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ABSTRACT. Annual reports show that human infections caused by Vibrio spp. have nearly doubled over the past decade in the Virgi- 
nia and Maryland waters of the Chesapeake Bay. Vibrio spp. are autochthonous to estuarine and coastal waters and follow a seasonal 
cycle attributed mainly to fluctuations in water temperature and salinity. This study presents the development of empirical algorithms 
for predicting the probability of Vibrio vulnificus and Vibrio parahaemolyticus likelihood and abundance in the upper Chesapeake Bay. 
To model likelihood of occurrence, a set of binary classification models was developed, employing a suite of geophysical predictor va- 
riables and statistical methods. Accuracy of results was ~ 68% at 0.40 prediction for V. vulnificus and ~ 70% at 0.60 prediction for V. 
parahaemolyticus. For Vibrio spp. abundance, regression methods were applied to samples positive for Vibrio, showing Vibrio abunda- 
nce can be predicted as a function of sea surface temperature and salinity in Chesapeake Bay, with mean absolute error (MAE) of 3.9 
cells 10 ml-1 for V. vulnificus and 5.8 cells 10 ml-1 for V. parahaemolyticus. Additionally, for the purpose of operational potential in the 
Chesapeake Bay, we developed a two-step classification/regression hybrid approach was used to generate estimates of abundance in 
the absence of bacteriological data on presence of Vibrio spp. This hybrid approach predicted Vibrio abundance with MAE of 2.8 cells 
10 ml-1 for V. vulnificus and 4.4 cells 10-1 ml for V. parahaemolyticus. Since the risk of human infection is a function of Vibrio spp. pa- 
thogenicity and abundance, extending available predictive modeling capabilities to provide concentration, in addition to presence/ab- 
sence, advances the public health utility of these models significantly.  

Keywords: quantitative colony bot hybridization, hybrid modeling, classification, regression, generalized additive model, random for-
est model 

1. Introduction

The microbiology of the Chesapeake Bay includes many 
species of the family Vibrionaceae, some of which are patho-
genic to humans and marine animals (Colwell et al., 1977; Hoge 
et al., 1989; Wright et al., 1996). Cases of human infection are 
infrequent, but reports from local health departments and the 
Centers for Disease Control and Prevention indicate the annual 
number of reported human Vibrio infections in the Bay region 
has nearly doubled in the past decade (Maryland Department 
of Health and Mental Hygiene, 2013; Virginia Department of 
Health, 2013). Furthermore, Vibrio spp. are frequently detected 
in oysters and other shellfish harvested for human consumption 
during the summer months (Constantin de Magny et al., 2009). 
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This seasonality correlates with peak incidence of vibrioses. 
Soft tissue infections, gastroenteritis, and primary septicemia 
following consumption of contaminated seafood or exposure 
to the marine environment are the most common manifesta-
tions of V. vulnificus disease in humans (Howard and Bennett, 
1993; Wright et al., 1996; Strom and Paranjpye, 2000). V. pa- 
rahaemolyticus is an invasive bacterium that typically causes 
severe diarrhea, but can also cause skin infections if wounds 
are exposed to seawater or contact with shellfish or crustaceans 
(Howard and Bennett, 1993; Centers for Disease Control and 
Prevention, 2013). 

Despite the fact that Vibrio spp. are known pathogens of 
global occurrence, the environmental conditions associated 
with risk of Vibrio infection are poorly characterized, with no 
scientific consensus on the effect of climate change on Vibrio 
populations or risk of Vibrio infection. A recent study by Urqu- 
hart et al. (2014) examined V. vulnificus model sensitivity to 
climatic variability and change within the upper Chesapeake 
Bay by assessing model response to a range of temperature and 
salinity values. The predicted response of V. vulnificus proba-
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bility to high temperatures in the Bay differed systematically 
between models of differing structure, indicating that the im-
pact of climatic change on the probability of V. vulnificus pre- 
sence in the Chesapeake Bay remains uncertain (Urquhart et 
al., 2014). Development of regionally customized models for 
monitoring and predicting risk can empower public health au- 
thorities in risk management and controlling vibrioses under 
evolving climate conditions.   

In the Chesapeake Bay, where Vibrio spp. are an increas-
ing public health concern, many studies (Kaneko and Colwell, 
1973, 1974; Colwell et al., 1977; Kaper et al., 1981; Wright et 
al., 1996; Parveen et al., 2008) have documented the relation-
ship between V. vulnificus and V. parahaemolyticus and envi-
ronmental parameters. In general, abundance of Vibrio spp. is 
greatest when the temperature is greater than 15 °C, with sa-
linity between 5 and 25 ‰, and optimal conditions varying by 
species and region. Temperature and salinity requirements for 
growth of Vibrio spp. have been shown to be related to the sea- 
sonal Vibrio cycles in coastal and estuarine environments (Ka- 
per et al., 1981; Motes et al., 1998; Lipp et al., 2001; Jacobs et 
al., 2010).   

Other environmental variables can also influence the abun- 
dance and distribution at seasonal and subseasonal scales. Ya- 
mazaki and Nwadiuto (2012), showed a positive correlation 
between the concentration of Vibrio spp. in coastal waters off 
the southeast coast of Florida and rainfall, concluding that the 
decrease in salinity, increased eutrophication, and increased 
turbidity from terrestrial runoff after rain events were responsi- 
ble for the observed increase.  

Environmental parameters related to the abundance of Vi- 
brio spp. and plankton in Chesapeake Bay have been studied 
extensively (Wright et al., 1996; Louis et al., 2003; Constantin 
de Magny et al., 2009; Jacobs et al., 2010; Parveen et al., 2013). 
With the goal of modeling the presence of V. cholerae as a fun- 
ction of environmental factors in the Chesapeake Bay, Louis 
et al. (2003) developed an empirical habitat model using lo-
gistic regression and a binary classification tree. They showed 
variations in sea surface temperature and salinity contribute to 
variability in both frequency of bacterial occurrence and geo-
graphic distribution of V. cholerae. Wright et al. (1996) and 
Jacobs et al. (2010) developed similar predictive models for 
presence of V. vulnificus, using in situ temperature, salinity, and 
sampling depth data and logistic regression analysis (Wright 
et al., 1996) in the Bay. Parveen et al. (2013) developed a pre- 
dictive model, using temperature, salinity, harvest season, and 
region on the growth rate of V. parahaemolyticus in oysters in 
the Chesapeake Bay.    

Long-term hindcasts and forecasts from predictive mod-
els of Vibrio spp. can be useful in understanding how land-use 
and climate change impact the frequency, distribution, and ma- 
gnitude of bacteria in the Chesapeake Bay. The information 
can then be applied to long-term projections of Vibrio spp. in 
the Bay.    

