 

 
Table 4. Values of Correlation Coefficients between Traffic 

Flow and Traffic Noise (95% confidence level) 

Site. Pearson’s r Kendall’s tau Spearman’s rho 

North 0.8159 0.6015 0.7774 

South 0.8545 0.6634 0.8616 
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Figure 4. Comparison between the theoretical and empirical probabilities at the North site. 

 

Table 3. The Goodness-of-fit for the ME-based Marginal Distributions 

Methods Index 
K-S test A-D test RMSE 

T P-value W2
n P-value  

North Traffic Flow 0.0678 0.3450 0.4879 0.2193 0.0341 

Noise 0.1075 0.0716 0.6389 0.0929 0.0477 

South Traffic Flow 0.0514 0.4834 0.3722 0.4157 0.0273 

Noise 0.0918 0.1034 0.5242 0.1787 0.0410 
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shows the comparison between the theoretical and empirical 

probabilities at the North site. It indicates that the Gaussian and 

Student t copulas produced good graphical fits to the empiri-

cal probabilities at the North site. Figure 8 presents the com-

parison between the theoretical and empirical probabilities at 

the South site. Similarly, the proposed Gaussian and Student t 

copulas performed well for plotting the joint probability of tra- 

ffic volume and noise at the South site. 

To further identify the performance of the Gaussian and 

Student t copulas, the root mean square error (RMSE), and the 

Rosenblatt transformation with Cramér von Mises statistic are 

employed to test the goodness of fit of sample data to the the-

oretical joint distribution obtained using copula functions. Ta- 

ble 5 presents the Cramér von Mises statistic associated with 

P-values and the RMSE values for joint distributions obtained 

through Gaussian and Student t copulas for traffic flow and 

noise. The results indicate that the Gaussian and Student t co- 

pulas produced satisfied performance in quantifying the joint 

probability distributions between traffic volume and noise, sin- 

ce all the P-values of the Cramér von Mises statistics are hi- 

gher than the significant level (i.e. α = 0.5). Furthermore, at 

both measurement sites, the differences between Gaussian and 

Student t copulas for traffic volume and noise are rarely small. 

For example, the RMSE value for the Gaussian and Student t 

copula at the North site is 0.0442 and 0.0438, respectively, whi- 

le RMSE value for the Gaussian and Student t copula at the 

South site is 0.0362 and 0.0364, respectively. These results in- 

dicate that both the Gaussian and Student t copulas can be app- 

lied to represent the joint distribution of traffic volume and 

noise. 

 

4.3. Conditional Probability Distributions for Traffic Noise 

under Different Traffic Volume Scenarios 

Based on the results presented in Table 5, both the Gauss- 

ian and Student t copulas can be applied to quantify the joint 

probability distributions of traffic volume and noise at the two 

sites. Consequently, the conditional cumulative probability fun- 

ctions (CDF) of traffic volume and traffic noise can be derived 

through the established copula functions. In current study, the 

traffic noise is the main concern under consideration due to its 

various negative effects on human health. Consequently, the 

conditional distribution of the traffic noise are only analyzed 

under various traffic volume scenarios. The traffic volume sce- 

narios are designed based on the field experiment measure-

ments, in which the 5, 25, 50, 75 and 95% percentile values 

are calculated based on experimental measurements. 

In this research, the conditional CDFs of the traffic noise 

with the traffic volume less than some predetermined percen- 
 
Table 5. The Goodness-of-fit for the Gaussian and Student t 

copulas 

Site Copulas 
Cramér von Mises statistic RMSE 

T P-value  

North Gaussian  53.8692 0.4145 0.0442 

 Student t 53.6148 0.4345 0.0438 

South  Gaussian  66.6018 0.8164 0.0362 

 Student t 66.5498 0.8064 0.0364 
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Figure 5. Comparison between the theoretical and empirical probabilities at the South site. 
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tile values are produced based on Equation (25). This is becau- 

se that compared with the traffic noise emission under consis- 

tent traffic volume, people pay more attention to the traffic 

noise under a traffic volume limit on the highway. Figure 10 

shows the conditional CDFs of the traffic noise at the North 

site, which are generated through the established Gaussian and 

Student t copulas (shown in Figure 6). It can be seen that, the 

values of conditional cumulative probabilities for traffic noise 

would decrease as the value of the traffic volume increases. 

This indicates a positive correlation structures between the tra- 

ffic volume and traffic noise, which is consistent with the co- 

rrelation coefficients presented in Table 4. Furthermore, as sh- 

own in Figure 10, the traffic noise would probably be no more 

than 30 dBA when the traffic volume is less than 5% of the  
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Figure 6. The joint CDF and PDF for traffic volume and noise at the North site. 
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measurement records. Similarly condition can also be found 

in the conditional CDF of traffic noise at the South site, as pre- 

sented in Figure 11. 