Satellite remote sensing, interpolated-satellite (Urquhart 
et al., 2013), and simulated hydrodynamic model data can be 
used to achieve temporal and spatial Vibrio spp. predictions 

for the Bay. In fact, a previous study by Constantin de Magny 
et al. (2009) successfully generated spatially complete predic-
tions of V. cholerae likelihood that was based on simulated sea 
surface temperature and salinity from the numeric model Che- 
sapeake Bay Regional Ocean Modeling System (ChesROMS; 
(Xu et al., 2012). Hindcast prediction, distribution, and poten- 
tial hotspot of occurrence of V. vulnificus in the Chesapeake 
Bay has been reported by using a multivariate habitat suitabil-
ity model stimulated by sea surface temperature and salinity 
during a period of 1991 and 2005 (Banakar et al., 2011). Bana- 
kar et al. (2011) concluded that hindcast prediction should be 
useful for further understanding of the impact of environmen-
tal conditions in the occurrence of V. vulnificus and long-term 
projections of Vibrio spp. in the Chesapeake Bay. Thus, satel-
lite and in situ observations can be combined in a dynamical 
model with data assimilation so that observations when availa- 
ble are utilized, and the model dynamics drive forecasts in the 
absence of observations. Furthermore, a data assimilation sys- 
tem, using ChesROMS, has recently been developed (Hoffman 
et al., 2012) for the Chesapeake Bay.  

Here we present empirical algorithms for predicting the 
probability of Vibrio spp. incidence and abundance in the up-
per Chesapeake Bay, which represent an advance over existing 
models in two respects. First, a model for V. parahaemolyticus 
presence and concentration in Chesapeake Bay is provided. 
Second, concentration of Vibrio spp. in areas where they are 
present can be obtained. Since the risk of human infection is a 
function of Vibrio concentration, extending available predictive 
models to provide concentration, in addition to presence/ab- 
sence, advances the public health utility of the models signifi- 
cantly.   

Methodologically, this study contributes to environmen-
tally-based pathogen prediction by incorporating a range of 
statistical modeling options. Most ecological forecasting mo- 
dels rely on a single model structure, usually linear regression. 
In contrast the current study tests three types of empirical mo- 
dels: Generalized Linear Model (GLM), Generalized Additive 
Model (GAM), and Random Forest Model (RF). In using the 
three models, we have taken a multistep approach: first, bina-
ry classification is used to model whether or not bacteria are 
present; second, regression of positive count data is used to 
estimate bacterial abundance; third, the methods are combined 
using hybrid classification-regression, estimating total bacterial 
abundance in a given geographic area predicted to have Vibrio 
spp. present. Thus, the main objectives of this study were to 
develop a Vibrio spp. empirical algorithm capable of producing 
likelihood of presence maps and develop a Vibrio spp. algori- 
thm that estimates bacterial abundance in a given geographical 
area of the Chesapeake Bay.   

2. Materials and Methods

2.1. Sample Collection 

Water samples were collected during July and September, 
2011, and March through June, 2012, at sites located in Chesa- 
peake Bay (See Figure 1). The Maryland Department of Natu- 
ral Resources and the NASA GEO-CAPE Field Campaign re- 
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search vessels were used in the sampling, with surface water 
samples (0.5 ~ 1 m depth) collected using a combination of 
flow-through collection systems and overboard bucket samp- 
ling. For the latter, sterile polypropylene bottles (1 L) were rin- 
sed, filled, and placed on ice for transport to the laboratory wi- 
thin 1 hour of collection. Surface temperature and salinity were 
measured at the time of collection of water samples using an 
YSI Series 6 instrument (Yellow Springs, Ohio). A total of 148 
surface water samples were collected for bacteriological analy- 
sis that was carried out within 12 hours at the Maryland Patho- 
gen Institute located at the University of Maryland, College 
Park.  

Figure 1. Map of Chesapeake Bay and its tributaries: dark 
circles represent the sampling stations for this study. 

2.2. Laboratory Sample Processing 

2.2.1. DNA Extraction and Qualitative Direct PCR 

Water samples were shaken and 100 ml passed through a 
0.22 μm sterile polycarbonate membrane, then placed in 5 ml 
of sterile 1X PBS and vortexed. A 1 ml aliquot was removed 
and boiled for 10 minutes, and iced for 10 minutes before cen- 
trifuging at 13,000 rpm for 10 minutes. The supernatant was 

transferred to a sterile microcentrifuge tube and stored at 20 
oC until toxR multiplex PCR was employed for qualitative de- 
tection of V. vulnificus, and V. parahaemolyticus (Bauer and 
Rorvik, 2007). Results were visualized on 1% agarose gel stai- 
ned with ethidium bromide. 

2.2.2. Quantitative Colony Blot Hybridization 

To quantify culturable V. parahaemolyticus and V. vulni- 
ficus plates, 1 ml water samples were spread in duplicate onto 
T1N3 agar and Vibrio vulnificus agar (VVA) plates, respecti- 
vely, and the plates were incubated overnight at 37 °C. Colo-
nies were lifted onto Whatman #541 filters and species-specific 
probe hybridization was done (DePaola et al., 1997; McCarthy 
et al., 1999). 

2.3. Statistical Model 

Three statistical modeling methods were used, General-
ized Linear Modeling (GLM), Generalized Additive Modeling 

(GAM) and Random Forest models (RF) to predict three cha- 
racteristics of Vibrio spp. distribution, namely probability of 
presence (hereafter: “LIKELIHOOD”), abundance at sites with 
confirmed presence (hereafter: “ABUNDANCE”), and abun-
dance at all sites in the absence of prior bacteriological data 
on presence (hereafter: “HYBRID,” because it requires a two- 
step classification/regression approach). ABUNDANCE mod-
els assume perfect prior information on presence/absence and 
were included to determine how models would perform in ad- 
dressing presence versus absence and quantitative prediction 
of bacterial abundance. The HYBRID models provide predic-
tion and offer realistic operational potential.  

All statistical computations were carried out using R Sta-
tistical Package 2.14 on an Intel Xeon W3580 Processor, 3.33 
GHz machine with 12 GB RAM. Computation time for all li- 
kelihood statistical models within the holdout validation test 
was less than three minutes. 

2.3.1. Statistical Methods 

The GLM, GAM, and RF modeling methods were used 
to develop LIKELIHOOD, ABUNDANCE, and HYBRID mo- 
dels. For LIKELIHOOD models, each method was implemen- 
ted in logistic form and trained using observational data trans- 
formed to binary presence/absence: cell count > 0 cells 10 ml-1

≡ presence, cell count = 0 cells 10 ml-1  ≡ absence. For AB- 
UNDANCE models, cell count was predicted as a continuous 
variable. The ABUNDANCE models were developed using 
data only from samples with cell counts > 0, and a log link 
function was applied in GAM and GLM, using a Poisson like-
lihood function. HYBRID modeling was carried out using a 
two-step technique described by Guikema and Quiring (2012): 
(1) binary classification based on the best LIKELIHOOD mo- 
del, (2) concentration prediction based on the best ABUN-
DANCE model.  

2.3.1.1. Generalized Linear Model (GLM) 

The Generalized Linear Model is an extension of the Or- 
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dinary Least Squares (OLS) linear model that allows for non- 
Gaussian probability distributions and the use of both contin-
uous and count data (Nelder and Wedderburn, 1972; Fox, 2008). 
GLM achieves flexibility by including a link function that re- 
lates linear predictor to a function of the explanatory variables 
(Cameron and Trivedi, 2013). For binary data, one such func-
tion is the “logit” link function and it transforms expectation 
of response to the linear predictor: 

log [p / (1 – p)]= β0 + Σjβjxj (1) 

where p / (1 – p) is the odds ratio of Vibrio spp. presence, β0 is 
the intercept, βj is the regression coefficient for variable x. 
Furthermore, solving for p, the probability of Vibrio presence 
is then:  

Ppresence = e(logit)/[e(logit) + 1] (2) 

The GLM algorithm was implemented by the stats (version 
2.14.0) R package (Hastie and Pregibon, 1992). 

2.3.1.2. Generalized Additive Model (GAM) 

A Generalized Additive Model extends GLM by allowing 
for nonlinear relationships between explanatory variables and 
response variable (Hastie and Tibshirani, 1990). This is achie- 
ved by replacing the linear predictor α + Σjβjxj of a GLM with 
an additive predictor α + Σjfj(xj) where fj(xj) is a non-parametric 
smoothing function. The smoothing function provides infor-
mation about the relationship between explanatory variables 
and response variable not revealed using a traditional linear 
model (Hastie and Tibshirani, 1986). For this study, the stan- 
dard smoothing approach, a cubic regression spline, was used. 
Again, for bacterial presence data, the “logit” link function was 
used to establish the relationship between response variable 
and smoothed function of the explanatory variables. The GAM 
algorithm was implemented by the mgcv (version 1.7-16) R 
package (Wood, 2006). 

2.3.1.3. Random Forest (RF) Model 

A Random Forest model is an algorithm that fits many 
classification trees to a dataset, and then uses an ensemble of 
tree-structure predictions (Breiman, 2001). The algorithm be- 
gins with selection of n bootstrapped samples (e.g., 500) with 
replacement from the original dataset. Observations from the 
original dataset not included in the bootstrap sample are refer- 
red to as out-of-bag (OOB) sample, and are used in model cro- 
ss-validation. A classification tree is fit to each bootstrap sam-
ple. To ensure that each of the trees in the ensemble is indepen- 
dent, each tree uses a small number (m) of randomly selected 
predictor variables for split construction at each node. The trees 
are fully grown and each individual tree is used to estimate 
the OOB sample. The predicted class is calculated by a major-
ity vote of the OOB predictions for that sample. The RF algori- 
thm in this study was implemented by the randomForest (ver-
sion 4.6.-6) R package (Liaw and Wiener, 2002). 

2.3.2. Model Evaluation 

2.3.2.1. LIKELIHOOD Model Validation 

Predictions from the LIKELIHOOD models come in the 
form of probabilities, such that a probability threshold or pre-
diction point is needed to transform probability into bacterial 
presence/absence data. A prediction point is also required to 
assess model performance using various indices derived from 
a confusion matrix. Rather than subjectively setting probabil-
ity to an arbitrary value of 0.50 (50%), which has no ecologi-
cal basis, the threshold was selected empirically to maximize 
agreement between observed and predicted distributions in the 
out of bag data. To ensure correct binary classification, we op- 
timized this prediction point relative to four model assessment 
indices: true positive rate (TPR), false positive rate (FPR), true 
negative rate (TNR), and accuracy (ACC). In addition, area 
under the curve (AUC) was calculated for each threshold pro- 
bability. The indices listed above require information from the 
confusion matrix, which consists of four elements: true positive 
(TP), false positive (FP), false negative (FN), and true negative 
(TN). The indices used to assess the predictive performance of 
the various LIKELIHOOD models are described below: 

TPR = TP / (TP + FN) (3) 

where true positives represent bacterial presence predictions 
and false negatives represent bacteria present but predicted by 
the model as absent:   

TNR = TN / (FP + TN) (4) 

where true negative is correctly predicted bacteria presence, 
and false positives are bacteria absences classified as present 
by the model. TPR and TNR are widely referred to as sensiti- 
vity and specificity; both are used in the Receiver Operator 
Characteristic (ROC) curve (i.e. sensitivity vs. 1-specificity) 
whose tangent slope is equal to 1 (Hanley and McNeil, 1982):  

FPR = FP / (FP + TN) (5) 

where FPR is equivalent to “fall out” which in binary classifi- 
cation is equal to (1-specificity): 

ACC = (TP +TN) / (P + N) (6) 

where P is the number of actual presence instances and N is the 
number of absence instances. Selection of the final prediction 
points was based on a combination of the indices and is expl- 
ained in detail below.  

2.3.2.2. ABUNDANCE and HYBRID Model Evaluation 

The predictive accuracy of Vibrio spp. ABUNDANCE 
models was assessed using random holdout validation analy- 
sis. Datasets for each species were randomly partitioned into a 
training dataset containing 80% of the original records and a 
validation dataset containing the remaining 20%. The models 
described above were developed using the training dataset and 
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subsequently employed to predict cell number using the hold- 
out dataset. This process was repeated 100 times with a diffe- 
rent random partition each time. Mean error (ME) and mean 
absolute error (MAE) were used to compare estimated bacte-
rial abundance to observed abundance, identify outliers in each 
model fit, and evaluate comparative model performance.   

HYBRID models were evaluated with the same presence- 
only validation dataset used to assess the ABUNDANCE mo- 
dels. The hybrid models were assessed with presence-only ho- 
ldout dataset, denoted “HYBRID/P”. To measure hybrid meth-
od performance in predicting Vibrio spp. abundance at all sam- 
ple locations, without bacteriological data input, the original 
validation dataset containing both zero and non zero records 
was used. “HYBRID” denotes hybrid models evaluated with 
original holdout dataset. Additionally, unweighted model ave- 
rages were calculated for both species. All hybrid analyses em- 
ployed the LIKELIHOOD model structures shown in Table 3.   

 

2.3.2.3. Mean Model 

ABUNDANCE and HYBRID models were compared to 
a mean statistical null model, i.e., the average value of the res- 
ponse variable, Vibrio spp. For validation, empirical models 
including the mean model were input to the holdout analysis. 