 

4.4. Conditional Probability Density Function for Traffic 

Noise under Different Traffic Volume Scenarios 

In addition to derive the conditional cumulative distribu-

tion functions based on the Gaussian and Student t copulas for 
traffic noise under different traffic volume scenarios, the con-
ditional probability density functions of traffic noise can also 
be generated based on Equations (26) - (29). In traffic noise 
control practices, the traffic volume would be a critical factor 
for traffic noise pressures. Given constant traffic composition, 
speed and driving patterns, some research work reported that 
a 50% reduction of the traffic volume results in a 3 dB reduc-  
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Figure 7. The joint CDF and PDF for traffic volume and noise at the South site. 
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tion in noise level, regardless of the absolute number of vehi-
cles (Ellegjerg, 2007). However, due to extensive uncertain-
ties in road traffic systems (e.g. traffic speed, composition, and 
so on), the actual traffic noise reduction effect resulting from 
traffic volume reduction would also be uncertain. The proba-
bility density distribution of the traffic noise under different 
traffic volume scenarios can well reflect such uncertainty and 
be applied to explore the traffic noise reduction through traffic 
volume management. 

Figure 12 shows the distributions of traffic noise pressure 

conditional on different traffic flow volumes at the North site. 

In this study, the traffic volumes scenarios are assume to be 5, 

25, 50, 75 and 95% percentile of the field experimental meas-

urements. Each curve represents a probability distribution fun- 

ction (PDF) of the traffic noise associated with certain traffic 

volume. Since both the Gaussian and Student t copulas can 

well quantify the joint probability of traffic noise and traffic 

flow, the two copula functions are all employed to derive the 

conditional PDF of the traffic noise under different traffic flow 

scenarios. According to the PDFs of traffic noise, as the traffic 

volume increases, the traffic noise would be expected to be 

higher as well. For example, if 1,631 (75% percentile of the 

measurements) vehicles pass by the North site in one hour, the 

noise pressure is likely to be more intense than the traffic vo- 

lume scenario of 1,271 vehicle/hour (50% percentile of the 

measurements). Moreover, when high traffic volume occurred, 

the distribution of the traffic noise is narrow around its mode. 

For instance, the PDF associated with the traffic volume of 

591 vehicle/hour is wider than the PDF associated with the tra- 

ffic volume of 1,271 vehicle/hour. This may result to a larger 

range of traffic noise given the 25% percentile traffic volume, 

as compared to the 50% percentile traffic volume. 

Figure 13 shows the distributions of traffic noise condi-

tional on different traffic volume scenarios at the South site. 

Similarly with the conditional PDFs at the North site. The con- 

ditional PDFs at the South site, obtained through the Gaussian 

and Student t copulas, indicate that the increase of traffic vo- 

lume would also lead to increase of the traffic noise. This is 

due to the positive dependence between the traffic volume and 

traffic noise. Furthermore, different from the conditional PDFs 

at the North site, the distribution of the traffic noise is narrow 

around its mode at very high and very low traffic flow scena- 

rios. As can be seen from Figure 13, the PDFs associated with 

5 and 95% percentiles of the traffic volume is narrower than 

the PDFs associated with the 25, 50, 75% percentiles of the 

traffic volume. 
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Figure 8. Comparison between the theoretical and empirical joint cumulative probabilities at the North site. 
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 Figure 9. Comparison between the theoretical and empirical joint cumulative probabilities at the South site. 
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Figure 10. The conditional CDF of traffic noise under different traffic volume scenarios at the North site. 
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Figure 11. The conditional CDF of traffic noise under different traffic volume scenarios at the South site. 
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Figure 12. The conditional PDF of traffic noise under different traffic volume scenarios at the North site. 
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Figure 13. The conditional PDF of traffic noise under different traffic volume scenarios at the South site. 
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The conditional PDFs of the traffic noise under different 

traffic flow scenarios can indicate the potential reduction effect 

due to the decrease of the traffic volume. As can be seen from 

Figures 12 and 13, decrease of the traffic volume would likely 

reduce the traffic noise. However, at the same site, the reduc-

tion effect would be different as the difference in the traffic flow 

reduction. For example, the noise reduction effect seems to be 

increase as the decrease of the traffic flow in both North and 

South sites. Moreover, as shown in Figures 12 and 13, it seems 

that, as the decrease of the traffic flow, the noise reduction ef- 

fect at the South site would be more significant than that at 

the North site. 