3. Results 

3.1. Observations 

Over the eight months during which Vibrio spp. counts in 
the water samples were obtained, 46% contained V. vulnificus 
and 68% contained V. parahaemolyticus. In samples positive 
for V. vulnificus, the median and mean counts were 4 and 6 cells 
10 ml-1 respectively, and concentrations ranged from 1 to 30 
cells 10 ml-1 (Figure 2). For V. parahaemolyticus, the median 
and mean count was 7 and 9.5 cells 10 ml-1, respectively, and 

concentrations ranged from 1 to 50 cells 10 ml-1  (Figure 2). 
Counts were obtained for samples collected at temperatures 
ranging from 8 to 31 °C and 0 to 14 ‰ salinity. The highest 
number of Vibrio spp. were in water samples at 28 °C and 
salinity of 11.5 ‰ (Figure 3). These results are consistent with 
those reported for Vibrio spp. in Chesapeake Bay by Jacobs et 
al. (2010). 

 

3.2. Modeling Occurrence and Abundance of Vibrio spp. in 
Chesapeake Bay 

Descriptive correlation analyses relating environmental 
predictors to Vibrio spp. distribution and results of LIKELI-
HOOD, ABUNDANCE, and HYBRID predictive models are 
presented as follows. 

 
3.2.1. Correlation of Vibrio spp. with Environmental Predictors 

The predictive potential of environmental parameters was 
examined using univariate correlation analysis for Vibrio cou- 
nts in samples containing given the Vibrio spp. Statistically 
significant correlations were found between bacteria count and 
surface water temperature, month, and salinity x temperature 
interaction (Table 1). Although statistically significant, the co- 
rrelation coefficients were low. It is important to note that co- 
rrelations observed for month and, potentially, interaction may 
derive from cross-correlation with surface water temperature. 
Furthermore, an insignificant correlation between bacteria cou- 
nt and surface salinity was observed, which can likely be attri- 
buted to the limited range of salinity observations used in Vi- 
brio spp. model development. For the purpose of comparison 
and consistency to pre-existing Vibrio spp. models (Wright et 
al., 1996; Louis et al., 2003; Constantin de Magny et al., 2009; 
Jacobs et al., 2010) in the Chesapeake Bay, we decided to in- 
clude salinity in final model development. For most sampling 
locations, total bacterial count followed a seasonal pattern fo- 

Table 1. Correlation Coefficients for Vibrio spp. Counts and List of Selected Environmental Variables  

 Lat Lon Month Temp Saln Inter 

V. vulnificus (cells 10 ml-1)* - 0.03 - 0.11 0.25 0.28 0.09 0.22 

V. parahaemolyticus (cells 10 ml-1)* - 0.10 0.01 0.13 0.17 0.09 0.19 

Latitude   0.15 0.03 0.06 - 0.75 - 0.56 

Longitude     0.06 0.06 - 0.32 - 0.15 

Month       0.96 - 0.04 0.54 

Temperature (oC)*         - 0.04 0.57 

Salinity (‰)*           0.76 

Interaction term*       
*Included in final model development. Significant correlations at the alpha=0.05 level are highlighted in bold. 

 
Table 2. Best-Fit Likelihood Algorithms for V. vulnificus and V. parahaemolyticus 

 V. vulnificus V. parahaemolyticus 

Model Ppresence = e(logit) / [e(logit) + 1]** Ppresence = e(logit) / [e(logit) + 1]**  

GLM Logit = β0 + β1[T] + β2[S]+ β3[(T*S)] Logit = β0 + β1[T] + β2[S] 

GAM Logit = β0 + S1[T] + S2[S] + S3[[T*S)] Logit = β0 + S1[T] + S2[S] 

RF Ppresence = randomForest(T + S + (T*S)) Ppresence = randomForest(T + S) 
**Not applicable to RF model. Probability of presence (Ppresence) is a function of logit. 
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llowing the temperature. Linear correlations between Vibrio 
count and salinity, latitude, or longitude were not statistically 
significant (Table 1). Since freshwater discharge impacts both 
nutrient inflow and sediment transport, it can influence bacte-
rial abundance.  

 

 
Figure 2. Boxplot showing concentration (cells 10 ml-1 > 0) 
for V. vulnificus (n = 68) and V. parahaemolyticus (n = 100). 

 
3.2.2. LIKELIHOOD models  

A stepwise selection process was used to select a LIKE-
LIHOOD model, whereby each explanatory variable was en-
tered sequentially into each model. The entire suite of models 
was tested, and selected variables retained only if significant. 
For the model evaluation, significance was set at an alpha le- 
vel of 0.05. GLM and GAM logistic regression for both V. vul- 
nificus and V. parahaemolyticus showed temperature and sa-
linity, and for V. vulnificus interaction between the two varia-
bles, were core explanatory parameters for the three LIKELI- 
HOOD models. Table 2 presents the best-fit models developed 
for V. vulnificus and V. parahaemolyticus, where probability 
of bacteria presence (Ppresence) is defined in Equation 2.  

Figure 4 illustrates the probability of V. vulnificus being 
present as predicted by best-fit a) GLM, b) GAM and c) RF 
LIKELIHOOD models (Table 2). Likelihood of presence was 
split into absence (n = 48; median prob. = 0.47, 0.26 and 0.27) 

and presence (n = 50; median prob. = 0.56, 0.67 and 0.57) ob- 
servations. Figure 5 shows the probability of V. parahaemoly- 
ticus predicted by best-fit a) GLM, b) GAM and c) RF LIKE- 
LIHOOD models (Table 2). Likelihood of occurrence was sp- 
lit into absence (n = 82; median prob. = 0.52, 0.55 and 0.48) 
and presence (n = 40; median prob. = 0.69, 0.78 and 0.87) ob- 
servations. Points falling outside of the 95th percentile in the 
boxplots represent outliers.  
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Figure 3. Plots showing the relationship between counts of 
Vibrio and (a) temperature (oC) and (b) salinity (‰). 

 
LIKELIHOOD GLM, GAM and RF models used to predict 

bacterial presence required selection of an optimal prediction 
point or threshold. Rather than setting a prediction point 0.5 
arbitrarily, the prediction point for each species was based on 
four performance indices: TPR, FPR, TNR and ACC. With the 
goal of maximized model prediction skill and binary classifi-
cation, information from each of these metrics (Figure 6), as 
well mean and median statistics from predicted probabilities 
(Figure 4), was used to select the optimal prediction point for 
each species. Because no significant difference was observed 
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between the accuracy index for 0.4, 0.5, and 0.6 prediction poi- 
nts for V. parahaemolyticus, each threshold was tested in the ho- 
ldout analysis, yielding greater accuracy, with an optimal thre- 
shold of 0.6. With this information, maximum ACC and TPR 
were selected, yielding an optimal threshold of 0.4 for V. vul-
nificus (ACC: 0.63 for GLM, 0.72 for GAM, and 0.68 for RF; 
Table 3), and 0.6 for V. parahaemolyticus (ACC: 0.62 for GLM, 
0.65 for GAM, and 0.67 for RF; Table 3).  

 
3.2.3. ABUNDANCE Models  

ABUNDANCE models described in section 2.3.1 were 
applied to all samples with Vibrio greater than 0 cells 10 ml-1, 
using repeated random holdout validation tests. Results indicate 
RF offered better prediction when the bacterial counts were 
high and GAM and GLM offer better prediction when the nu- 
mbers were low. Based on these performance patterns, unwei- 
ghted model average predictions of GAM and RF were tested. 
For each species, four ABUNDANCE models were then app- 
lied: (1) GLM, (2) GAM, (3) RF, (4) model average. Each mo- 
del was also compared to the mean prediction model in the ho- 
ldout test to determine how well each model performed relative 
to assuming the mean Vibrio bacterial count for each species, 
which provides an estimate of the degree to which each empi- 
rical model offers an improvement over using the historic mean 

as the future prediction. This resulted in 10-pair wise tests. Ap- 
plying the Bonferroni correction for multiple hypothesis tests, 
a p-value below 0.005 (p = 0.05 overall) indicates statistical 
significance for any given test.  

 
Table 3. V. vulnificus and V. parahaemolyticus (Likelihood) 
Performance Metrics at Prediction Point 0.40 for V.vulnificus 
and 0.60 for V. parahaemolyticus 

 V. vulnificus V. parahaemolyticus 

 GLM GAM RF GLM GAM RF 

AUC 0.68 0.78 0.73 0.63 0.70 0.71 

FPR 0.44 0.35 0.37 0.30 0.24 0.22 

TPR 0.81 0.81 0.76 0.42 0.48 0.50 

TNR 0.56 0.65 0.63 0.70 0.76 0.78 

ACC 0.63 0.72 0.68 0.62 0.65 0.67 

 

As shown in Table 4, the RF ABUNDANCE model provi- 
des the best predictive accuracy for V. vulnificus, with lowest 
MAE (3.87 cells 10 ml-1) followed by average ABUNDANCE 
MAE (3.94 cells 10 ml-1). The MAE values were statistically 
significantly lower than GLM and GAM MAE (p < 0.005). 
The model average and RF model had lower error than the 
mean model by a statistically significant amount (p = 0.005). 

(a) (b) (c) 

 
Figure 4. Performance of (a) GLM, (b) GAM and (c) RF Vibrio vulnificus classification models (Table 2), presented as boxplots 
comparing presence and absence with modeled probability, where threshold for presence is cell 10 ml-1. 
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For V. parahaemolyticus, the model average (5.62 cells 10 ml-1) 
and RF (5.76 cells 10 ml-1) had the lowest MAE values, and 
were lower than MAEs of the GLM and GAM by a statistically 
significant amount (p < 0.005). The difference between MAE 
for model average and RF were not statistically significant (p 
= 0.38). While all four models were statistically different from 
the mean predictions, only the model average and RF model 
outperform the mean model (p < 0.005). 

The prediction accuracy of each model was examined wh- 
ereby the predictions were binned based on the actual cell nu- 
mber obtained from the validation datasets (cells 10 ml-1 = 1, 
2 ~ 4, 5 ~ 10 and >10 for V. vulnificus) (Figures 7a and 7c) 
and (cells 10 ml-1 = 1, 2 ~ 4, 5 ~ 10, 11 ~ 15 and > 15 for V. 
parahaemolyticus) (Figures 7b and 7d). While the RF model 
had a lower overall MAE than GLM and GAM for V. vulnifi-
cus, it exhibited a larger MAE in the lower concentration bins 
(Figure 7c) due to over prediction in those bins (high ME va- 
lues) (Figure 7a). For V. parahaemolyticus, overall ME values 
showed all models, except RF, under predicted the cell count 
because of significant under prediction at high concentrations 
(Figure 7b). The GLM and GAM exhibited lower MAE values 
at lower concentrations than the RF (Figure 7d). However, at 
counts higher than 5 cells 10 ml-1, the RF model outperformed 

both GLM and GAM. Averaging model predictions reduced 
overall RF MAE, but increased the MAE when counts were 
high. 

 
Table 4. Comparison of Holdout ABUNDANCE MAEs 
(Cells 10 ml-1) Based on 100 Random Holdout Samples for V. 
vulnificus and V. parahaemolyticus 

Model Mean MAE GAM RF AVG MEAN 

V. vulnificus 

GLM 4.69 0.61 < 0.01 < 0.01 0.09 

GAM 4.79  < 0.01 < 0.01 0.02 

RF 3.87   0.61 < 0.01 

AVG 3.94    < 0.01 

MEAN 4.39     

V. parahaemolyticus 

GLM 7.43 0.70 < 0.01 < 0.01 < 0.01 

GAM 7.51  < 0.01 < 0.01 < 0.01 

RF 5.76   0.38 < 0.01 

AVG 5.62    < 0.01 

MEAN 6.34     

*p-Values in bold represent statistically significant differences between 
models at the alpha = 0.005 level. 

(c) (b) (a) 
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Figure 5. Performance of (a) GLM, (b) GAM and (c) RF for Vibrio parahaemolyticus classification models (Table 3), presented 
as boxplots comparing presence and absence with modeled probabilities where the threshold for presence is 1 cell 10 ml-1. 
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3.2.4. HYBRID Models 

Based on error results of both LIKELIHOOD and ABUN- 
DANCE models, a two-step GAM classification/RF regression 
HYBRID modeling approach was used. Other classification/re- 
gression model combinations (e.g., GLM/GLM, GAM/GAM, 
and RF/RF) were also tested, but GAM/RF was the best per-
forming hybrid combination. The GAM/RF combination exhi- 
bited significantly lower error (p < 0.005) than other HYBRID 
combinations for V. parahaemolyticus, and similar error for V. 
vulnificus, although the difference was not statistically signifi- 
cant (p = 0.005). To assess the prediction accuracy of our HY- 
BRID approach we evaluated the model using two different 
holdout datasets: (1) a presence-only validation dataset, and (2) 

the original validation dataset irrelevant of presence or absence. 
Using the same presence-only validation dataset that was used 
to evaluate the ABUNDANCE models allowed direct compa- 
rison of the prediction accuracy of the HYBRID and ABUN- 
DANCE models. Model evaluation using the original holdout 
dataset allowed an estimation of Vibrio counts without the ba- 
cteriological data.  

Table 5 compares ME and MAE from the ABUNDANCE 
RF model with those of the HYBRID model, using the presen- 
ce-only validation dataset (HYBRID/P), and the model vali-
dated with the original dataset (HYBRID) for V. vulnificus and 
V. parahaemolyticus. The RF ABUNDANCE, HYBRID/P, and 
HYBRID all exhibited negative bias (ME) due to under predi- 

(b) (a) 

 
Figure 6. Optimization of prediction point (expressed as decimal fraction) to determine p for (a) V. vulnificus (0.40) and (b) V. 
parahaemolyticus (0.60). 
 