 
4.5. Discussion 

The interrelationship between traffic flow and traffic noise 

is complex and can hardly be well reflected through some sim- 

ple statistical analysis. Moreover, extensive uncertainties exis- 

ting in the traffic system will intensify the complexity of such 

an interrelationship. The proposed entropy-copula approach 

can model the dependence between traffic flow and traffic noi- 

se through a joint probability. Furthermore, the CDFs and 

PDFs of the traffic noise, conditional on different traffic flow 

scenarios, can be derived based on the copula function. Such 

conditional CDFs and PDFs can provide useful information 

for decision makers for traffic noise mitigation through traffic 

flow management.  

Figures 10 ~ 13 shows the conditional CDFs and PDFs 

for the traffic noise at the measurement sites under different 

traffic flow scenarios. These conditional probability distribu-

tions can indicate the general probabilistic characteristics of 

traffic noise under different traffic flow control measures. For 

example, if the traffic flow reduces by 25%, then the condi-

tional probabilistic distributions (CDFs and PDFs) can be ob-

tained through the copula function. These conditional CDF and 

PDF can reveal the probabilistic distributional characteristics 

of the traffic noise, if the traffic flow is reduced by 25%. 

Figures 10 and 12 show the conditional CDFs and PDFs of 

traffic noise at the North site, while Figures 11 and 13 indica- 

tes the conditional probabilistic distributions of traffic noise at 

the South site. Comparison of the conditional probabilistic dis- 

tributions between the South and North sites reveal that traffic 

flow seems to play a more important role in traffic noise at 

South Site. This means that, if the traffic flow is reduced by 

the same amount, the noise at South Site would decrease more 

significantly. This is due to that the road at South Site has three 

lanes, and thus the same reduction rate of traffic flow would 

lead to more decrease in traffic density at South Site. Therefore, 

traffic noise mitigation through traffic flow control will be 

more effective at the South Site. 

5. Conclusions 

In this study, an entropy-copula method has been proposed 

for modelling dependence between traffic volume and traffic 

noise. In the proposed entropy-copula framework, the entropy 

method was applied to quantify the marginal probability dis-

tributions of traffic volume and noise, with the Lagrange mul-

tipliers in the ME-based PDF being obtained through the Con- 

jugate Gradient (CG) method. Afterwards, the joint probability 

distributions (i.e. joint PDF and joint CDF) were established 

through the Gaussian and Student t copulas, with the unknown 

parameters in the copula being obtained through the maximum 

pseudo-likelihood estimation method. Various goodness-of-fit 

test methods were proposed to evaluate the performance of the 

entropy method in estimating the marginal probabilities, and 

the Gaussian and Student t copulas in modelling the joint pro- 

babilities of traffic volume and noise. 

The proposed entropy-copula method was applied for mo- 

delling the dependence of the traffic volume and traffic noise 

on the Trans-Canada Highway (#1 Highway) in the City of 

Regina, based on a series of field experiments. The results sho- 

wed that the entropy method could appropriately quantify the 

probability distributions of traffic volume and traffic noise, 

with low RMSE values and the P-values of K-S and A-D tests 

being larger than 0.5. Meanwhile, both the Gaussian and Stu-

dent t copulas could well model the joint probability distribu-

tions for the traffic volume and traffic noise at the both expe- 

riment sites, with low RMSE values and the P-values of the 

Cramér von Mises statistics are higher than the significant le- 

vel (i.e. α = 0.5). Also, comparison between the theoretical 

joint probabilities, obtained by the copulas, and the empirical 

joint probabilities demonstrated the well performance of the 

copula methods in modeling the joint probabilities for traffic 

volume and traffic noise. Furthermore, the conditional CDFs 

of the traffic noise at the two experiment sites, were derived 

based on the established Gaussian and Student t copulas under 

different traffic volume scenarios. The obtained conditional 

CDFs indicated positive structures between traffic volume and 

traffic noise at the both experiment sites. 

The traffic noise are attracting increasing attention from 

various researchers due to its various negative effect on hu-

mans. The impacts of traffic noise comes from amounts of as- 

pects, including traffic system, weather conditions and road 

conditions. This study attempted to model the dependence of 

the traffic noise and its impact factor (i.e. traffic volume in this 

study) from a statistical view. However, since the traffic noise 

emission are influenced by many factors, multivariate copula 

methods are required to explore the impacts from multiple fac- 

tors on the traffic noise emission. Moreover, one of the under- 

lying assumptions of the entropy-copula approach is that the 

marginal distributions of traffic flow and traffic noise are con-

tinuous. Such an assumption may not be true for traffic flow, 

which requires further study to construct copulas with respect 

to discrete and continuous random variables. 
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