Table 5. Comparison of MEs and MAEs for ABUNDANCE and HYBRID Models for V. vulnificus and V. parahaemolyticus  

V. vulnificus V. parahaemolyticus 

Error Metric  Error MEAN Error Metric  Error MEAN 

ME.ABUNDANCE  - 0.05 - 0.05 ME.ABUNDANCE 0.14 0.16 

ME.HYBRID/P - 1.58 - 3.25 ME.HYBRID/P - 1.93 - 2.98 

ME.HYBRID - 0.28 0.19 ME.HYBRID - 1.91 - 0.11 

MAE.ABUNDANCE 3.87 4.39 MAE.ABUNDANCE 5.76 6.34 

MAE.HYBRID/P 2.79 4.30 MAE.HYBRID/P 4.36 5.83 

MAE.HYBRID 2.94 3.44 MAE.HYBRID 5.26 6.12 
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ction of counts at high concentrations. Results of the hypothe-
sis tests using the MAE as the error measure showed that when 
using presence-only data, significant error reduction from the 
ABUNDANCE RF model MAE (3.9 cells 10 ml-1) to the HY- 
BRID/P MAE (2.8 cells 10 ml-1) was observed. When the HY- 
BRID approach was used to predict the original zero and non- 
zero dataset, an improvement in error relative to ABUNDA- 
NCE model was also noted. These two predictions are not ex- 
actly comparable, as the ABUNDANCE model was trained and 
evaluated using only samples with confirmed Vibrio counts, 
while the HYBRID prediction applied to all data, without ba- 
cteriological laboratory data.  

For V. parahaemolyticus, both HYBRID/P and HYBRID 
exhibited negative bias largely due to under estimation when 
counts were high, and a positive bias for RF ABUNDANCE 
model. Both HYBRID/P (4.4 cells 10 ml-1) and HYBRID (5.26 
cells 10 ml-1) offer an improvement in MAE relative to ABUN- 

DACNE (5.8 cells 10 ml-1) model. All of the HYBRID models 
offer improvement over using the mean of the validation data- 
set.  

4. Discussion and Conclusions 

The empirical models presented in this study demonstrate 
significant skill in estimating probability of occurrence of Vi- 
brio spp., as well as bacterial counts in Chesapeake Bay water 
samples when bacteriological count data are included. When 
the HYBRID approach was used to generate estimates of Vib-
rio counts, an overall reduction in error was observed compa- 
red to presence-only ABUNDANCE models when the models 
were evaluated only at sites with detectable Vibrio counts. The 
fact that HYBRID outperformed ABUNDANCE, when evalua- 
ted at sites where Vibrio was present, is surprising, since the 
ABUNDANCE models benefited from data on presence versus 

 

(b) (a) 

(d) (c) 

2 - 4 5 - 10 > 10 1 1 2 - 4 5 - 10 > 15 10 - 15  
Figure 7. Binned ME and MAE values (cells 10 ml-1) of each ABUNDANCE model for V. vulnificus (a) and (c) and V. parahae- 
molyticus (b) and (d), shown as bar graphs with error bars (standard deviation). 
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absence. Examination of partial dependence plots indicated di- 
fferences in model performance are a product of differences 
between the HYBRID and ABUNDANCE models at moderate 
values of temperature and salinity. The differences were relati- 
vely small, however, and no major difference was noted in str- 
ucture between RF ABUNDANCE model and RF component 
of the HYBRID model. We conclude that the enhanced perfor- 
mance of HYBRID, relative to ABUNDANCE, most probably 
derives from the fact that models trained for a broader range 
of conditions—as was the case for HYBRID, since errors in the 
GAM LIKELIHOOD model led to a more diverse training set 
for the RF component of the HYBRID—tend to be more gen-
eralizable than models trained under more narrow conditions, 
even when these narrow conditions capture the range of the 
specific response variable of interest (Nateghi and Guikema, 
2013). HYBRID performed at least as well as ABUNDANCE, 
which indicates that the HYBRID approach allows for mode- 
ling both presence and abundance without loss of skill relative 
to an abundance model supplied with perfect prior information 
on presence versus absence.  

When both the HYBRID and ABUNDANCE models were 
evaluated for all sites, the predictive accuracy of the HYBRID 
was better than that of the ABUNDANCE model, though the 
difference was not statistically significant for V. parahaemoly- 
ticus. Similar to model behavior observed for the ABUNDA- 
NCE models for both species, overall error reduction using the 
HYBRID modeling approach showed the two-step approach 
tends to over predict counts at low Vibrio concentrations. Fur- 
thermore, when evaluating prediction performance of each mo- 
del relative to the mean model, a statistically significant impro- 
vement over the mean value of the validation dataset in all mo- 
dels was noted, except for the V. parahaemolyticus HYBRID 
model. It is important to emphasize that when using the com-
plete original dataset for validation (HYBRID), zero-inflation 
and a lower overall mean model value must be considered. In 
future model evaluation using zero-inflated datasets, alternative 
methods of mean model comparisons should be employed.   

The empirical models presented here offer a novel appr- 
oach for estimating Vibrio spp. concentration in the upper Che- 
sapeake Bay. We note that the study was limited by the small 
number of samples available to train and evaluate the models. 
First, the field data used in this study was limited to the oligo- 
haline (0 ~ 6 ‰) and mesohaline (6 ~ 18 ‰) regions of the up- 
per Chesapeake Bay. Because our models were trained using 
data for fresh and brackish water, extrapolation, of the models 
to saline regions may result in greater error and thus, decreased 
accuracy of prediction for Vibrio spp. near the mouth of the 
Chesapeake Bay. Specific attention to this discrepancy will be 
required if the models developed in this study are to be applied 
to coastal regions. Therefore, data from more saline waters will 
be needed to train the model. Work in progress covers whole 
Bay hindcast predictions using temperature and salinity from 
satellite sensors (Urquhart et al., 2012) to understand long-term 
trends of Vibrio spp. likelihood and abundance throughout the 
Bay. Water samples were collected only in the upper Chesap- 
eake at a limited number of stations over a two-year period. A 
longer and more intense sampling record would be valuable to 

produce more robust models with improved predictive capabi- 
lity.  

Since the risk of vibriosis is directly related to Vibrio spp. 
pathogenicity and abundance, the primary motivation for this 
study was in the absence of models available to estimate Vibrio 
spp. concentration in coastal waters. Therefore, an objective 
of this study was to extend available modeling capabilities to 
provide concentration estimates of Vibrio spp. bacteria in the 
upper Chesapeake Bay. While the statistical models presented 
here demonstrate significant skill in estimating Vibrio abunda- 
nce, the errors associated with the estimates are not insignifi-
cant, particularly at high bacterial concentrations. These error 
rates could, presumably, be lowered with more spatially and 
temporally distributed training data. Just as importantly, more 
information is needed on the quantitative relationships between 
abundance, pathogenicity, and human infection. From an appli- 
cations perspective, improved abundance estimates are valua-
ble only insomuch as they translate into improved assessment 
of public health risk.  

In summary, we have presented several empirical algori- 
thms for estimating the likelihood of Vibrio occurrence as well 
as abundance (cells 10 ml-1) in Chesapeake Bay surface water. 
To estimate the probability of Vibrio spp. being detected in Bay 
water, we tested several binary classification methods. To mo- 
del Vibrio spp. abundance, several regression methods were 
applied to samples positive for Vibrio spp. A two-step hybrid 
approach using GAM for classification and RF for regression 
was employed to estimate abundance of Vibrio spp. in the ab- 
sence of bacteriological data. For LIKELIHOOD models, GAM 
demonstrated a greater accuracy and improved positive rate 
than GLM and RF models. ABUNDANCE models, GLM and 
GAM exhibited higher prediction accuracy when counts of Vi- 
brio spp. were low. However, RF exhibited lower overall mean 
absolute error. HYBRID performed better than ABUNDANCE 
at sites where Vibrio presence had been confirmed by bacteri-
ological methods, and predicted abundance as well or better 
than ABUNDANCE even when evaluated for sites both with 
and without Vibrio spp. confirmed to be present. Thus, HYB- 
RID modeling offers the potential to predict both presence and 
abundance of Vibrio bacteria in Chesapeake Bay surface water. 
Since presence and abundance of Vibrio spp. are relevant to the 
risk of infection, this capability offers meaningful improve-
ment over existing monitoring and prediction systems.  

 
Acknowledgments. This study was funded in part by the Johns Hop-
kins University Department of Earth and Planetary Sciences and by a 
grant from the NASA Headquarters Applied Sciences Division. The 
authors would like to thank the Maryland Department of Natural 
Resources, Chesapeake Bay Program, and NASA GEO-CAPE field 
campaigns for allowing sample collection upon routine Bay cruises 
as well as Valerie Cohen and Merina Elahi (MPRI, UMCP) for wet 
lab assistance. The authors gratefully acknowledge partial support at 
the Maryland Pathogen Research Institute at the University of Mary-
land, College Park, from National Institutes of Health Grant No. 
2RO1A1039129-11A2 and National Science Foundation Grant No. 
0813066. 
 

References 

Banakar, V., Constantin de Magny, G., Jacobs, J., Murtugudde, R., Huq, 



E. A. Urquhart et al. / Journal of Environmental Informatics 26(1) 1-13 (2015) 

12 

A., Wood, R.J., and Colwell, R.R. (2011). Temporal and spatial va- 
riability in the distribution of Vibrio vulnificus in the Chesapeake 
Bay: A hindcast study. Ecohealth, 8(4), 456-67. http://dx.doi.org/1 
0.1007/s10393-011-0736-4 

Bauer, A., and Rorvik, L.M. (2007). A novel multiplex PCR for the 
identification of Vibrio parahaemolyticus, Vibrio cholerae and Vib- 
rio vulnificus. Lett. Appl. Microbiol., 45(4), 371-375. http://dx.doi. 
org/10.1111/j.1472-765X.2007.02195.x 

Breiman, L. (2001). Random forests. Mach. Learning, 45(1), 5-32. 
http://dx.doi.org/10.1023/A:1010933404324 

Cameron, A.C., and Trivedi, P.K. (2013). Regression analysis of count 
data, Econometric Society Monograph, Cambridge University Press, 
UK. http://dx.doi.org/10.1017/CBO9781139013567 

Centers for Disease Control and Prevention (2013). Foodborne Dis-
eases Active Surveillance Network (FoodNet). Accessed: Novem-
ber 10, 2013. http://www.cdc.gov/foodnet/data/trends/trends-2012. 
html 

Colwell, R.R., Kaper, J., and Joesph, S.W. (1977). Vibrio cholerae, Vi- 
brio parahaemolyticus, and other Vibrios: Occurrence and distribu-
tion in Chesapeake Bay. Science, 198(4315), 394-396. http://dx.doi. 
org/10.1126/science.198.4315.394-a 

Constantin de Magny, G., Long, W., Brown, C., Hood, R., Huq, A., 
Murtugudde, R., and Colwell, R. (2009). Predicting the distribution 
of Vibrio spp. in the Chesapeake Bay: A Vibrio cholerae case study. 
Ecohealth, 6(3), 378-389. http://dx.doi.org/10.1007/s10393-009-02 
73-6 

DePaola, A., Motes, M.L., Cook, D.W., Veazey, J., Garthright, W.E., 
and Blodgett, R. (1997). Evaluation of an alkaline phosphatase-la- 
beled DNA probe for enumeration of Vibrio vulnificus in Gulf 
Coast oysters. J. Microbiol. Methods, 29(2), 115-120. http://dx.doi. 
org/10.1016/S0167-7012(97)00030-4 

Fox, J. (2008). Applied Regression Analysis and Generalized Linear 
Models, SAGE Publications, Inc. 

Guikema, S.D., and Quiring, S.M. (2012). Hybrid data mining-regre- 
ssion for infrastructure risk assessment based on zero-inflated data. 
Reliab. Eng. Syst. Saf., 99, 178-182. http://dx.doi.org/10.1016/j.res 
s.2011.10.012

Hanley, J.A., and McNeil, B.J. (1982). The meaning and use of the 
area under a receiver operating characteristic (ROC) curve. Radi-
ology, 143(1), 29-36. http://dx.doi.org/10.1148/radiology.143.1.70 
63747 

Hastie, T., and Pregibon, D. (1992). Generalized Linear Models in: 
Statistical Models in S, Chapman & Hall/CRC, London, UK. 

Hastie, T., and Tibshirani, R. (1986). Generalized additive models. 
Stat. Sci., 1(0), 297-310. http://dx.doi.org/10.1214/ss/1177013604 

Hastie, T., and Tibshirani, R. (1990). Generalized Additive Models, 
Chapman and Hall/CRC, London, UK. 

Hoffman, M.J., Miyoshi, T., Haine, T.W.N., Ide, K., Brown, C.W., 
and Murtugudde, R. (2012). An advanced data assimilation system 
for the Chesapeake Bay: Performance evaluation. J. Atmos. Ocean. 
Technol., 29(10), 1542-1557. http://dx.doi.org/10.1175/JTECH-D- 
11-00126.1 

Hoge, C.W., Watsky, D., Peeler, R.N., Libonati, J.P., Israel, E., and 
Morris, J.G. (1989). Epidemiology and spectrum of Vibrio infec-
tions in a Chesapeake Bay community. J. Infect. Dis., 160(6), 985- 
993. http://dx.doi.org/10.1093/infdis/160.6.985 

Howard, R.J., and Bennett, N.T. (1993). Infections caused by halo-
philic marine Vibrio bacteria. Ann. Surg., 217(5), 525-531. http:// 

dx.doi.org/10.1097/00000658-199305010-00013 
Jacobs, J., Rhodes, M., Brown, C., Hood, R., Leight, A., Long, W., and 

Wood, R. (2010). Predicting the distribution of Vibrio vulnificus in 
Chesapeake Bay. NOAA Tech. Mem. NOS NCCOS, 112(12). 

Kaneko, T., and Colwell, R. (1973). Ecology of Vibrio parahaemoly- 

ticus in Chesapeake Bay. J. Bacteriol., 113(1), 24-32. 

Kaneko, T., and Colwell, R. (1974). Incidence of Vibrio parahaemo-
lyticus in Chesapeake Bay. Appl. Microbiol., 30(2), 251-257. 

Kaper, J.B., Remmers, E.F., Lockman, H., and Colwell, R.R. (1981). 
Distribution of Vibrio parahaemolyticus in Chesapeake Bay during 
the summer season. Estuaries, 4(4), 321-327. http://dx.doi.org/10. 
2307/1352156 

Liaw, A., and Wiener, M. (2002). Classification and regression by ran- 
domForest. R News, 2, 18-22. 

Lipp, E., Rodriguez-Palacios, C., and Rose, J. (2001). Occurrence and 
distribution of the human pathogen Vibrio vulnificus in a subtrop-
ical Gulf of Mexico estuary. Hydrobiologia, 460(1-3), 165-173. 
http://dx.doi.org/10.1023/A:1013127517860 

Louis, V.R., Russek-Cohen, E., Choopun, N., Rivera, I.N.G., Gangle, 
B., Jiang, S.C., Rubin, A., Patz, J.A., Huq, A., and Colwell, R.R. 
(2003). Predictability of Vibrio cholerae in Chesapeake Bay. Appl. 
Environ. Microbiol., 69(5), 2773-2785. http://dx.doi.org/10.1128/ 
AEM.69.5.2773-2785.2003 

Maryland Department of Health and Mental Hygiene (2013). Mary-
land Department of Health and Mental Hygiene, Cases of Selcted 
Notifiable Conditions Reported in Maryland. Accessed: April 6, 
2013. http://phpa.dhmh.maryland.gov/SitePages/disease-condition 
s-count-rates.aspx/ 

McCarthy, S.A., DePaola, A., Cook, D.W., Kaysner, C.A., and Hill, 
W.E. (1999). Evaluation of alkaline phosphatase - and digoxigenin- 
labelled probes for detection of the thermolabile hemolysin (tlh) 
gene of Vibrio parahaemolyticus. Lett. Appl. Microbiol., 28(1), 66- 
70. http://dx.doi.org/10.1046/j.1365-2672.1999.00467.x

Motes, M.L., DePaola, A., Cook, D.W., Veazey, J.E., Hunscuker, J.C., 
Garthright, W.E., Blodgett, R.J., and Chirtel, S.J. (1998). Influence 
of water temperature and salinity on Vibrio vulnificus in Northern 
Gulf and Atlantic Coast oysters (Crassostrea virginica). Appl. En-
viron. Microbiol., 64(4), 1459-1465. 

Nateghi, R., and Guikema, S.D. (2013). Estimating power distribu-
tion system outages during tropical cyclones in the Gulf Region of 
the U.S. with reduced complexity models. Risk Anal. (under re-
view). 

Nelder, J.A., and Wedderburn, R.W.M. (1972). Generalized linear 
models. J. Roy. Stat. Soc. Ser. A. (Stat. Soc.), 135(3), 370-384. http: 
//dx.doi.org/10.2307/2344614 

Parveen, S., DaSilva, L., DePaola, A., Bowers, J., White, C., Mu-
nasinghe, K.A., Brohawn, K., Mudoh, M., and Tamplin, M. (2013). 
Development and validation of a predictive model for the growth 
of Vibrio parahaemolyticus in post-harvest shellstock oysters. Int. 
J. Food Microbiol., 161(1), 1-6. http://dx.doi.org/10.1016/j.ijfood 
micro.2012.11.010 

Parveen, S., Hettiarachchi, K.A., Bowers, J.C., Jones, J.L., Tamplin, 
M.L., McKay, R., Beatty, W., Brohawn, K., DaSilva, L.V., and De- 
Paola, A. (2008). Seasonal distribution of total and pathogenic 
Vibrio parahaemolyticus in Chesapeake Bay oysters and waters. 
Int. J. Food Microbiol., 128(2), 354-361. http://dx.doi.org/10.101 
6/j.ijfoodmicro.2008.09.019 

Strom, M.S., and Paranjpye, R.N. (2000). Epidemiology and pathoge- 
nesis of Vibrio vulnificus. Microb. Infect., 2(2), 177-188. http://dx. 
doi.org/10.1016/S1286-4579(00)00270-7 

Urquhart, E.A., Hoffman, M.J., Murphy, R.R., and Zaitchik, B.F. 
(2013). Geospatial interpolation of MODIS-derived salinity and 
temperature in the Chesapeake Bay. Remote Sens. Environ., 135(0), 
167-177. http://dx.doi.org/10.1016/j.rse.2013.03.034 

Urquhart, E.A., Zaitchik, B.F., Hoffman, M.J., Guikema, S.D., and 
Geiger, E.F. (2012). Remotely sensed estimates of surface salinity 
in the Chesapeake Bay: A statistical approach. Remote Sens. Envi-
ron., 123(0), 522-531. http://dx.doi.org/10.1016/j.rse.2012.04.008 

Urquhart, E.A., Zaitchik, B.F., Waugh, D.W., Guikema, S.D., Del 
Castillo, C.E. (2014). Uncertainty in Modelling Predictions of Vib-
rio Vulnificus Response to Climate Variability and Change: A Che- 



E. A. Urquhart et al. / Journal of Environmental Informatics 26(1) 1-13 (2015) 

13 

sapeake Bay Case Study. PloS ONE 9(5), e98256. doi: 10.1371/jou- 
rnal.pone.0098256 

Virginia Department of Health (2013). Virginia Department of Health, 
Virginia Reportable Disease Surveillance Data. Accessed: May 5, 
2013. http://www.vdh.virginia.gov/Epidemiology/Surveillance/Sur 
veillanceData/ 

Wood, S.N. (2006). Generalized Additive Models: An Introduction 
with R, Chapman & Hall/CRC, London, UK. 

Wright, A.C., Hill, R.T., Johnson, J.A., Roghman, M.C., Colwell, 

R.R., and Morris, J.G. (1996). Distribution of Vibrio vulnificus in 
the Chesapeake Bay. Appl. Environ. Microbiol., 62(2), 717-724. 

Xu, J., Long, W., Wiggert, J., Lanerolle, L.J., Brown, C., Murtugudde, 
R., and Hood, R. (2012). Climate forcing and salinity variability in 
Chesapeake Bay, USA. Estuaries Coasts, 35(1), 237-261. http://dx. 
doi.org/10.1007/s12237-011-9423-5 

Yamazaki, K., and Nwadiuto, E. (2012). Environmental predictors of 
pathogenic Vibrios in South Florida coastal waters. Open Epi-
demiol., 5(0), 1-4. http://dx.doi.org/10.2174/1874297101205010001 


